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• 

Physical Chemistry: Quantum Mechanics and 
Molecular 

Interactions 
 

Objectives Review Questions 
 

Chapter  1 

 
1.1  We use Eq.  1.1 to convert wavelength to frequency )taking advantage of the constant speed of light 

c) and we use Eq.  1.2 to convert frequency to photon  energy: 

c 
ν =    = 

λ 

2.998 • 108 m s-1
 

1.0 • 10-3 m 

 

= 3.0 • 1011 s-1                                                               by Eq.  1.1

Ephoton  = hν = )6.626 • 10-34 J s))3.0 • 1011 s-1) = 2.0 • 10-22 J.                 Eq.  1.2 

 
1.2  The  de  Broglie  wavelength  )Eq.    1.3)  is our  yardstick )if  you  will)  for  the degree  of quantum 

character in  our  system.    We  calculate  λdB  and  compare  it  to the domain  to determine if we need 

quantum mechanics  to describe the physics.  In this case, to find the de Broglie wavelength  we need to 

calculate the momentum P from the kinetic  energy, but  we can do that: 
 

mv2         P2 
K =       = 

2        2m

P = 
,

 

h 
mK = 

   
2)1.008 amu))1.661 • 10-27 kg amu-1))(.0 • 10-21 J) = 3.66 • 10-24 kg m s-1

 

6.626 • 10-34 J s 

λdB =    =                            = 1.8 • 10-10 

P      3.66 • 10-24 kg m s-1
 

m =  1.8 A.

 

Because  1.8 • 10-10 m « 1.0µm  =  1.0 • 10-6 m,  it  is unlikely  that quantum  effects arising  from  this 

motion  will be significant. 

 
1.3  The atom  is in an n = 2 state, and we can use the Bohr model of the atom to calculate the correct 

values  of the energies.   From  Eq.   1.15 we can  calculate  the total energy,  and  from Eq.   3.7 we can 

calculate the potential energy.  The  question  does not specify units,  and the  most convenient units  for 

the total energy are  Eh: 

Z2                           22 

En = (
2n2  

Eh   = ( 
2)22) 

Eh   = (0.5 Eh.
 

 

The potential energy depends  on the radius  of the electron  orbit  in the Bohr model, 
 
 

 
which gives us 

 

 
 
 
 

Ze2 

 

rn = 
n2 

a0  = 
Z 
 
 

2e2 

22 

a0  = 2a0, 
2 

 
 

e2

U = (
(ne  r 

= ( 
)(ne  ))2a  ) 

= ( 
)(ne  )a  ) 

= (1.00 Eh. 
0                           0          0                           0     0 

 

Chapter  2 

 
2.1  We apply the operator to the function, and see if we can find the original function again afterward: 

1  d 
α̂f )x) =  

  
3x e2x

  
= 1  

3e2x  + 3x)2e2x)
 

 

= 
1 

3e
2x  

+ 2   3e
2x  

= 

   
1  

+ 



1 Copyright Qc   2014 Pearson Education, Inc. 

 

x                                  x2
  

2 
 

 
f )x). 

x 

x dx                     x
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-             3,1          1 

4 

2 

a 

• 
• 

3 2 

 

The result  is equal to f )x) times another function of x, so this is  not  an eigenvalue equation. 

1  d 
α̂g)x) =  

1
3 e2x2 

  
= 1 1

3)4x)e2x2 
 

x dx 

= 4 • 3e2x
 

x 

= 4f )x).

 

But  g)x) is an eigenfunction of α̂, because the result  is the  original function  g)x) times the  eigenvalue 

4. 
 

2.2  We  use  the average  value  theorem,  Eq.   2.10,  integrating  between  0 and  a.   The  integral  over 

x4 sin)cx)  can  be found  using  a symbolic  math  program.   Setting  c = 2n/a for now to  simplify  the 

notation, we have:      

ψ∗  )x4) ψ dx = 
2
 

o                                          a 

   a 

sin2)cx) x4 dx = 0.176a4. 
0

 

2.3  To write  the Schrödinger equation   we need the Hamiltonian, which consists  of the kinetic energy 

operator ()h̄
2
/2m)∂2/∂x2,  and  the  potential  energy function  described  in the problem.   In this  case, 

the potential energy is given by the formula for a line, to which we assign a slope U0. We can also add 

a constant, but it will have no effect on the relative energies or the wavefunctions, so we may as well set 

it equal to zero. Our potential energy function  therefore  is U0x, and the Schrödinger equation  becomes 

h̄2    ∂2                   
\

(
2m ∂x2   

+ U0x
 

ψ = Eψ.

 

2.4  We use Eq.  2.41 to calculate  the energy, with a mass mp and the volume given: 
 

h2              
2           2           2

 

Enx,ny ,nz   
= 

8mV 2/3 
)nx + ny + nz)                                                     Eq.  2.41

)6.626 • 10-34 J s)2  

2          2          2

E100,1,1 = 
8)1.673 10-27 kg))1.0 10-18 m3)2/3 

)100
 

+ 1   + 1  )

 

= 3.28 • 10-25 J. 
 

Chapter  3 
 

3.1  We combine the radial and angular  parts of the wavefunction  as dictated by the quantum numbers, 

and also substitute Z = 3 for lithium: 
 

ψ3,1,   1)r, θ, φ) = R    )r) Y 
-1

)θ, φ)
.              \3/2   

=    . 3r 
\  

 
1 ( 

r  
\ 

e-r/a0 

 

3  
sin θ e-iφ.

27   3    a0                  a0 2a0                            8n

 

3.2  We are using an integral to find an average value, so we use the average value theorem )Eq.  2.10), 

where the operator is r )the  distance  from the nucleus)  and the wavefunction  is given by ψ3,1,-1)r, θφ) 

with Z = 3 for lithium:

32 
  

3 
\3    ∞  3r 

\2   
1 ( r  

\2  
e-2r/a0  r3 dr = 25a0/3.
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37       a0 0           a0 2a0

 

3.3  The  number  of angular  nodes  is given by l, which is 1 for a P orbital,  and  the number  of radial 

nodes is equal to n ( l ( 1 = 3 ( 1 ( 1 = 1:   1 angular  node, 1 radial  node. 
 

