
Solution Manual for Optimization in Operations 

Research 2nd Edition Rardin 0134384555 

9780134384559 
 
 

 

Full link download 
 

Solution Manual: 
 

 https://testbankpack.com/p/solution-manual-for-optimization-in-operations-research-2nd-

edition-rardin-0134384555-9780134384559/ 

https://testbankpack.com/p/solution-manual-for-optimization-in-operations-research-2nd-edition-rardin-0134384555-9780134384559/
https://testbankpack.com/p/solution-manual-for-optimization-in-operations-research-2nd-edition-rardin-0134384555-9780134384559/


1 1 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

 
 

 
 
 

1 

1 

x∗  

1 

2 

x
1
 ≥

 0
 

x
1
 ≥

 0
 

x
1
 ≤

 5
0
 

x
1
 ≤

 5
0
 

x
 1

 ≥
 0

 
x
 1

 ≥
 0

 

x
 1

 ≤
 1

0
 

x
 1

 ≤
 1

0
 

 

Chapter 2 Solutions 1  2  
 

 
 

profit),  s.t.  5x1  + 5x2  ≤ 300 (legs), 

0.6x1  + 1.5x2  ≤ 63 (assembly  hours),  x1  ≤ 50 

(wood tops),  x2  ≤ 35 (glass tops),  x1  > 0, 
x2  > 0 

 
(c) 
 
 

12 

 
 

8 

 

 
 
x 2 

 

 
 
 

x 2 ≤ 7 

 

 
 
 
 
optimal 

solutio

n 

(x*1, x*2)=(5,7)

1                                  2 

(c) 
x 2 

50 

 
4 
 

 
x 2 ≥ 0

40 
x 2 ≤ 35 

 
30 

 

 
20 

 
( x *, x 2*) = (30,30) 

 

 
(d) 

x 2 

 

12

10 

 
 
 

(d) 
x 2 

 

 
x 2 ≥ 0 

10          20          30          40           50 

 
8      x 2 ≤ 7 

 

 
4 

optima

50 

 
40 

x 2 ≤ 35 

 
alternative optima 

 
x 2 ≥ 0 

4            8          12

 
30 

All optimal from x = (5, 7) to x = (8, 4). 
 

20 

 
10 

 
x 2 ≥ 0 

10          20          30          40           50

All optimal from x = (30, 30) to 

x = (17.5, 35). 

2-2.    (a) max .11x1  + .17x2  (max  total 

return), s.t.  x1  + x2  ≤ 12 ($12 million 

investment), x1  ≤ 10 (max  $10 million 

domestic),  x2  ≤ 7 (max  $7 million foreign), 

x1  > .5x2  (domestic  at least half foreign), 

x2  > .5x1  (foreign at least half domestic), 

x1  > 0, x2  > 0 (b) x∗  =domestic=$5 million, 

 
 
 
 
 
 
 
 
 
2-3.    (a) min 3x1  + 5x2  (min total  cost),  s.t. 

x1  + x2  > 50 (at least 50 thousand acres),

2= foreign=$7 million x1  ≤ 40 (at  most 40 thousand from 

Squawking Eagle), x2  ≤ 30 (at most 30
1Supplement  to the 2nd  edition of Optimization in 

Operations  Research,  by  Ronald L.  Rardin,  Pearson 

Higher  Education, Hoboken NJ, Qc 2017. 

thousand from Crooked Creek),  x1  > 0, 

x2  > 0 (b) x∗  =Squawking Eagle=40

2As  of September 24, 2015 thousand, x∗ =Crooked Creek=10 thousand
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(c) 
x 2 

x1  + x2  > 125 (weight at least 125), 

2.5x1  + 1.8x2  ≤ 350 (calories at most 350),

100 
x 1 ≥ 0 

0.2x1 + 0.1x2  ≤ 15 (fat  at most 15),

3.5x1  + 2.5x2  ≤ 360 (sodium  at most 360), 
75                                                                                                                        x1  > 0, x2  > 0 (b) x∗ =beef=25g, 

2=chicken=100g 
50 

 
x 2 ≤ 30 

25 

 
x 2 ≥ 0 

1 
25          50          75 

 
(d) 

x 2 

100 

optimal solution (x*
1  

, x*2 ) = (40,10)  

 
 
 
(c) 
 

x 2

75                                                                                                                         175 

 
50 

 
x 2 ≤ 30 

25 

150 
 

 
125 

 

 
max

100

 
x1 

25          50          75 

 
x 1 ≥ 0 

75 

 
optimal solution 

50        
(x*1, x*2) = (25,100)

 

Improves  forever in direction   Δx1 = 1, 
25 

 
x 2 ≥ 0 

1

Δx2 = 
−1. 

