## Solution Manual for Organic Chemistry 9th Edition McMurry 1305080483 9781305080485 Full link download: Test Bank:

https://testbankpack.com/p/test-bank-for-organic-chemistry-9thedition-mcmurry-1305080483-9781305080485/

## **Solution Manual:**

https://testbankpack.com/p/solution-manual-for-organic-chemistry-9thedition-mcmurry-1305080483-9781305080485/

# Chapter 2 – Polar Covalent Bonds; Acids and Bases

## **Chapter Outline**

- I. Polar covalent bonds (Sections 2.1–2.3).
  - A. Electronegativity (Section 2.1).
    - 1. Although some bonds are totally ionic and some are totally covalent, reschemical bonds are polar covalent bonds.

other.

an

- a. In these bonds, electrons are attracted to one atom more than
- 2. Bond polarity is due to differences in electronegativity (EN).
  - a. Elements on the right side of the periodic table are more electronega elements on the left side.
  - b. Carbon has an EN of 2.5.
  - c. Elements with EN > 2.5 are more electronegative to be upon.
  - d. Elements with EN < 2.5 are less electronecative than
- 3. The difference in EN between two elements and ed to prove the olarity of a bond.
  - a. If  $\Delta EN < 0.4$ , a bond is nonpola explent.
  - b. If  $\Delta EN$  is between 0.4 and 2.0, a be polypoint ovalent.
  - c. If  $\Delta EN > 2.0$ , a bond is i
  - d. The symbols  $\Delta +$  and  $\Delta$  are and d to indicate the trial charges.
  - e. A crossed arrow is used in bond pol
    - i. The tail of the arrow lect por, and the head of the arrow is electronrich.
- 4. Electrostatic petial maps are so used show electron-rich (red) and electronpoor and so the petial maps are used as the source of the sour
- 5. An inductive and is an a lity to polarize a bond.
- B. Dipole moment (Set
  - 1. Dipole moment is the asure of a molecule's overall polarity.

moment  $(\mu) = Q$ , where Q = charge and r = distance between charges.

 $D_{TP}$  ont is measured in debyes (D).

2.2).

- 3. pole more be used to measure charge separation.
- 4. Iter that ammonia have large values of D; methane and ethane have D = 0.
- C. Forn large (Section 2.3).
  - 1. Four charge (FC) indicates electron "ownership" in a molecule.

| (FC) # of valence | [ <u># of bonding electrons</u> ] | [# nonbonding] |
|-------------------|-----------------------------------|----------------|
| electrons         | 2                                 | electrons      |
| L .               | ]                                 | L _            |

- II. Resence (Sections 2.4–2.6).
  - Chemical structures and resonance (Section 2.4).
    - 1. Some molecules (acetate ion, for example) can be drawn as two (or more) different electron-dot structures.
      - a. These structures are called resonance structures.

- b. The true structure of the molecule is intermediate between the resonance structures.
- c. The true structure is called a resonance hybrid.
- Resonance structures differ only in the placement of *π* and nonbonding eleca.
   All atoms occupy the same positions.
- 3. Resonance is an important concept in organic chemistry.
- B. Rules for resonance forms (Section 2.5).
  - 1. Individual resonance forms are imaginary, not real.
  - 2. Resonance forms differ only in the placement of their  $\pi$  conbonding electrons.
    - a. A curved arrow is used to indicate the movement of electron ot atoms.
  - 3. Different resonance forms of a molecule don't have to be equival
    - a. If resonance forms are nonequivalent, the structure actual consumption of the structure actual construction of the structure of the structu
  - 4. Resonance forms must obey normal rules of ency.
  - 5. The resonance hybrid is more stable than any induation on ance form.
- C. A useful technique for drawing resonance forms (Section 6).
  - 1. Any three-atom grouping with a reaction bond adjace on a nonbonding *p* orbital has two resonance forms.
  - 2. One atom in the grouping has a long echange ir, a vacab orbital or a single electron.
- 3. By recognizing these three-atom piece resonals forms can be generated.

# III. Acids and bases (Section

้ล.

b.