Chapter  4
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 ml = -1 0 1 ml ms ML MS 

1s1
 ↑ 0 +1/2 2P1

 ↑  

 

 

 

-1 +1/2 -1 +1 

 ↑ 0 +1/2   

 

↑  

 

0 +1/2 0 +1 

 ↑ 0 +1/2   

 

 

 

↑ +1 +1/2 +1 +1 

 ↑ 0 +1/2  ↓  

 

 

 

-1 -1/2 -1 0 

 ↑ 0 +1/2   

 

↓  

 

0 -1/2 0 0 

 ↑ 0 +1/2   

 

 

 

↓ +1 -1/2 +1 0 

 ↓ 0 -1/2  ↑  

 

 

 

-1 +1/2 -1 0 

 ↓ 0 -1/2   

 

↑  

 

0 +1/2 0 0 

 ↓ 0 -1/2   

 

 

 

↑ +1 +1/2 +1 0 

 ↓ 0 -1/2  ↓  

 

 

 

-1 -1/2 -1 -1 

 ↓ 0 -1/2   

 

↓  

 

0 -1/2 0 -1 

 ↓ 0 -1/2   

 

 

 

 

 

↓ +1 -1/2 +1 -1 

 

h 

e 

 

4.1  This  ion has three  electrons  and  an atomic  number  Z  = 4.  We need one kinetic  energy term  for 

each electron,  three  terms for the attraction of each electron  for the  nucleus,  and then  three  terms for 

electron–electron repulsions,  one for each distinct pairing  of the electrons:  1 and 2, 2 and 3, and 1 and 

h̄2 

3:       - 
2m   

{

 

4e2
 

4ne0r1 

4e2
 

4ne0r2 

4e2
 

4ne0r3 

e2 

4ne0 

   
1

 

r12 

1 

r23 

1  
\

 

r13

 
 

4.2  Neutral  beryllium  has  4 electrons,  so Be+  has  3 electrons,  which  we place  in the lowest energy 

subshells 1s and 2s for an electron  configuration  1s22s1.   The zero-order energy is then the sum of the 

energies we would calculate  if each electron  were alone in that subshell.   That one-electron  energy is 

-Z2 Eh/)2n2).  We have two n = 1 electrons and one n = 2 electron in the configuration, and Z  = 4  

for Be, so we arrive at
 

42 
    

1 1       1 
\

E0  = - 
2 12  

+ 
12  

+ 
22       

Eh

16 
   

9 
\

 
= 

 

= -18 Eh.

2     4 
 

4.3  We use Eq.  4.30, which calculates the effective atomic number  by treating the electron  as though 

it were a single electron  in an atom  with a variable  atomic number:
 

 
Zeff = 

     
2e)i)n2 

\1/2
 

-   
Eh 

 
2)0.182) E  )32)

\1/2 

= 
Eh 

 

 
= 1.81.

 

4.4  We  reverse  the labels  1 and  2 in  the function  and  then check  to  see whether  the  function  has 

changed  sign: Then  we find that 
 

P̂21ψ)1, 2) = cos)-x2) cos)y1) - cos)-x1) cos)y2) = - cos)-x1) cos)y2) + cos)-x2) cos)y1) = -ψ)1, 2). 
 

Therefore,  the function  is  antisymmetric. 
 

4.5  According to the arrow diagrams,  we have 
 

 ml  = 0  ml ms  
3P 
3P 

3P 

3P 

3P 

3P 

1P 

1P 

1P 

3P 

3P 

3P 
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where  we found  maximum  values  of L  =  1  and  S  = 1 initially  )based  on the  largest  values  of ML 

and MS ), and then after assigning the 9 3P  states,  we were left with three MS = 0 states,  which gave 

L = 1, S = 0 for the 1P term.  Breaking the 3P into its component J values from L-S = 0 to L+S = 2, 

and ordering  according  to Hund’s rules, the final list of states  is  3P0, 3P1, 3P2, 1P1.
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Chapter  5 
 

5.1  This molecular  ion has 2 nuclei with ZLi = 3 and ZH   = 1 and 3 electrons,  for a total of 5 particles. 

That means we should have 5 kinetic energy terms (one for each particle), 6 electron–nucleus attraction 

terms,  1 nucleus–nucleus  repulsion  term,  and  3 electron–electron repulsion  terms.   (The  total  number 

of potential energy terms for N  particles is always N (N - 1)/2, in this  case 5 • 4/2 = 10, which gives 

the  number  of distinct pairs of particles.  There  is a potential energy term for each pair  of interacting 

particles.)  Using the standard form of the kinetic  energy operator for each particle  and  the Coulomb 

potential for each pair of particles, we end up with the following:
 

2 

Ĥ  = -       
, 

 

(1)2  + 7(2)2  + 7(3)2
  

+   
e 

r  
3         1          3 

-      -      - 

 

1          3         1 

-      -      -

2me    

7
 

1        1        1          3 
+     +     +     + 

 
,   

h̄
2

 
- 

4ne0 

 

7(Li)2  - 

rLi1 

h̄
2

 

rH1 

 

7(H)2. 

rLi2 rH2 rLi3 rH3

r12 r23 r13 RAB 2mLi 2mH

 

5.2  The  orbital  we’re constructing combines  an s orbital  (spherical) with  a P orbital  lying along the 

bond axis.  If we keep the same orientation of nuclei A and B with respect to the z axis direction  that is 

used elsewhere in the chapter, then  the s and P orbitals  have the same phase where they overlap, so we 

will get constructive interference between  the  two nuclei.  However, we expect  a node (where  the new 

wavefunction will change sign) somewhere to the +z side of nucleus B, where the negative phase of the 

P orbital  cancels the positive phase of the exponentially decaying s orbital. 
 

A      B 
 

 
5.3  The  problem  describes  a curve  such as Fig.   5.14, but  a with  minimum  at R  = 1.5 A where the 

potential energy reaches a value U = -200 kJ mol-1. 
 
 
 

 
0 

 
 
 
 

 
−200 

o 
1.5A                      R

 
5.4  We can deduce from the orientation of the orbitals  that (i) only the s, Px, and Py atomic orbitals are 

involved (because  the orbitals  lie in the xy plane)  and (ii)  orbital 1 consists of only s and Px  character 

(because it points along the x axis).  All of the original Px  orbital  density must be distributed somewhere 

among all three  hybrid  orbitals,  so if we increase the  amount of Px  in orbital  1, then the Px  character 

of orbitals  2 and 3 must  decrease.  The  Px  orbital  character tends  to elongate the hybrid  orbital  along 

the x axis.  By removing that character from orbitals 2 and 3, we elongate  them more along the y axis 

instead,  which will  increase   the  angle between orbitals  2 and  3.  (That angle approaches 180◦  in the 

limit  that only s and  Py  character remains,  because  then you have an sP hybrid,  rather than an sP2 

hybrid.) As the angle between orbitals  2 and 3 diverges, the angles between 1 and 2 and between 1 and 

3  decrease. 
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5.5  For the proton NMR, we have two chemical shifts, one at about  δ = 3.0 for the protons  adjacent to 

the Br and another at about  δ = 3.5 for the protons  adjacent to the Cl.  Each of these is then  split into
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a triplet by the interaction with the two protons  at the neighboring  carbon  atom.  The actual  chemical 

shifts turn  out to be shifted downfield (to higher δ) because we have two electronegative atoms relatively 

close together:   1H: 2 triplets, equal intensity, δ ≈ 3.55, 3.75.  For  the 13C,  we get  two  chemical  shifts 

(one  for each  carbon  atom).   The  J-coupling  to the protons is usually  very  large  and  potentially a 

source of confusion, so 13C spectra  are usually  purposely  gathered under  conditions  that eliminate the 

J-coupling,  resulting  in singlets: 
13C: 2 singlets,  equal intensity, δ ≈ 25, 35. 

 

Chapter  6 
 

6.1  For this one, we can use the mathematical approach: 
 

Î σ̂xyψ(x, y, z) = Îψ(x, y, -z) = ψ(-x, -y, z) = Ĉ2(z)ψ(x, y, z). 

 

Therefore,  Î σ̂xy  = Ĉ2(z). 

6.2 
 

 

Br            H 

C    C 

Br            H
This  molecule has  a Ĉ2   symmetry axis along the  C   C bond  and  two  vertical  mirror  planes  that 

contain that bond.  Those and the identity are the only symmetry elements, so the point group is  C2v
 

and the symmetry elements are Ê, Ĉ2, σ̂xz, σ̂yz.