 

(e) 
x 2 

 

(d) 
 

x 2
 

10          20          30          40            50

100 
x 1 ≥ 0  

175

 
75                                                                                                                          150 

 
125 

50

 
x 2 ≤ 30 

25 

 
100 

 
75 

 

 
x 1 ≥ 0

 
x 2 ≥ 0                                                                             

50 
1 

25          50          75 
 

25

 

x2  = 0 leaves no feasible. 
 

2-4.    (a) max x1  (max  beef content), s.t. 

 
x 2 ≥ 0 

1 

10          20          30          40            50 

x1  + x2  > 200 leaves no feasible.
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(e) 
 

x 2 

175 

(d) 
c 

10000

 
150 

 
8000

 
125 

6000

 
100 

 
4000

 
2000 

75 

 
50 

max 

v 

2000      4000      6000       8000

 
25 

x
1

 

10          20          30          40            50 

Improve  forever in direction  Δx1 = 1, 
Δx2 = −2. 

Improves  forever in direction   Δv = 10, 

Δc = −7. 
 

 
 
 
 
 
(e)

2-5.    (a) max 450v + 200c (max  total  profit), 

s.t.  10v + 7c ≤ 70000 (water  at most 70000 

units),  v + c ≤ 10000 (total acreage 10000), 

v ≤ 7000 (at most 70% vegetables),  c ≤ 7000 

(at most 70% cotton), v > 0, c > 0 (b) 

v∗   = 7000, c∗   = 0  

c 

10000 

 
8000 

 
6000 

 
4000 

 
 

 
v ≤ 7000

 
2000 

 
c ≥ 0 

2000      4000       6000        8000 

 

No solution  with v + c = 10000. 
 

(c) 
c 

10000 

8000 

 
6000 

 
4000 

 
2000 

 
v ≤ 7000 

 
 
 
 
 

 
c ≥ 0                                                  

v
 

2000     4000      6000       8000 

 

2-6.    (a) min x1  + x2  (min used stock),  s.t. 

5x1  + 3x2  > 15 (cut at least 15 long rolls), 

2x1  + 5x2  > 10 (cut at least 10 short  rolls), 
x1  ≤ 4 (at  most 4 times on pattern 1), x2  ≤ 4 
(at most 4 times on pattern 2), x1, x2  > 0 and 

integer.  (b) Partial cuts make no physical 

sense because all unused  material is scrap.  (c)

optimal solution (v *, c *) = (7000,0) Either x∗             ∗                            ∗                    ∗
1  = x2  = 2, or x1  = 3, x2  = 1 
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(d) 
x 2 

5 

 
x 2 ≤ 4 

4 

 
3 

 

= 78.16 feet, x∗   = floors = 31.26 
 
 
(c) 

x 2 

80 

 
60

 
2 

alternative 
optima 

1 

 
x

1
 

1            2            3            4              5 

 
40 

 
20 

 
x 2 ≥ 0 

 
 

 
optimal solution 

 
x

1

 

(e) Both  (2, 2) and (3, 1) are feasible and lie 

on the best contour  of the objective. 

 
(d) 

x 2 

20          40          60          80          100

2-7.    (a) min 16x1  + 16x2  (min total  wall           80 

area),  s.t.  x1x2   = 500 (500 sqft pool), 

x1  > 2x2  (length at least twice width),                  60
 

x2  ≤ 15 (width  at most 15 ft),  x1  > 0, x2  > 0     
40

 

(b) x∗  =length=33 1  feet, x∗ =width=15 feet1                               3                  2 

(c) 
x 2 

40 

 
20 

 
x 2 ≥ 0                                                     

x
 

20          40          60          80          100

 
30 

 
20 

x 2 ≤ 15 

 
10 

optimal solution 

 

x1  ≤ 50 leaves no feasible. 
 
 
2-9.