- A. Brønsted–Lowry defin
  - 1. A Brønsted–Lowry achter ates an H<sup>+</sup>hor, a Brønsted–Lowry base accepts H<sup>+</sup>.
  - The product that results when base gains H<sup>+</sup> is the conjugate acid of the base; the set that results when acid loses H<sup>+</sup> is the conjugate base of the acid.
     Water and the set of the base.
- B. Acid and e streng. 2.8-2.10).
  - 1. A strol cid r as almost completely with water (Section 2.8).

Secu

- 2. The stream T an acid in water is indicated by  $K_a$ , the acidity constant.
- 3. Strong admave large acidity constants, and weaker acids have smaller acidity constants.
  - a is **E** mally used to express acid strength.
  - =-log  $K_{a}$
  - trong acid has a small  $pK_a$ , and a weak acid has a large  $pK_a$ .
  - The conjugate base of a strong acid is a weak base, and the conjugate base of a weak acid is a strong base.
- 5. Predicting acid–base reactions from  $pK_a$  (Section 2.9).
  - a. An acid with a low  $pK_a$  (stronger acid) reacts with the conjugate base of an acid with a high  $pK_a$  (stronger base).
  - b. In other words, the products of an acid–base reaction are more stable than the reactants.

oup. electre

- 6. Organic acids and organic bases (Section 2.10).
  - a. There are two main types of organic acids:
    - Acids that contain hydrogen bonded to oxygen. i.
    - ii. Acids that have hydrogen bonded to the carbon next to a C<sub>z</sub>
  - b. The main type of organic base contains a nitrogen atom with
- C. Lewis acids and bases (Section 2.11).
  - 1. A Lewis acid accepts an electron pair.
    - a. A Lewis acid may have either a vacant low-energy orbital or a polar be hydrogen.
    - b. Examples include metal cations, halogen acids, g compounds and transition-metal compounds.
  - 2. A Lewis base has a pair of nonbonding ele
    - a. Most oxygen- and nitrogen-cop compou Lewis bases. ing org
    - sic site. b. Many organic Lewis bases have e than one
  - om a Lewis base to a Lewis acid. 3. A curved arrow shows the movement ctror
- IV. Noncovalent interactions in molecul (Section
  - A. Dipole-dipole interactions oc een polar ules as a result of electrostatic interactions among dipoles.
    - 1. These interactions may be e r à e or repulsive.
    - 2. The attractive geometry is lo nd predominates. in en
  - iging electron distribution within B. Dispersion force built from the stantly molecules.
    - 1. These force but their cumulative effect may be important. rans
  - C. Hydrogen bonds.

4.

6

- tween a hydrogen bonded to an electronegative atom and an 1. Hydrogen bonds fo nshared electron on another electronegative atom.
  - ads are extremely important in living organisms.
- ду 3 s dissolve in water because they are capable of forming ydrophi<sup>,</sup> gen bonds.
  - abic substances don't form hydrogen bonds and usually don't dissolve in water.

#### **Solutions to Problems**



**2.4** In an electrostatic potential map, the color red indicates regions of a molecule that are electron-rich. The map shows that chlorine is the most electronegative atom in chloromethane, and the direction of polarity of the C–Cl bond is:



| Formal charge $(FC) =$ | # of valence | [ <u># of bonding electrons</u> ] | [# nonbonding] |
|------------------------|--------------|-----------------------------------|----------------|
|                        | electrons    | 2                                 | electrons      |

(a)

$$H_2C = N = N: = H:C::N::N:$$
For carbon: FC =  $4 - \frac{8}{2} - 0 = 0$ 
For nitrogen 1: FC =  $5 - \frac{8}{2} - 0 = +1$ 
For nitrogen 2: FC =  $5 - \frac{4}{2} - 4 = -1$ 

Remember: Valence electrons are the electrons characteristic of a specific element. Bonding electrons are those electrons involved in bonding to other atoms. Nonbonding electrons are those electrons in lone pairs.