 

6.3  1,1-Dibromoethene is in the point group C2v . We evaluate the results of the direct product Γi ⊗ Γμ, 

where Γμ may be any of A1,  B1,  and B2   for electric dipole transitions (because  these correspond  to the 

functions  x, y, and z), or A1,  A2,  B1,  and B2   for Raman  transitions (because each of these corresponds 

to some quadratic function  such as x2  or xy).  Therefore,  the possible upper  states  for an electric dipole 

transition would be  1A1,  1B1,  1B2 , and for a Raman  transition would be  1A1,  1B1,  1B2,  1A2. 
 

6.4  The molecule is in the point group C2h. The n bond lies perpendicular to the plane of the nuclei— 

the xy plane.  That n orbital  must  be symmetric  under  the Ĉ2  rotation of the molecule (which doesn’t 

change what  lies above or below the xy  plane)  but  changes  sign under  inversion  and  under  reflection 

through the xy plane.  The representation is therefore   au. 
 

Chapter  7 
 

7.1  The  molecule has  7 electrons,  but  4 of them  are in the  1s core orbitals  and  are not  expected  to 

contribute to the bonding.   In the ground  state, we would put  2 of the remaining  3 electrons  into  the 

2σg   bonding  orbital  and  the  last  electron  in the 2σu  antibonding orbital,  predicting a bond  order  of 

(2 - 1)/2 = 1/2. 

 
7.2  The molecule has 7 electrons,  and we would predict  the MO configuration   1σ21σ2 2σ22σ1 . g      u    g      u 

 

7.3  Because  the superscripts  are not  the same,  the spins of the two  states  are not  the same and  the 

transition is  forbidden   by the spin selection rule ΔS = 0. 

 
7.4  The transition would be an emission transition, forbidden by the spin selection rule (because ΔS = 

0).  Therefore,  the transition would occur by the process of  phosphorescence.
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2 

 

Chapter  8 
 

8.1  According to Eq.  8.17, 

1
\                            

1                                               1Ev = v + 
2    

ωe = (1450 cm-   )(2.5) = 3625 cm-   .

 

The wavefunction  for the v = 2 state  we can assemble from the normalization constant A2, the Hermite 

polynomial  H2(y), and the exponential function  e-y  /2  (Eq.  8.16):

  
kµ 
\1/8     

1 \1/2 
2

 
 
-y2/2

 

 
where y = (R - Re)(kµ/h̄

2
)1/4. 

h̄
2

 8
.

n 
(4y - 2)e

 

8.2  The spacing increases with E (because  the walls are steeper  than  in the harmonic  oscillator poten- 

tial), but more slowly than particle in box (because the walls are not infinitely steep).  The wavefunctions 

are similar  to those in the  harmonic  oscillator,  but  with less variation in amplitude from the center  to 

the  walls (because  the bottom of the well is flatter).  And  because  the walls are  steeper  than  in the 

harmonic  oscillator,  the tunneling does not extend  as far. 
 

 
 
 
 
 
 
 
 

8.3  The  reduced  mass  µ of a diatomic  is given by  mAmB/(mA  + mB), and  if mA = mB (i.e.,  any 

homonuclear  diatomic), then µ = mA/2.   For  39K2,  where  each atom  has  a mass of 39.098 amu,  the 

reduced  mass  is   µ=19.55 amu.   To  estimate the  vibrational constant,  we need  a  guess of the  force 

constant.  Choosing k ≈ 12 N m-1, halfway between the values of 17 N m-1  for Na2  and 7 N m-1  for Cs2 

in Table  8.2, we predict
 

 
 

k ( N m-1) 
ωe ( cm-1) = 130.28 

µ ( amu) 

     
12 

≈ (130.28)    
19.55 

 

 

= 102 cm-1.

 

8.4  The  point  group  is D∞h.  There  are  two  equivalent  C   H bonds.   In  group  theory,  we consider 

all  the equivalent  bonds  at the  same  time,  so we can  either  have  the two  bonds  move  in  phase  to 

get the symmetric stretch, which has σg   symmetry, or they  can move exactly  out of phase  to get the 

antisymmetric stretch, which has symmetry σu.  Checking  the functions  for whether  these correspond 

to functions for an IR active  mode (x,  y, or z) or a Raman  active  mode (any  quadratic function of x, 

y, and z), we obtain  the following results,  in summary:    σg  (Raman active),  σu (IR active). 
 

Chapter  9 
 

9.1  We use Eq.  9.5, combining the reduced  mass of 7.55 amu and the equilibrium  bond length  to get
 

Be ( cm-1) =  

 

16.858 
= 

µ ( amu) Re  ( A)2
 

 

16.858 

(7.55)(1.128)2 

 
= 1.755 cm-1.
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9.2  From  Table  9.2 we obtain the values A = B  = 9.94 cm-1  and  C = 6.30 cm-1,  which corresponds 

to an oblate  top with energy levels given by Eq.  9.22:

c (C - B) + BJ(J + 1) = 
,
(1  )(6.30 - 9.94) + (9.94)(2)(3)

, 
cm

  

= 56.0 cm    .
Erot = K2                                                       2

 
-1                            -1
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A 

2   2∗                            - 

- = 

 

9.3  The  rotational constant will increase,  according  to Eq.  9.16, as the moment  of inertia decreases. 

Of the three molecules, 12C16O  has the lowest moment of inertia, because it has only two atoms (of the 

same masses as the atoms  that make up the CO2  molecules).  Between  the two CO2  isotopologues,  the 
18O-substituted molecule has the greater  isotopic mass, so the greater moment of inertia.  The ordering 

is therefore   12C18O2, 12C16O2, 12C16O. 
 

9.4  We fold the values of the rotational constants from Table 9.1 into Eqs.  9.8 and 9.9, setting v = 1, to 

find the rotational energies for J = 2 and J = 3. The difference between those energies is the transition 

energy ΔE that we’re looking for: 

1 
\                      

1                                -1Bv=1 = Be  -  v + 
2 

αe  = [20.9557 - (1.5) (0.798)] cm-
 

 
2

 

= 19.759 cm

Erot = BvJ(J + 1) - Dv [J(J + 1)] 

Erot(J = 2) = (19.759 cm-1)(2)(3) - (2.15 • 10-3 cm-1) [(2)(3)]
2

 

Erot(J = 3) = (19.759 cm-1)(3)(4) - (2.15 • 10-3 cm-1) [(3)(4)]
2

 

 

ΔE = Erot(J = 3) - Erot(J = 2) = 118.32 cm-1. 
 

Chapter 10 
 

10.1    Repulsion   applies to all examples, and is expected  to be roughly proportional to e-aR, although 

other  forms are used to model this (such as the R-12  repulsive  term  in the  Lennard–Jones potential). 