 
 
 

(d) 
x 2 

x 2 ≥ 0 

10          20          30          40           50 

 

 
(a)

40 

 
30 

 
20 

x 2 ≤ 15 

 
10 

x 2 ≥ 0 

10          20 

 
30          40           50

x1  ≤ 25 leaves no feasible. 

2-8.    (a) max x2  (max  number  of floors), 

s.t.  π/4(x1)2x2 = 150000 (150000 sqft floor 

space), 10x2  ≤ 4x1  (height at most 4 times 

diameter), x1  > 0, x2  > 0 (b) x∗   = diameter 

 

(b) min x2  (c) min x1  + x2  (d) max x2  (e) 

x2  ≤ 1/2 
 
 
2-10.



5 5 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

 
 

 
 
 

 9 

i=1 i=1 

i=3 i 

i=1 

i=1 

i=1 

(e) 

(f) 

 17 

(b) 

(a) 2-14.    (a) 

j=1 zi,j,t  < pi,  i = 1, . . . , 47; t = 1, . . . , 10; 

470 constraints

(b) 0.25 
  47

 
 9 

j=1 zi,j,t  < 
  47

 zi,4,t; t =

 
 
 
 
 
 
 
 

 
(b) min z1  + z2  (c) min z1  (d) max z1  (e) 

z1  + z2  < 1 

1, . . . , 5; 5 constraints 
(c) zi,1,t > zi,j,t  i = 1, . . . , 47; j = 

1, . . . , 9; t = 1, . . . , 10; 4230 constraints 

2-15.        model; param  m;  param  n; param 

q; set plots :=  1  ..  m;  set  crops := 

1  ..  n; set years :=  1  ..  q; param  p 

{i  in plots };  var   x{i  in plots, j 

crops, t in years} >= 0; subject to 

#  part (a) 

acrelims {i  in plots, t in years }:

2-11.    (a) min 
   4

 
 2 

j=1 yi,j sum {j  in crops }  x[i,j,t] <= p[i];

(b) max 
   4

 

(c) max 
   p

 

(d) min 
   t

 

iyi,3 

aiyi,4 

δiyi 

#  part (b) 

crop4min {t  in years: t <= 5  }: 

0.25* sum {i  in plots, j in crops }

 4 
j=1  4 
j=1 

yi,j  = si, i = 1, . . . , 3 

aj,iyj  = ci, i = 1, . . . , 3 

x[i,j,t] <= sum {i  in plots } 
x[i,4,t]; 

#  part (c)

2-12.    (a) 

i=1 zi,j,t  < 200, j = 1, . . . , 5; t = . . . , 7; 35 

constraints 

beam1st   {i  in plots, j in crops, t in 

years}:    x[i,1,t] >= x[i,j,t]; 

#

 5 
j=1 

(c) 
 5 

 7 
t=1 z5,j,t < 4000; 1 constraint data; param  m   :=  47;   param  n  :=  9; 

param  q  :=  10;

j=1 zi,j,t  > 100, i = 1, . . . , 17; t = 1, . . . , 7; 
119 constraints 

2-13.        model; param  m; param  n; param 

p; set products :=  1  ..  m; set lines 

:=  1  ..  n; set weeks  :=  1  ..  p; var 

x{i  in products, j in lines, t in 

weeks}  >= 0; subject to 

#  part (a) 

linecap {j  in lines, t in weeks}:    sum 

{i  in products} x[i,j,t] <= 200; 

#  part (b) 

prod5lim:  sum {j  in lines, t in 

weeks}  x[5,j,t] <= 4000; 

#  part (c) 

minprodn{i  in products, t in weeks}: 

sum {j  in lines} x[i,j,t] >= 100; 

# 

data; param  m   :=  17;   param  n  :=  5; 

param  p  :=  7; 

2-16.    (a) f(y1, y2, y3) =
Δ (y1)2y2/y3, 

g1(y1, y2, y3) =
Δ y1  + y2  + y3, b1 = 13, 

g2(y1, y2, y3) =
Δ 2y1 − y2  + 9y3, b2 = 

0, 
g3(y1, y2, y3) =

Δ y1, b3 = 0, g4(y1, y2, y3) =
Δ y3, 

b4  = 0  
(b) f (y1, y2, y3) =

Δ 13y1 + 22y2 + 10y2y3  + 100, 
g1(y1, y2, y3) =

Δ y1  − y2  + 9y3, b1 = −5, 
g2(y1, y2, y3) =

Δ 8y2 − 4y3, b2 = 0, g3(y1, y2, y3) 