(b)

$$H_{3}C-C\equiv N-\overset{1}{\odot}:=\overset{1}{H}\overset{H}{:}\overset{2}{C}:\overset{2}{:}:N:\overset{1}{\odot}:$$

For carbon 1: FC = 
$$4 - \frac{8}{2} - 0 = 0$$
  
For carbon 2: FC =  $4 - \frac{8}{2} - 0 = 0$   
For nitrogen : FC =  $5 - \frac{8}{2} - 0 = +1$   
For oxygen: FC =  $6 - \frac{2}{2} - 6 = -1$ 

(c)

$$H_3C - N \equiv C$$
: =  $H : C : N : :: C : H$   
For carbon 1: FC =  $4 - \frac{8}{2} - 0 = 0$ 



For carbon 1: 
$$FC = 4 - \frac{8}{2} - 0 = 0$$
  
For carbon 2:  $FC = 4 - \frac{6}{2} - 2 = -1$   
For nitrogen :  $FC = 5 - \frac{8}{2} - 0 = +1$ 

2.8 Formal charge (FC) =  $\begin{bmatrix} \# \text{ of valence} \\ electrons \end{bmatrix} - \begin{bmatrix} \# \text{ of bonding electrons} \\ 2 \end{bmatrix} - \begin{bmatrix} \# \text{ nonbonding} \\ electrons \end{bmatrix}$  $\begin{bmatrix} H & \vdots \\ 0 \vdots \\ 1 & 1 & 1 \\ H - C - 0 - P - 0 \vdots \\ H & \vdots \\ H & \vdots \\ 0 \vdots \end{bmatrix}^{2-}$  Methyl phosphate For oxygen 1: FC =  $6 - \frac{4}{2} - 4 = 0$ For oxygen 2: FC =  $6 - \frac{4}{2} - 4 = 0$ For oxygen 3 : FC =  $6 - \frac{2}{2} - 6 = -1$ For oxygen 4: FC =  $6 - \frac{2}{2} - 6 = -1$ 1, and oxygen atoms 1 and 2 have a Oxygen atoms 3 and 4 each have remain characteristics formal charge of 0. 2.9 Try to locate the three-atom group st present in resonance forms. These two structures represen ms. The three-atom grouping (C–C (a) sonan double bond l on adjacent v nt p orb. a) is pictured on the right. res represent different compounds, not resonance structures. hese (b)a compared by a multiple bond next to an atom with a p2.10 Look thr orbita ange the positions of the bond and the electrons in the p orbital to draw the orm of each grouping. resonat (a) Me phosphate anion has 3 three-atom groupings and thus has 3 resonance forms.

Recall from Chapter 1 that phosphorus, a third-row element, can form more than four covalent bonds



**2.11** When an acid loses a proton, the product is the conjugate base of the acid. When a base gains a proton, the product is the conjugate acid of the base.

| H-NO3 | + | :NH <sub>3</sub> | <b>→</b> | $NO_3^-$        | +  | $NH_4^+$          |
|-------|---|------------------|----------|-----------------|----|-------------------|
| Acid  |   | Base             |          | Conjuga<br>base | te | Conjugate<br>acid |

- **2.12** Recall from Section 2.8 that a stronger acid has a smaller  $pK_a$  and a weaker acid has a larger  $pK_a$ . Accordingly, phenylalanine ( $pK_a = 1.83$ ) is a stronger acid than tryptophan ( $pK_a = 2.83$ ).
- **2.13** HO–H is a stronger acid than  $H_2N$ –H. Since  $H_2N^-$  is a stronger base than HO<sup>-</sup>, the conjugate acid of  $H_2N^-$  ( $H_2N$ –H) is a weaker acid than the conjugate acid of HO<sup>-</sup> (HO–H).
- 2.14 Use Table 2.3 to find the strength of each acid. A reaction takes place as written if the



stronger acid, and the above reaction will not take place to a significant extent in them direction written.