(a)  dispersion:  U (R)  ∝  αAαB/R6 (by Eq.  10.38).  (b)  H-bonding:  U (R)  ∝  µ2 µ2 /R6 (by Eq.  10.19), A    B 

although  a case can be made  that hydrogen  bonding  is strong  enough  that the structures  cannot  be 

treated as freely rotating at typical temperatures, in which case the  µAµB/R3  of Eq.  10.16 would be 

more appropriate.  In at  least  one popular  model potential used to predict biochemical  structure, the 

distance-dependence of hydrogen  bonding  is given using either  a Lennard–Jones 6-12 potential  (as in 

our Eq.  10.44) or a 10-12 potential (in which the distance  dependence  is a much more quickly decaying 

R-10  [1]). (c) dipole–dipole,  dipole–induced  dipole:  U (R)  ∝  µ2 µ2 /R6, µAαB/R6 (Eqs.  10.19, 10.23). A    B 

The dipole–induced  dipole is important here because CO is only very weakly polar, but  has a relatively 

high polarizability.  Note the important distinction between these  two terms:  polar means  the positive 

and negative  charges in the molecule are already  well separated to create  a permanent dipole moment, 

while polarizable means  that an external  electric  field can easily separate the  charges,  whether  or not 

they are already  well separated.  (d)  dipole–dipole  (non-rotating):  U (R)  ∝  µ2 αB/R3 (by  Eq.  10.16). 

You could make a good case that dipole–induced  dipole is important here as well. I have only left it off 

because the interaction between  non-rotating dipoles, varying  as R3,  will tend  to be more important if 

only because it decays so much more slowly than  the dipole–induced  dipole interaction. 
 

10.2   From Eq.  10.17, the interaction between a multipole of 2k charges and another of 2kt   

charges has 

a potential energy proportional to R-k-kt-1.  A quadrupole is formed by an arrangement of 4 charges, 

for which k = 2, so the interaction between two quadrupoles will vary in proportion to R-2-2-1= R-5.
 

10.3   The dipole moment of HI is 0.45 D and the polarizability of N2  is 0.20 

and the distance  of 3.90 ̊A into Eq.  10.23 yields the following: 

 
4µ2 α 

u       (R) =          A
 -          

(4ne0)R6
 

 
3 
. Plugging  these values

4(0.45 D)2(3.3356 • 10-30 C m/D)2(0.20 • 10-30 

m3) (1.113 • 10-10 C2 J-1 m-1)(3.90 • 10-10 

m)6 
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= -4.60 • 10-24 J = -0.00277 kJ mol-1.
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This interaction energy is quite  weak, partly  because the N2  polarizability is so small. 
 

 
10.4   We can  expect  dispersion  to be most  important, because  the bromine  atoms are  so large  (and 

consequently have high polarizabilities). The molecule should also be quite polar, given the electroneg- 

ativity of the Br atom,  and so dipole–dipole interactions will also run high.  The dipole–induced  dipole 

attraction will also be present, but is usually weaker than the direct dipole–dipole interaction:   b<a<c. 

 
10.5   The  well should extend  from 3.61 ̊A to 5.42 ̊A and  be 190 K (132 cm-1) deep, as in the following 

graph. 
 

 
 
 

10.6   The  degrees of freedom that couple most  strongly are usually  those that have  the most  similar 

energy spacing.  In this case, there is a transfer of energy away from vibrations in molecule A. Rotational 

energy spacings tend to be at least two orders of magnitude smaller than the vibrational spacings, and 

electronic  transitions are  typically an  order  of magnitude greater.    Therefore,  the likeliest  place  for 

vibrational energy to go is into other  vibrations. In this case, if A has lost vibrational energy, it is most 

likely to have gone into   vibrational excitation of B. 
 

 

Chapter 11 
 

 
11.1   The   dispersion   force binds  CO2   molecules together in a cluster,  because  there is no monopole 

(ionic charge)  or dipole moment to bind  them.  As the  cluster  adds  more units,  the average  binding 

energy per molecule will generally  decrease  when the cluster is very small.  For small clusters,  removing 

one unit  reduces the overall binding  significantly.  But  the effect depends  on the cluster  and the cluster 

size.  For  larger  clusters,  the loss of one unit has little  effect on the  remaining  cluster.   We expect  the 

molecules at the surface of the cluster  to be the most weakly bound,  because  they are not completely 

surrounded by the stabilizing  neighbors.   As the cluster  size increases,  the ratio  of the volume  (pro- 

portional to the cluster  size N )  to the surface area (proportional to N 2/3) steadily increases, assuming 

the  cluster  shape  remains  roughly  spherical,  so on average  for large clusters  the  binding  energy  may 

increase slightly with N . 
 
 

11.2   The weak bonding interactions will be modeled by the van der Waals term (which includes disper- 

sion forces) and the  electrostatic potential energy term (which accounts  for charge-charge  interactions 

across distances  longer than the typical chemical bond):   UvdW and Uelectrostatic. 
 

 

Chapter 12 
 

 

12.1   The pair correlation  function  for this system should resemble the curves shown for water  in Figs. 

12.3g–i. The oscillations  should become smoother as we approach the boiling point.
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low temp 
G 

near boiling point 
G

 

1                                                      1 
 

 
 

R                                            R 
 

12.2    Yes.  Molecules of the two substances will attract one another, principally  through dispersion. 
 

Chapter 13 
 

13.1   The  unit cell has two square  faces opposite one another, and  the  rest  of the faces are equivalent 

rectangles.   There  is one Ĉ4  principal  rotation axis, a horizontal  mirror  plane,  and four vertical mirror 

planes.  The crystallographic point group is therefore   D4h. 

 

13.2    No.   The  reason  is that no  charge  separation can  exist  in  a  regular  monatomic   crystal,  and 

polarity  is one of the requirements for piezoelectricity. 
 

End of Chapter Problems 
 

Chapter A 
 

A.1   This problem  uses a common manipulation, one of the features  of logarithms that makes them so 

useful: 
 

pKa = - log10 Ka  =  - log10   e
-ΔG/(RT )

 
r 

ΔG 
,                                    

a= -  - 
RT 

log10   e                                                     log x = a log x

ΔG 
=      (0.434). 

RT 
 
 

This shows, if you don’t mind us getting  ahead of ourselves a little,  that the pKa is directly proportional 

to the free energy of dissociation, ΔG, and inversely proportional to the temperature, T . 
 

A.2   The  idea here is that, even if we think  at first we have no idea what the number  ought to be, a 

closer look at the available  choices makes it clear that we can spot some potentially ridiculous answers: 

a.  2 • 1010 m s-1  is faster  than  the speed of light. 
 

b.  2 • 105 m s-1  has no obvious objections. 
 

c.  2 m s-1  is the speed of a slow walk, and would imply, for example, that you could send an e-mail 

message over a cable connection  to a friend half a mile away, and then  run the half-mile to arrive 

and deliver the message in person before the e-mail finishes traveling through the wires. 

When we have calculations that toss around  factors of 10-34, for one example, this is a significant skill. 

The correct  answer is  2 • 105 m s-1. 
 

3
A.3   The volume is roughly  125 , which we can show is not big enough to hold more than about  15

atoms.  Chemical bonds, formed between overlapping atoms, are roughly 1 ̊A long, and so typical atomic 
3

diameters are roughly 2 ̊A or more, and occupy a  volume on the order of (2 A)3  = 8  
3 

.  A volume of

125 , therefore,  cannot  hold  more  than about  125/8  =  15.6 atoms.   Among  the  choices,  the only
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reasonable  value is  8.
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2 

2 

 

A.4           a.  Chemical  bond  lengths  in molecules are  always  in the range  0.6–4.0 A, or 0.6 • 10-10   to 

4.0 • 10-10 m.  25 • 10-8 m is much too large for a bond length.    no 
 

b.  Six carbon atoms have a mass of 6 • 12 = 72 amu.  With the added mass of a few hydrogen atoms 

at 1 amu each, 78 amu is a reasonable  value.   yes 
 

A.5           a.  The derivatives d[A] and dt have the same units as the parameters [A] and t, respectively. 