=
Δ y1, b3 = 0, g4(y1, y2, y3) =

Δ y2, b4 = 0, 
g5(y1, y2, y3  =

Δ y3, b5 = 0, 
2-17.    (a) Linear because LHS is a weighted 

sum of the decision variables.  (b) Linear 

because both  LHS and RHS are weighted 

sums of the decision variables.  (c) Nonlinear 

because LHS has reciprocal  1/z9. (d) Linear 

because LHS is a weighted sum of the decision 

variables.  (e) Nonlinear  because LHS has 

(zj )
2  terms.  (f ) Nonlinear  because LHS has 

log(z1)  term, and RHS has a product of
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x
 1

 ≥
 0

 
x
 1

 ≥
 0

 

x
1
 ≤

 8
 

x
1
 
≤

 8
 

 

variables.  (g)  Nonlinear  because LHS has 

max operator. (h) Linear because LHS is a 

weighted sum of the decision variables. 

2-18.    (a) LP because the objective  and all 

constraints are linear.  (b) NLP because of 

the nonlinear  objective function  with 

reciprocal of w2.  (c) NLP because of the 

nonlinear  first constraint. (d) LP because the 
objective  and all constraints are linear. 

2-19.    (a) Continuous because fractions 

make sense. (b) Discrete  because they either 

closed or not.  (c) Discrete  because a specific 

process must  be used.  (d) Continuous 

because fractions  can probably  be ignored. 

 

2-24.    (a) Model (d) because LP’s are 

generally more tractable than ILP’s.  (b) 

Model (d) because LP’s are generally more 

tractable than NLP’s.  (c) Model (d) because 

LP’s are generally more tractable than 

INLP’s.  (d) Model (f) because ILP’s are 

generally more tractable than INLP’s.  (e) 

Model (g) because LP’s are generatlly  more 

tranctable than ILP’s. 
 

 
2-25. 
 

 
(a) 

x 2

j=1                                                        16 

z1  + z2  + z4  + z5  > 2 (c) z3  + z8  < 1 (d) 
 

 
(max  total  score), s.t. 

700z1 + 400z2 + 300z3 + 600z4  < 1000 ($1 

 

(b) Fund  2 and 4, i.e. z∗  = z∗  = 0, 

12 

 

 
8 

 

 
4            max 

 
alternative 

optimal 

solutions

1           3 

2  = z4  = 1  
2-22.    (a) min 43y1 + 175y2 + 60y3 + 35y4 

(min total  land cost),  s.t.  y2  + y4  > 1 (service 

 
x 2 ≥ 0 

x
1 

4                          12          16 

Alternative optima  from z∗                    ∗

NW),  y1  + y2  + y4  > 1 (service SW), 

y2  + y3  > 1 (service capital), y1  + y4  > 1 

 
z1  = 8, z2  = 12

 1  = 8, z2  = 0 to

(service NE), y1  + y2  + y3  > 1 (service SE), 
yj  = 0 or 1,  j = 1, . . . , 4 (b) Build 3 and 4, 

i.e.  y∗   = y∗   = 0, y∗   = y∗   = 1  

2-23.    (a) ILP because the objective  and all 

constraints are linear,  but variables  are 

discrete. (b) NLP because the objective  is 

nonlinear  and all variables  are continuous.  (c) 

INLP  because the objective  is nonlinear  and 

variables  are discrete.  (d) LP because the 

objective and all constraints are linear, and all 

∗                    ∗  

 

 
(b) 

x 2 

16 

 

 
12 

 

 
8 

 

 
4

the one constraint is nonlinear,  and z3  are 

discrete.  (f ) ILP because the objective  and 

all constraints are linear,  but variables  z1  and 

z3  are discrete.  (g)  LP because the objective 

and all constraints are linear,  and all variables 

are continuous.  (h) INLP  because the 

objective is nonlinear  and z3  is discrete. 

x 2 ≥ 0 
x

1 
4                          12          16 

optimal solution (x*1 , x*2  ) = (0,4) 

Unique optimum  z1  = 0, z2  = 4 (c) Helping
 ∗                     ∗  

one can hurt the other. 
 