- more basic (red) Imidazole H most acidic (blue) Н (b) N+ Н Н Н Н Н 5 : N Н N Ν H, Н H B 2.19 ĊH3 CH3 CH<sub>3</sub> CH2OH H<sub>3</sub>C сн<sub>2</sub>он H. HO\* only one -OH group CH<sub>3</sub> several -OH groups HO \* \* OH \* = polar group Vitamin A Vitamin C oluble (hydrophilic) because it has several polar –OH groups that can itamin C is form hydrogen ds with water. Vitamin A is fat-soluble (hydrophobic) because most of its atoms can't hydrogen bonds with water. mistry ⊿ng 2.20 Naphth e has three resonance forms.
- **2.18** (a) The nitrogen on the left is more electron-rich and more basic. The indicated hydrogen is most electron-poor (bluest) and is most acidic.

2.21



**2.22** Electrostatic potential maps show that the electron-rich regions of the cis isomer lie on the same side of the double bond, leading to a net dipole moment. Because the electron-rich regions of the trans isomer are symmetrical about the double bond, the individual bond dipole moments cancel, and the isomer has no overall dipole moment.









### **Formal Charges**

**2.35** To save space, molecules are shown as line-bond structures with lone pairs, rather than as electron-dot structures.

(CH<sub>3</sub>)<sub>2</sub>
$$\ddot{O}$$
-BF<sub>3</sub>  
(CH<sub>3</sub>)<sub>2</sub> $\ddot{O}$ -BF<sub>3</sub>  
(a)  
 $H_2\ddot{C}$ - $\overset{1}{N}$  =  $\overset{2}{\overset{2}{\square}}$   
 $H_2\ddot{C}$ - $\overset{1}{\overset{2}{\square}}$   
(b)  
(c)  
 $\overset{CH_3}{\overset{1}{\overset{1}{\square}}}$   
 $H_2\ddot{C}$ - $\overset{1}{\overset{1}{\square}}$   
 $H_2\dot{C}$ - $\overset{1}{\overset{1}{\square}$   
 $H_2\dot{C}$ - $\overset{1}{\overset{1}{\frown}$   
 $H_2\dot{C}$ - $\overset{1}{\overset{1}{\frown}$   
 $H_2\dot{C}$ - $\overset{1}{\overset{1}{\cr}$   
 $H_2\dot{C}$ - $\overset{1}{\overset{1}{\cr}$   
 $H_2\dot{C}$ - $\overset{1}{\overset{1}{\cr}$   
 $H_2\dot{C}$ - $\overset{1}{\overset{1}{\phantom}$   
 $H_2\dot{C}$ - $\overset{1}{\phantom}$   
 $H_2\dot{C}$ - $\overset{1}{\phantom}$   
 $H_2\dot{C}$ - $\overset{1}{\phantom}$   

(d)  

$$H_2C = N = N^2$$
:  
 $H_2C = N = N^2$ :  
 $FC = 4 - \frac{8}{2} - 0 = 0$   
 $Nitrogen 1: FC = 5 - \frac{8}{2} - 0 = +1$   
 $Nitrogen 2: FC = 5 - \frac{4}{2} - 4 = -1$   
 $Oxygen 1: FC = 6 - \frac{4}{2} - 4 = 0$   
 $Oxygen 2: FC = 6 - \frac{6}{2} - 2 = +1$   
 $Oxygen 3: FC = 6 - \frac{2}{2} - 6 = -1$ 



**2.36** As in Problem 2.31, molecules are shown as line-bond structures with lone-pair electrons indicated. Only calculations for atoms with non-zero formal charge are shown.

$$H_{3}C \xrightarrow{CH_{3}}_{H_{3}C}$$

$$H_{3}C \xrightarrow{H_{3}}_{H_{3}C}$$

$$H_{3}C \xrightarrow{H$$

**Acids and Bases** 

2.40



The last resonance structure is a minor contributor because its carbon lacks a complete electron octet.

(d)  $H_3C - \dot{S} - \dot{C}H_2 \longrightarrow H_3C - \dot{S} = CH_2$ 

CH<sub>3</sub>OH + HCI → CH<sub>3</sub>OH<sub>2</sub><sup>+</sup> + CI<sup>-</sup>

(e) 
$$H_2C = CH - CH = CH - CH_3 \longrightarrow H_2C = CH - CH = CH - CH_3$$
  
 $\longleftarrow H_2C^+ - CH = CH - CH = CH - CH_3$ 

**2.39** The two structures are not resonance forms because the positions of the carbon atoms are different in the two forms.



$$(d) \qquad (e) \qquad H \qquad H \qquad H \qquad (f) \qquad (c) \qquad (c) \qquad H \qquad (f) \qquad (c) \qquad$$

The Lewis acids shown below can accept an electron pair either because they have a vacant orbital or because they can donate  $H^+$ . The Lewis bases have nonbonding electron pairs.