Both  sides of the equation  should therefore  have units  of mol L
-1 

s-1.  That means that k needs 

to provide  the units  of s-1  and cancel one factor  of concentration units on the righthand side.  k 

has units  of   L s-1 mol
-1

. 
 

b.  The  argument of the exponential function  must  be unitless,  so kB   must  cancel units  of energy 

(J) in the numerator and temperature (K) in the denominator. The correct  units are   J K-1. 
 

c.  The units  all cancel, and Keq is  unitless. 
 

d.  Squaring  both  sides of the equation, we can solve for k:  µω2 = k.  k must  therefore  have units 

of  kg s-2. 
 

A.6   There are two factors on the lefthand  side, (2x+1)2 and e-ax  . For the product to be zero, at least 
2

one of these factors  must be zero.  If (2x + 1) = 0, then    x = - 1  .  If e-ax
 = 0, then    x →    ± ∞  .

All three are valid solutions. 
 

A.7   In general, for any complex number  (a + ib), the complex conjugate is (a + b)∗  = a - ib. We look 

for the imaginary  component and and invert  its sign: 

a.  x - iy : a = x    b = -y,   x  + iy. 

 
b.  ix2y2 : a = 0    b = x2y2,       -ix2y2  . 

 
c.  xy(x + iy + z) :  a = x2y + xyz    b = xy2,    x2y + xyz - ixy2,      xy(x - iy + z). d.  

a = x/z   b = y/z,    (x - iy)/z . 

e. 
 

eix  = 1 + ix - x2  - ix3  + x4  + ix5  - . . . a 

= 1 - x2  + x4  - . . .  

b = x - x3  + x5  - . . .  
 

a - ib = 1 - ix - x2  + ix3  + x4  - ix5  - . . . = e-ix. 

 
f.  54.3: a = 54.3    b = 0,  54.3. 

 

A.8   This problem  tests a few algebraic  operations involving vectors,  particularly useful to know when 

we look at angular  momentum and (often related) magnetic  field effects.

a.  The  length  of a vector  is calculated  using  the Pythagorean theorem:  |Cδ |  = 
. 

+ 2   + 1    = 

.
5 .  

02          2          2

 

b.  We add vectors one coordinate at a time:  Aδ + Bδ  = (1 + 1, 0 + 0, 0 + 1) = (2, 0, 1). 
 

c.  The dot product of two vectors multiplies  the values for each coordinate of the two vectors and

sums the results:  Aδ •  Bδ  = (1 • 1) + (0 • 0) + (0 • 1) = 1.
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1 

m 

V 

V 

m 
P  - 

m 

P  - 

d.  In the case of perpendicular vectors,  this gives us zero: Aδ •  Cδ = (1 • 0) + (0 • 2) + (0 • 1) = 0.

 

 

e.  The cross product involves a little  more work, and yields a new vector, perpendicular to the two

original vectors:  Aδ × Bδ  = (0 • 1 - 0 • 0, 0 • 1 - 1 • 1, 1 • 0 - 0 • 1) = (0, -1, 0).

 
 

A.9   If we accept  that the Taylor  series expansion  is exact if we take it to infinite order, then  the Euler 

formula can be proven by the expansions  of ex (Eq.  A.25), sin x (Eq.  A.26), and cos x (Eq.  A.27): 
∞ 

eix  = 
�

 

n=0 

 

(ix)n 

n!

= 1 + ix - 1 x2  - 
i 

x3  + 
1 

x4  +  
i 

 

x5  - . . . 
2              6         24 120

= (1 - 1 x2  + 
1 

x4  - . . .) + i(x - 
1 

x3  +  
1 x5  - . . .)

2              24 6         120

=  cos x + i sin x . 
 

 

This equation is of practical importance to us, and is famous among mathematicians for tying together 

three  fundamental mathematical values—n,  i, and e—in one equation: 

 
eiπ = 1. 

 

 

A.10      •  Maple:  After checking that all of the units are indeed consistent, enter the Maple command 

solve((1.000-(3.716/Vˆ2))(V-0.0408)/(0.083145298.15),V); 

The resulting solution, 24.8, is in the same units as b, namely   24.8 L mol
-1

. 
 
 

•  Successive approximation:  There  are  several  ways to  solve this, corresponding  to  different 

forms of the equation  that leaves Vm  on one side.  One way to set up the equation quickly is to 

recognize that (Vm - b) will vary rapidly  compared  to P - (a/V 2), so we can isolate Vm  as follows: 
(

P   -  a 
   

(V
 

 

- b)
2             m 
m                                        

= 1  
RT              

a  
\

 
P  -    

2 
m 

 

(Vm  - b) = RT 

 
RT 

Vm  - b = (
a 

V 2

 
RT 

Vm = (        
a

 

V 2 

 
    + b.

 
 

 
Substituting in the  values for P , a, b, R,  and T  (making  sure that the units  are all compatible), 

we can reduce the equation  to the following: 
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V 2 

 

Vm(L mol-1)  = 
24.943 

1  + 3.716
 

m 

 

+ 0.0408.
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1  + 

1  + 

1  + 

1  + 

1  + 

- 

 

Guessing an initial  value of 1 L mol-1    yields the following series of approximations: 
 

24.943
Vm  = 

 

 
Vm = 

Vm = 

Vm  = 

Vm  = 

3.716 
12 

24.943 
3.716 

5.3302 

24.943 
3.716 

22.0992 

24.943 
3.716 

24.7962 

24.943 
3.716 

24.8342 

+ 0.0408  = 5.330 
 

 
+ 0.0408  = 22.099 

 

 
+ 0.0408  = 24.796 

 

 
+ 0.0408  = 24.834 

 

 
+ 0.0408  = 24.835.

 

 
The  series  has  converged  to the three  significant  digits  requested.   The  final  value  for  Vm   is 

24.8 L mol
-1

. 
 

A.11 Here we apply  the rules of differentiation summarized  in Table  A.3. 

a. 
 

f (x) = (x + 1)1/2
 

df 
= 1                  -1/2

 

dx      2 
(x + 1)       .

 
 

b. 
 

f (x) = [x/(x + 1)]1/2

 

df  
= 1

 
     

x    
\-1/2 , 

1     dx d  
       

1    
\7

dx      2
 x + 1  

+ x 
x + 1   dx        dx x + 1 

     
x    

\-1/2 , 
1               x      

7
 

= 1                                                                                      .2       x + 1  x + 1  
- 

(x + 1)2

c. 

df 
= exp 

,
x1/2

,
 

dx 

 

d  
(

x1/2
 

 
dx

= 1    -1/2
 

, 
1/2

,

2 
x        exp  x       . 

d. 

df 
= exp 

,
cos  x2

,
 

dx 

 

 
d 

(cos  x2) 
dx

= exp 
,
cos  x2

, 
(   sin  x2)  

d 
(x2) 

dx 

= -2x  sin  x2   exp 
,
cos  x2

, 
. 