 
2-26.
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(f) 

j=1 

(e) 
?8 

i=1 

(a) a2  + a5  + a8  < 2500 (well 2), 

a3  + a6  + a9  + a10  < 7000 (well 3) 

(e) aj  < uj , j = 1, . . . , 10
?10 

j=1 aj  > 10000

(g)  aj  > 0, j = 1, . . . , 10 
(h) A single objective LP because the one 

objective  and all constraints are linear,  and 

all variables  are continuous. 

(i) a∗   = a∗   = a∗  = 1100, a∗  = a∗   = 1500,1           2           3 

a∗                              ∗
 

4           6 
∗             ∗                       ∗

5  = 1400, a7  = 400¡ a8  = a10  = 0, a9  = 1900 
 

Unique optimum a∗   = 4, a∗   = 0  1                 2 

(b) 

2-29.  (a) The decisions to be made are which 

projects  to undertake. 

(b) pj  =
Δ  the profit for project  j, mj  =

Δ  the 

man-days  required  on project  j, and tj =
Δ the 

CPU  time required  on project  j.

(c) max 
?8

 

(d) 7 < 
  ?8 

pjaj 

mjaj 

  
/240 < 10

?8 

j=1 

j=1 

tjaj  < 1000 (computer time),

 

 
 
 
 
 

Unique optimum  a∗  = 0, a∗   = 4 (c) Helping 
1                 2 

one can hurt the other. 

j=1 aj  > 3 (select at least 3); 

a3  + a4  + a5  + a8  > 1 (include  at least 1 of 
director’s  favorites) 

(f ) aj  = 0 or 1, j = 1, . . . , 8 

(g)  A single objective  ILP because the one 

objective  and all constraints are linear,  but 

variables  are discrete.

2-27.  (a) min
 

(h) a∗
 

∗             ∗             ∗
 

.092a4  + .112a5  + .141a6  + .420a9  + .719a12 

(min total  cost), 
s.t.  a4  + a5  + a6  + a9  + a12  = 16000 (16000m 
line), 

.279a4  + .160a5  + .120a6  + .065a9  + .039a12  < 

1  = a3  = a6  = a7  = 1, others = 0 

2-30.    (a) We must decide what quantities to 
move from surplus  sites to fulfill each need. 

(b) si =
Δ the supply  available  at i, rj  =

Δ  the 

quantity needed at j, di,j   =
Δ the distance  from 

i to j.

1600 (at most 1600 Ohms resistance), 
.00175a4  + .00130a5  + .00161a6  + .00095a9  + 

(c) min 
?4

 
?7

 

?7 
j=1 di,jai,j

.00048a12  < 8.5 (at  most 8.5 dBell (d) 
j=1 ai,j  = si, i = 1, . . . , 4

attenuation),
 

(e) 
?4 

 

i,j       j
i=1 a 

= r , j = 1, . . . , 7

a4, a5, a6, a9, a12  > 0 
(b) Nonzeros:  a∗   = 1000, a∗  

 
= 15000 

(f ) ai,j  > 0, i = 1, . . . , 4, j = 1, . . . , 7 
(g)  A single objective  LP because the one

5                          12

2-28.  (a) Pump  rates  are the decisions to be 

made. 

(b) uj=
Δ  the capacity of pump  j, cj =

Δ  the
 

objective  and all constraints are linear,  and 
all variables  are continuous. 

(h) Nonzeros:  a∗  
1  = 81, a∗  

2  = 93,

 

pumping  cost of pump  j
 

a∗  
3

 1, 

1,5 

1, 

1,6 
 
1,7

1,   = 166, a∗  = 90, a∗  = 85, a∗  = 145,

(c) min 
?10 

cjaj
 a∗  

2  = 301, a∗  
1  = 166, a∗  = 105, a∗  = 99

j=1 2,                     3, 3,4 4,3

(d) a1  + a4  + a7  < 3000 (well 1), 2-31.    (a) The values to be chosen are the
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j=1 

i=1 
c 

i=1 

max 
?22 

i=1 

?22 

f=1 

f=1 

(c) 

(c) 

 

coefficients in the estimating relationship. 
2

 

 

(b) Relatively  large values can be rounded  if

(b) min 
?n

 
 
cj  - k/(1 + ea+bfj )

 
 (min fractional  without much loss, and continuous

total squared  error) 

(c) Single objective  NLP because the 

objective  is quadratic, there are no 

constraints, and all variables  are continuous. 

is more tractable. 