Lewis acids: AlBr<sub>3</sub>, BH<sub>3</sub>, HF, TiCl<sub>4</sub>

Lewis bases:  $CH_3CH_2NH_2$ ,  $H_3C-S-CH_3$ 

2.43  $CH_3OH + H_2SO_4 \implies CH_3OH_2^+ + HSO_4^$ stronger stronger weaker weaker acid acid base base (a)  $CH_3OH + NaNH_2 \implies CH_3O^-Na^+ + NH_3$ stronger stronger weaker weaker acid acid base base (b) (c)  $CH_3NH_3^+CI^-$  + NaOH  $\overrightarrow{}$  CH<sub>3</sub>NH<sub>2</sub> + H<sub>2</sub>O + NaCI stronger weaker weaker stronger acid base acid base

**2.44** The substances with the largest values of  $pK_a$  are the least acidic.

2.45 To react completely (> 99.9%) with NaOH. an acid must have a p $K_a$  at least 3 units smaller



#### 2.47

$$H_{3}C - C - O^{-}K^{+} + H_{2}O \longrightarrow H_{3}C - C - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K^{+} - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K^{+} - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K^{+} - OH + K^{+} - OH$$

$$H_{3}C - C - OH + K^{+} - OH + K$$

The reaction takes place as written because water is a stronger acid than *tert*-butyl alcohol. Thus, a solution of potassium *tert*-butoxide in water can't be prepared.

2.48



**2.50** (a) Nitromethane:  $pK_a = 10.30$  (b) Acrylic acid:  $pK_a = 4.25$ 

2.51

Formic acid + H<sub>2</sub>O  $\stackrel{K_a}{\longleftarrow}$  Formate<sup>-</sup> + H<sub>3</sub>O<sup>+</sup> [x] [x] [0.050 M]  $K_{\rm a} = 1.8 \text{ x } 10^{-4} = \frac{{\rm x}^2}{0.050 - {\rm x}}$ 

If you let 0.050 - x = 0.050, then  $x = 3.0 \times 10^{-3}$  and pH = 2.52. If you calculate x exactly using the quadratic equation, then  $x = 2.9 \times 10^{-3}$  and pH = 2.54.

2.52 Only acetic acid will react with sodium bicarbonate. Acetic acid is the only substance in Problem 2.40 that is a stronger acid than carbonic acid.



### **General Problems**

**2.53** In maleic acid, the individual dipole moments add to produce a net dipole moment for the whole molecule. The individual dipole moments in fumaric acid cancel, resulting in a zero dipole moment.



- **2.54** Sodium bicarbonate reacts with acetic acid to produce carbonic acid, which breaks down to form  $CO_2$ . Thus, bubbles of  $CO_2$  indicate the presence of an acid stronger than carbonic acid, in this case acetic acid, as the p $K_a$  values indicate. Phenol does not react with sodium bicarbonate.
- **2.55** Reactions (a) and (c) are reactions between Brønsted–Lowry acids and bases; the stronger acid and stronger base are identified. Reactions (b) and (d) occur between Lewis acids and bases.



**2.56** Pairs (a) and (d) represent resonance structures; pairs (b) and (c) do not. For two structures to be resonance forms, all atoms must be in the same positions in all resonance forms.



**2.58** The cation pictured can be represented by two resonance forms. Reaction with water can occur at either positively charged carbon, resulting in two products.



2.61

2.62



When phenol loses a proton, the resulting anion is stabilized by resonance. The methanol anion is not stabilized by resonance.



**2.63** (a) The central carbon of carbonate ion is sp<sup>2</sup> and trigonal planar. The three resonance forms control wally to the second resonance. I. The second has not





force is stronger than the dispersion forces between acetic acid and oil.