 
A.12 This problem  tests our ability  to use a few of the analytic  integration results  given in Table  A.5. 

a.  
  ∞ 

e-axdx = - 1 e-ax|∞  = - 1 (0 - 1) =   
1
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0                                     a              0               a                               a
.
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0 

0 

8 

1 

 

b.  
, 5 

a2da = 1 a3/5  = 1 (125 - 1) =   
124

1                        3        1        3                                       3  
.
 

 
 

c.  
, 5 1 

a-3/2da = -2a-1/2/5  =   -2(
 

 

- 1).

1                                                       1                       . 
5 

 
 

d.  r2 
, 2n 

d¢ 
, n 

sin θdθ = r2  (¢)/
2n  

(- cos θ)/
n  

= r2(2n - 0)[-(-1) - (-1)] = 4nr2.
 

0                 0                                            0                           0 
 

A.13 We use the Coulomb  force law, Eq.  A.41, using the charge of the electron  -e for both charges 

and r12   set to 1.00 A:
 

e2 

FCoulomb = 
4ne r2 

 

= 

 
 

 
(1.602 1 10-19 C)2

 

 
 
 
 

1       =    2.31 1 10-    N . 

(1.113 1 10-10 C2 J-1 m-1)(1.00 A)2(10-10 m Å
-   

)2 

 

A.14 This  problem  relies on the definitions  of the linear  momentum P and the kinetic  energy K (Eq. 

A.36): 

 

P = mv 
 

 

K = 1 mv2 =    
P2 

2                                 . 
2m 

 
 

A.15 We’re calling the altitude r.  Because the acceleration  is downward  but  r increases in the upward 

direction,  the  acceleration is negative:  -9.80 m s-2.  We invoke the relationship between force and the 

potential energy, and find that we have to solve an integral:
 
 
 

 
A.16 

 
   r 

U (r) = - 
0 

 
F (rt) drt  = - 

 
   r 

(-mg) drt  = mgr. 
0

 

e2                                                         (1.602 1 10-19 C)2

/FCoulomb/ = 
4ne r2   

= 
(1.113 

 

10-10 C2 

 

J-1 

 

m-1 

 

)(0.529 A)2(10 
 
-10 m ̊A

-1
)2

 

= 8.23 1 10-8 N 

/Fgravity/ = mHg 

= (1.008 amu)(1.661 1 10-27 kg amu-1) 
,
9.80 m s2

 
 

 

= 1.64 1 10-26 N. 
 

Sure  enough,  the  gravitational force is smaller  than the Coulomb  force by orders  of magnitude, and 

the  motions  of these  particles  will be dictated—as well as we can  measure  them—exclusively by the 

Coulomb  force. 

 

A.17 We are proving an equation that depends on L and a and t and vx, which may look like too many 

variables.  If we use the definition  of L to put  this  equation  in terms  of K and U , then we can at least
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x 

dt    
mvx - ⎦ 

⎢ 

 

put  K in terms  of speed.  Then,  because  speed itself is a function  of position  and time, the  number  of 

variables  is quite  manageable.  Nonetheless,  keeping things  in terms  of K and  U is useful, because  of 

their  straightforward dependence  on only v and a, respectively. 

To prove the equation, we could try working from both  sides and  seeing if the  results  meet  in the 

middle.  First the lefthand  side:
 

∂L      ∂K  
= 

∂a       ∂a  
=

  
0

  

 

∂U 
- 

∂a  

 
K not a function  of a

= Fx = ma                                                 Fx = -dU/da 

d2a
= m 

dt2 
acceleration  = d2a/dt2

 

Next the righthand side: 

d  ∂L  d 
,

1 
=         m 

∂v2
 

- 
∂U 

7

dt ∂vx dt    2 
⎡ 

 

d
 

∂vx ∂vx 
⎤ 

 

∂U

=    ⎢ ⎣ 
 
 

dvx
 

⎥ 

∂vx 

⎥
 

 
=

  
0

  

d2a 

U not a function  of vx

= m        = m 
dt dt2  

.

 

 
And there we are.  One of the useful features  of the Lagrangian is that the equation  proved here can be 

made to hold for different choices of coordinates. This enables the mechanics  problems to be written in 

coordinates that take advantage of symmetry (for example,  if the only force is a radial  one, attracting 

or repelling particles  from a single point),  and the Lagrangian then  provides a starting point to develop 

relationships between  the positions  and velocities of the particles. 

 
A.18 The overall energy before the collision is the sum of the two kinetic  energies: 

 
K = 1 m1v

2 
+ 1 m2v

2
,
 

2           1        2           2 

 

and this must  equal the energy after  the collision: 
 

K = 1 m1vt 2 
+ 1 m2vt 2.

 
2           1          2           2 

 

Similarly,  we may set the  expressions  for the  linear  momentum before and  after  the collision equal to 

each other: 

P = m1v1 + m2v2  = m1v
t  

+ m2v
t 
.
 

1                 2 
 

So there  are  two  equations  and  two  unknowns.   At this  point,  the  problem  is ready  to solve with  a 

symbolic math program. 

Maple. The  problem  can be solved in a single step  by asking Maple to solve the conservation of 

energy and conservation of momentum equations  simultaneously to get the final speeds (here vf [1] and 

vf [2] in terms of the masses and initial  speeds: 
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solve({m[1]*v[1]+m[2]*v[2] = m[1]*vf[1]+m[2]*vf[2], (1/2) * m[1]  * v[1]ˆ2+(1/2) * m[2]  * 

v[2]ˆ2  = (1/2) * m[1]  * vf[1]ˆ2+(1/2) * m[2]*vf[2]ˆ2}, [vf[1],  vf[2]]);



24 Copyright Qc   2014 Pearson Education, Inc.  

v
I
 

1 

1 

1 

m 

m1  

\
 

2 

2 2 

1 

m 
1 

m m 

m 

2 ⎜ ⎝ 

  

2 

+ 

m 

 

On  paper. This last equation  lets us eliminate one variable  by writing,  for example, the final speed 

vI                                       I
2  in terms  of v1:  

= 
m1v1 + m2v2 - m1vI 

. 2                               
m2

Now we can put  this value into the equation  for K , and solve for vI : 
 

K = 1 m1v
2 
+ 1 m2v

2 

 

 
(a)

2           1        2           2 

= 1           I 2        1           I 2
2 
m1v1 + 

2 
m2v2 

2

= 1           I 2        1
 

  
m1v1 + m2v2 - m1vI 

\

2 
m1v1 + 2 m2                                                                    . 