(c) ci,j  =
Δ  the cost of moving a car from i to j, 

pj  =
Δ  the number  of cars presently at j, nj  =

Δ 

the number  of cars required  at j

2-32.    (a) The decisions to be made are 

where to assign each teacher. 

(d) min 
?5

 

(e) 
?5

 

?5 
j=1,j=i 

5
 

i,j ai,j

(b) min 
?22

 
?22 

j=1 ci,jai,j  (min total  cost), 
i=1,i=k ai,k - 

?
j=1,j=k ak,j  = nk - pk, 

k = 1, . . . , 5 (each region k)

?22 
i=1 j=1 ti,jai,j  (max  total  teacher (f ) ai,j > 0, i, j = 1, . . . , 5, i = j

preference),  max 
?22 

?22 
j=1

 si,jai,j  (max (g)  A single objective  LP because the one

total  supervisor  preference),  max objective  and all constraints are linear,  and

?22 

i=1
 

j=1 pi,jai,j  (max  total  principal 
all variables  are continuous. 

(h) Nonzero values:  a∗                               ∗

preference) 4,2 = 115, a4,3 = 165,

(c) 
?22

 

ai,j  = 1, i = 1, . . . , 22 (each teacher a5,1 = 85, a5,3 = 225

∗                            ∗  

j=1
i) 

(d) 
?22 

 
ai,j  = 1, j = 1, . . . , 22 (each school 

2-36.    (a) We must  decide how much of what 
fuel to burn  at each plant.

i=1 

j) (b) min 
?4

 
?23 

p=1 cf,paf,p

4                    23

(e) ai,j  = 0 or 1, i, j = 1, . . . , 22 

(f ) A multiobjective ILP because the 4 

objectives  and all constraints are linear,  but 

variables  are discrete. 

2-33.    (a) Each task must  go to Assistant 0 

or Assistant 1. 

(b) max 100(1 - a1) + 80a1  + 85(1 - a2) +  

70a2  + 40(1 - a3) + 90a3  + 45(1 - a4) +  
85a4  + 70(1 - a5) + 80a5  + 82(1 - a6) + 65a6 

(c) min 
?

f=1 sf  

?
p=1 af,p 

(d) 
?4       

ef af,p  > rp, p = 1, . . . , 23 (each 

plant p); 23 constraints 

(e) af,p  > 0, f = 1, . . . , 4, p = 1, . . . , 23; 92 

constraints 

(f ) A multiobjective LP because the 2 

objectives  and all constraints are linear,  and 

all variables  are continuous. 

2-37.    (a) The available  options  are to buy

?6 
j=1 aj  = 3  whole logs or green lumber.

(d) a5  = a6 

(e) aj  = 0 or 1, j = 1, . . . , 6 
(f ) A single objective  ILP because the one 

objective  and all constraints are linear,  but 

variables  are discrete. 

(g)  a∗  = a∗   = a∗   = 1, others = 0 
2           3           4 

2-34.    (a) Batch  sizes are the decisions to be 

made. 

(b) min aj/dj , j = 1, . . . , 4 (each burger  j) 

(b) Relatively  large magnitudes can be 

rounded  without much loss, and continuous  is 

more tractable. 

(c) min 

70a10  + 200a15  + 620a20  + 1.55y1 + 1.30y2 

(d)  100(.09)a10 + 240(.09)a15 + 400(.09)a20 + 

.10y1  + .08y2  > 2350 

(e) a10  + a15  + a20  < 1500 (sawing capacity), 
100a10  + 240a15  + 400a20  + y1  + y2  < 26500

?4 
j=1 tjdj/aj  < 60 (drying  capacity)

(d) 0 < aj  < uj , j = 1, . . . , 4 (e)  Multiobjective NLP because the first 
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constraint is nonlinear  and all variables  are 

continuous. 

2-35.    (a) The issue is how many cars to 

move from where to where. 