2

 

 

This  is going to be an  equation  that depends  on vI 2  
and  vI , so we can  solve it  using  the  quadratic

 
1                   1 

formula.  In that case, it’s easiest to put all the quantities on one side of the equation: 

  
m1v1 + m2v2 - m1vI \2

0 = 1 m1v
I 2 

+ 1 m2                                                         
1 - 

,
1 m1v

2 
+ 1 m2v

2
                             

subtract (a) above
2           1          2 

⎛ 
m2 

m2    2
 

2           1        2           2 

2   2            2   I 2                     ⎞

1v1  + m2v2 + m1v1 
⎜ 

+2m1m2v1v2 - 2m
2
v1v

I  - 2m1m2v
I 
v2 

⎟

= 1           I 2        1         
⎜ 1        1                            1      

⎟

2 
m1v1 + 

2 
m2  

⎜                                                                     ⎟ 
2                                              

⎟
 ⎠ 

expand  the square

 

 
1           2        1           2

 
- 

2 
m1v1 - 2 

m2v2 

m2                                   m2

= m1v
I 2 

+
 1 

v
2  

+ m2v
2 
+

 1 
v

I 2 
+ 2m1v1v2                                                                      divide by 1/2

1          
m2    

1
 

m2 

2        
m2    

1

- 2   1 v1vI   - 2m1vI v2  - m1v2 - m2v2

m2          
1                    1

 

2 

= vI 2              
+

 

1                  2 

m1                             

\

1        m1
 

+ vI 

m 
-2      v

 - 2m  v
 

group by power of vI

  
m2 

2               
1             m2    

1               1   2                                                                                                                                             1
 \

+     1 v2  + m2v2 + 2m1v1v2 - m1v2 - m2v2

m2    
1

 
 

= vI 2 

 
 

2 

m1  

\
 

+ 

1                  2 

m1                             

\

1        m1 

+ vI
 

m2 

- 
m2 v1  - 2m1v2

,  
2 
1 

m2   

-
 

\          7 

m1      v
2 + 2m1v1v2

2 
\-1 $    

2                             
\ 

v
I                                            1                             1
1  =    2m1  + 2  

m2 

2      v1  + 2m1v2 
2 

quadratic formula

%        
m2                              

\2 

m2  
\ , 

m2                
\ 7&1/2

⎫
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m       
m

 1 

m 

1 
m 

m m 

2 

2 

±    2   
1 

v1  + 2m1v2 
2 

- 4   m1  +    
1

 
2 

1  -   1     v
2  + 2m1v1v2          

⎬ 

. 
2                                                                   ⎭

 
 
 

To deal with this equation, we can expand  the multiplication inside the square brackets: 

m2                             
\2           

m4                  m3

2   1 v1  + 2m1v2
 = 4    1 v2  + 8  1 v1v2  + 4m2v2

m2                                                    
2   1           

m2                           
1   2

m2  
\ , 

m2                
\ 7     

m3                  m4                                        m3

-4    m1  +    1 - m1
 v2  + 2m1v1v2

 = -4 1 v2  - 4 1 v2  + 4m2v2  + 4  1 v2

m2               m2                        
1

 m2    
1                2   1

 
1   1           

m2    
1
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1 

1 

m m 

2 

1 

v
I
 

1 

m 

m 

m 

m 

 

- 8m2v1v2 - 8 

m3 
1 

v1v2. 
m2

 
 

Nearly all of these terms cancel when we add these two expressions together, leaving: 
 

4m
2
v

2 
+ 4m

2
v

2 - 8m
2
v1v2.

 
1   2               1   1               1 

 

In the quadratic equation, we have to take the square  root of this,  but  that turns  out to be easy:

,
4m2v2  + 4m2v2 - 8m2v1v2

, 
 

1/2 
= 2m1  

,
v2  + v2  - 2v1v2

, 
 

1/2

1   2               1   1               1                                            2          1 

= 2m1  (v2  - v1) . 
 

 
Finally,  putting this back into our equation for vI , we get 

2 
\-1 $    

2                             
\         * 

v
I                                            1                             1
1  =    2m1  + 2  

m2 

2      v1  + 2m1v2 
2 

± 2m1  (v2  - v1)

  

=    1 +  
m1  

\-1 $ 
m1 

\ 

v1  + v2
 

* 

± (v2  - v1) 
 
.                                     divide out 2m1

m2                      m2 

 
 

This is correct  as far as it goes, but  we have two solutions,  corresponding  to either  the + or - sign.  If 

we use the - sign, then we get 

m1  

\-1 $ 
m1                                            

*
 

vI

1  =    1 +  
m2 

v1  + v2  - v2  + v1 
2 

= v1.

This  is the  solution  if the collision doesn’t  occur;  particle  1 just  keeps moving  at the same  speed  as 

before.  The + sign gives us the correct  solution: 

m1  

\-1 $ 
m1                                            

*
 

vI

1  =    1 +  
m2 

v1  + v2  + v2  - v1 
2

  

=    1 +  
m1  

\-1 - 
m1 

\      7 

- 1   v1  + 2v2

m2                     m2 

1 
=             [(m1  - m2) v1  + 2m2v2] . 

m1  + m2 

 
 

We can now use the conservation of momentum to solve for vI . I’m going to factor  out a 1/(m1 + m2) 

to get an equation  similar to the one for vI : 

= 
m1v1 + m2v2 - m1vI

 
2                               

m
 
2 

1  
$                      

m1                                                                    

*

=         m1v1 + m2v2 - 
2 m1  + m2 

[(m1  - m2) v1  + 2m2v2]

  
m1  

\
 =  v1  + v2  - 
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m 

m 

  
m1  - m2  

\ 
m1  

\
 
 

v1  - 2 
       

m1         

\
 
v2

m2                                    m1  + m2            m2 
        

1       
\-

m1(m1  + m2) 
m1  + m2 
  

m1(m1 - m2)
\                    7

= 
m1  + m2 

1 

v1  + (m1 + m2)v2 - 
2 

v1  - 2m1v2 
2

= 
m1  + m2 

[(m2  - m1) v2  + 2m1v1] .
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l 2 

l 

l 

0 

1 

i 

δr
(0)

 

δr
(0)

 

i 

l 

1 

1 

 

Because there is nothing  in the problem that determines which particle is labeled 1 and which is labeled

2, the equations  for vI
 and vI

 must  be exactly  the same, with all the labels 1 and 2 switched.

If you haven’t seen this result or simply don’t remember  it, it’s worthwhile to check a few values.  For 

example, if the two particles have equal mass (ml = m2),  then the final speeds are vI   = v2  and vI   = vl; l                            2 

i.e.,  the particles simply exchange  speeds.  Another example:  if particle  1 is initially  at rest  (vl  = 0), 

then  it picks up a speed 2m2v2/(ml  + m2)  from the collision. In that case, if particle  2 dominates the 

mass (m2 > ml),  then particle 1 will find itself with a final speed equal to 2v2.  In contrast, if particle 1 

is much more massive than  2, then  the collision will hardly  affect it (vI   ≈ 0) and particle  2 will simply 

reverse direction  (vI   ≈ -v2). 

Note that the two particles don’t have to be moving in opposite  directions.  If particle  1 is behind  2 

but moving faster and in the same direction,  then they will strike each other, and particle  2 will acquire 

particle 1’s higher speed.
 

A.19 
 

 
e2                                                   (1.602 1 10-l9 C)2 

 
 
 
-l8

K = U = -
4ne  r 

= 
(1.113 

 

10-l0 C2 

 

J-l 

 

m-l 

 

)(1.0 A)(10 
 
-l0 

= 2.31  10      J 
m ̊A

-l
)

L = /δr  × pδ/ = rp,  since δr  ⊥    p. 
 
 
l/2

p = 
   

2meK = 
,
2(9.109 1 10-3l kg) 1 (2.31 1 10-l8 

J)
,
 

= 2.05 1 10-24 kg m s-l

L = (1.0 A)(10-l0 m Å
-l

)(2.05 

 

10-24 kg m s-l) =  2.05 1 
 

10-34 kg m2 s-l  .