(f ) a10  < 50 (size 10 log availability), 
a15  < 25 (size 15 log availability), a20  < 10 
(size 20 log availability), y1  < 5000 (grade  1 

green lumber  availability) 

(g)  a10, a15, a20, y1, y2  > 0 

(h) A single objective LP because the one
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10 15 20 

1 

y∗  

(c) 
(d) 

j=1 

?8 

i=1 i=1 

(e) 

j=1 

objective  and all constraints are linear,  and 

all variables  are continuous. 

states :=  1  ..  n; var   x{i  in sites, j 

in states }  >= 0; var   y{i  in sites  }

(i) a∗  = 50, a∗  = 25, a∗  = 5, y∗  = 5000, binary; param  c  {i  in sites, j in 

i in sites  }
2  = 8500 

2-38.    (a) Decisions to be made are when to 

schedule each film. 

 

binary; param  r {  j in states }; 

minimize totcost:  sum{i  in sites, j

(b) min 
?m−1 ?m aj,j   

?n aj,taj  ,t
 in states} c[i,j]*r[j]*x[i,j] + sum{i

j=1 jI=j+1 I       
t=1           

I

?n 
t=1 ?m 
j=1 

aj,t = 1, j = 1, . . . , m  (each film j) 

aj,t < 4, t = 1, . . . , n (each time t) 

in sites}f[i]*y[i];  x[j,t]*x[jp,t]; 
subject to doeach{j  in states}:    sum{i 

in sites}x[i,j]  = 1; switch {i  in
(e) aj,t  = 0 or 1, j = 1, . . . , m; t = 1, . . . , n  
(f ) A single objective  INLP  because the one 

objective  is nonlinear,  and variables  are 

discrete.  (g)    model; param  m;  param  n; 

set films :=  1  ..  m;  set slots :=  1 

..  n; var   x{j  in films, t in slots  } 

binary; param  a{  j in films, jp in 

films };  minimize totconflict:  sum{  j 

in films, jp in films:   j < m   and  jp > 

sites, j in states }:    x[i,j] <= y[i]; 

data; param  m   :=  5; param  n  :=  5; 

param  f :=  1  160  2  49  3  246  4  86  4 

100; param  r :=  1  200  2  100  3  300  4 

100  5  200; param  c:  1  2  3  4  5  :=  1 

0.0 0.4 0.8 0.4 0.8 2  0.7 0.0 0.8 0.4 

0.4 3  0.6 0.4 0.0 0.5 0.4 4  0.6 0.4 

0.9 0.0 0.4 5  0.9 0.4 0.7 0.4 0.0 ;

j }  a[j,jp]*sum {t  in slots} 2-40.    (a) max 
?8

 rjaj , subject  to,

x[j,t]*x[jp,t]; subject to allin  {j  in 

films}:    sum{  t in slots }  x[j,t] = 1; 

max4 {t  in slots}:sum{j  in films} 

x[j,t] <= 4; 

2-39.    (a) We need to decide both  which 

offices to open and how to service customers 

from them. 

(b) Offices must  either  be opened or not. 

(c) fi =
Δ fixed cost of site i, ci,j  =

Δ unit  cost of 

audits  at j from i, rj  =
Δ required  number  of 

audits  in state j 

j=1 aj  < 4, a1  + a2  + a3  > 2, 

a4  + a5  + a6  + a7  + a8  > 1, 
a2  + a3  + a4  + a8  > 2, a1 . . . a8  = 0 or 1 (b) 
model; param  n  ; set games  :=  1  ..  n; 

#ratings param  r{j  in games};  #home? 

param  h{j  in games};  #state?   param 

s{j  in games};  #cover?   var   x{j  in 

games}  binary; maximize  totrat:  sum{j 

in games}  r[j]*x[j];  subject to 

capacity:   sum{j  in games}  x[j] <= 4; 

home:    sum{j  in games}  h[j]*x[j] >= 2;

(d) min 
?5

 
?5 

j=1 ci,jrjai,j   + 
?5

 fiyi 
away:    sum{j  in  games}(1-h[j])* x[j] 
>= 1; state:   sum{j  in games}s[j]*x[j]

?5 
i=1 

j) 
ai,j  = 1, j = 1, . . . , 5 (each location >= 2; data; param  n  :=  8; param  r :=1 

3.0 2  3.7 3  2.6 4  1.8 5  1.5 6  1.3  7

(f ) ai,j  < yi, i, j = 1, . . . , 5 (each site i, 
location  j combination) 

(g)  ai,j  > 0, i, j = 1, . . . , 5, yi = 0 or 1, 

i = 1, . . . , 5 

(h) A single objective  ILP because the one 

objective  and all constraints are linear,  but 

the yi variables  are discrete. 

(i) Nonzeros: 

1.6 8  2.0; param  h:=1  1  2  1  3  1  4  0  5 

0  6  0  7  0  8  0;  param  s:=1 0  2  1  3  1  4 

1  5  0  6  0  7  0  8  1;   (c) The model is an 

ILP because all constraints and the objective 

are linear,  but  decision variables  are binary. 
 

2-41.    (a) How to divide funds is the issue. 

(b) max 
?n      

vjaj

a∗                 ∗                 ∗                 ∗                  ∗
 

(c) min 
?n 

rjaj
2,2 = a2,4 = a3,1 = a3,3 = a5,5 = 1, j=1

y∗             ∗            ∗                                                                                                                        n

2  = y3  = y5  = 1 (j)   model; param  m; 

param  n; set sites :=  1  ..  m;  set 

(d) 
?

j=1 aj  = 1  
(e) aj  > lj , j = 1, . . . , n (each category  j)
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j 

(e) 

(f ) aj  < uj , j = 1, . . . , n (each category  j) 

(g)  A multiobjective LP because the 2 

objectives  and all constraints are linear,  and 

all variables  are continuous. 

2-42.    (a) The issue is which module goes to 

which site. 

(b) If ai,jaiI,jI   = 1 the i is at j and it  is at jt, 
so wire dj,jI    will be required.  Summing  over 
all possible location  pairs captures the wire 

requirements for i and it. 

(c) min 

31a2,4 +18a3,4  < 7777, a1,1 + a2,1 + a3,1 > 200, 

a1,2 + a2,2 + a3,2 >  300, a1,3 + a2,3 + a3,3 > 

250, a1,4 + a2,4 + a3,4 >  500, aj,t  >  0,  j = 
1, . . . 3,  t = 1, . . . 4.

?m−1 ?m                            n        n 

i=1 

(d) 
?n 

iI=i+1 ai,iI 
? 

=1 

?
jI=1 dj,jI ai,jaiI ,jI 

ai,j  = 1, i = 1, . . . , m  (each module

j=1 

i) ?m 
i=1 ai,j  < 1, j = 1, . . . , n (each site j)

(f) ai,j  = 0 or 1, i = 1, . . . , m, j = 1, . . . , n  
(g)  Single objective  INLP  because the one 

objective  is nonlinear  and variables  are 

discrete.  (h)   model; param  m; param  n; 

set modules   :=  1  ..  m;  set sites :=  1 

..  n; var   x{i  in modules, j in sites 

}  binary; param  a{  i in modules, ip in 

modules   };  param  d{  j in sites, jp in 

sites };  minimize totdist:  sum{  i in 

modules, ip in modules:  i < m   and  ip 

> i }  a[i,ip] sum{j  in sites,  jp in 

sites :  j < n  and  jp > j } 

d[j,jp]*x[i,j]*x[ip,jp];  subject to 

alli {i  in modules   }:    sum{  j in sites 

}  x[i,j] = 1; allj {  j in sites }: 

sum {  i in modules   }  x[i,j] <= 1; 

2-43.    max 199a1  + 229a2  + 188a3 + 205a4  - 

180y1 - 224y2 - 497y3, subject  to, 
23a3  + 41a4  < 2877y1, 14a1  + 29a2  < 2333y2, 

11a3  + 27a4  < 3011y3, 

a1  + a2  + a3  + a4  > 205, y1  + y2  + y3  < 2, 
a1, . . . , a4  > 0, y1, . . . , y3  = 0 or 1 

2-44.    max 11a1,1 + 15a1,2 + 19a1,3 + 10a1,4 + 

19a2,1 + 23a2,2 + 44a2,3 + 67a2,4 + 17a3,1 + 

18a3,2 + 24a3,3 + 55a3,4, subject  to, 15a1,1 + 
24a2,1 + 17a3,1  <   7600,  19a1,2 + 26a2,2 + 

13a3,2 < 8200, 23a1,3 + 18a2,3 + 16a3,3 < 6015, 
14a1,4+33a2,4+14a3,4 < 5000, 31a1,1+26a2,1+ 

21a3,1 < 6600, 25a1,2 + 28a2,2 + 17a3,2 < 7900, 

39a1,3 + 22a2,3 + 20a3,2  <   5055,  29a1,4  + 