 

A.20        a.  Find  the  center  of mass  positions  δr
(0)  

at collision.   Let’s call the center  of mass of the 

entire  system  the  origin.  The  particles  have equal  mass,  so the origin will always lie exactly  in 

between the  two particles.  At the  time of the collision, we may  draw  a right triangle for each 

particle, connecting  the particle’s center  of mass, the  origin, and  with  the right angle resting  on 

the  z  axis.  The  hypotenuse of the triangle connects  the center of mass to the point of contact 

between the two particles,  and must  be of length  d/2 (the  radius  of the particle).  The other  two 

sides are of length  (d/2) cos θ (along  the  z axis) and  (d/2) sin θ (along  the  a axis),  based  on the 

definitions  of the sine and  cosine functions  in Eqs.  A.5.  These  correspond  to the magnitudes of 

the z and a coordinates, respectively,  of the particle  centers  of mass at the collision. The signs of 

the  values may be determined by inspection  of the figure:  at the  time of the collision, al  and z2 

are positive while a2  and zl  are negative,  so the position vectors are: 
 

l     = ((d/2) sin θ, 0, -(d/2) cos θ) 

2     = (-(d/2) sin θ, 0, (d/2) cos θ) . 

 

b.  Find  the velocities  δvI   after  collision.   Simple collisions obey a simple reflection  law:  the angle 

of incidence is equal to the  angle of reflection.  These are the angles between  the velocity vectors 

and  the normal  vector—the line at angle θ from the  z axis.  (This  is the  normal  vector  because 

it lies perpendicular to the plane that lies between  the  two spheres at the point of collision; this 

plane is effectively the surface of reflection  for the  collision.)  Therefore,  the velocity vector  after 

the collision is at an angle 2θ from the z axis, and the velocity vectors after  the collision are 
 

δvI   = v0(sin 2θ, 0, - cos 

2θ) 
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2 
δvI   = v0(- sin 2θ, 0, cos 2θ). 

 

Notice that the speed after the collision is still v0  for each particle.  Because they each began with 

the same magnitude  of linear  momentum,  the momentum  transfer  that takes  place only affects 

the trajectories.
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II 

2 

Lδ II 

1 

Lδ I 

y2 

Lδ I 

- 

c.  Show  that  Lδ 
 

is  conserved  before  and  after  the  collision.   We  now have  position  and  velocity

vectors before and after  the collision: 
 

δr1  = ((d/2) sin 0, 0, -(d/2) cos 0)  + δv1t       δr2  = (-(d/2) sin 0, 0, (d/2) cos 0)  + δv1t 

δvII                                                                                                                              II
 

1  = v0(0, 0, 1)                                                     δv2   = v0(0, 0, -1) 

δv
I   

= v0(sin 20, 0, - cos 20)                                  δv
I   

= v0(- sin 20, 0, cos 20).
 

1                                                                                                               2 
 

We take the cross products of these for each particle to get Lδ  for each particle,  and we add these 

together to get the total  angular  momentum for the system.  Before the collision, 
 

δr1   = ((d/2) sin 0, 0, -(d/2) cos 0) + v0t(0, 0, 1)

Lδ II
 

II           II

1  = mδr1 × δv1 

1   z1 - z1 vy1, z1 vx1 - a1 vz1, a1 vy1 - y1 vx1

,
= m 

,
yIIvII              II 

II   II              II II   II             II

= m (0, -(dv0/2) sin 0, 0) 

 

and similarly  for Lδ II: 
 

2  = m (0, -(dv0/2) sin 0, 0) 

 
and combining  these  yields: 

 

Lδ II  = Lδ II            II
 

1  + Lδ 
2  = -mdv0  (0, sin 0, 0). 

 

All of the position  or velocity  vectors  have  only  zero y  components, and  therefore  only  the y 

component of the cross product survives.  After the collision, 
 

δrI   = ((d/2) sin 0, 0, -(d/2) cos 0) + v0t(sin 20, 0, - cos 

20) 

Lδ I                   I            I
 

1  = mδr1 × δv1 

 
which has a y component 

 

y1 = m {-(d/2) cos 0 sin 20 - v0t cos 20 sin 20 - [(d/2) sin 0(- cos 20) + v0t sin 20(- cos 20)]} 
 

and similarly  for Lδ I    : 
 

y1 = m {(d/2) cos 0(- sin 20) + v0t cos 20(- sin 20) - [-(d/2) sin 0 cos 20 - (-v0t sin 20) cos 20]} . 
 

Adding  the two components  together we find that all the t-dependent terms cancel, and trigono- 

metric  identities from Table  A.2 simplify the rest: 
 

y = Lδ 
1y + Lδ 

2y
Lδ I

 I 
 

= 
mdv0 

2 

I 

 
[-2 cos 0 sin 20 + 2 sin 0 cos 20]

sin 20 = 2 sin 0 cos 0 

cos 20 = 2 cos2 0 - 1
 

Lδ I
 2mdv0                                                                           2

y =         
,  

cos 0 (2 sin 0 cos 0) + sin 0 
,
2 

cos 
2 

0 - 1
,,
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- = mdv0 

,
 2 cos2 0 sin 0 + 2 cos2 0 sin 0 - sin 0

,

= -mdv0 sin 0.
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E1 

2 

@ 

This is the y component of Lδ I, and the a and z components are again zero in the cross products, 

so we have shown that both  Lδ I  and Lδ II  are equal to 
 

Lδ = mdv0 (0, sin 0, 0). 
 

If the  particles  hit  head-on,  then 0   =  0 and  the angular  momentum  is zero.  As 0 increases,  L 

increases to a maximum  value of mdv0 when the two particles just  barely touch each other in passing. 

If we had used the conservation of L at the outset,  we could have found this solution quickly.  Because 

the  angular  momentum  does not depend  on the size of the  particles,  we can replace  our two  objects 

here with point masses.  It won’t matter that they now won’t collide, because if L is conserved we have 

to  get  the same  answer  before the  collision takes  place anyway.   In fact,  because  L  is conserved,  we 

can pick any point in time that’s  convenient for us to calculate L,  so I would pick the time  when the 

two particles  reach  z  = 0.  At this time, both  particles are  traveling on trajectories that are  exactly 

perpendicular to their  position  vectors  (δvi  is perpendicular to δri).  This  makes  the cross product for 

each particle  easy to evaluate: 
 

Lδ i = mδri × δvi = m(±(d/2) sin 0, 0, 0) × (0, 0, ±v0) = mdv0/2(0, sin 0, 0), 
 

where the minus  sign applies  to particle  2.  There  are two  particles,  so we multiply  this  vector  by 2, 

arriving  at the same Lδ  as above.
 

A.21        a.  Write   δ 

 

in vector  form.   The  magnitude  of the electric  field generated  by particle  1 is

given by F = @2E1, and this force must be equal to the Coulomb  force F = -@1@2/(4ne0r2).  The 

force vector points  along the axis separating the two particles, and we can include this direction-  

dependence  by multiplying the magnitude of the vector by δr/r.  The Cartesian form of the vector 

δr from particle  1 to 2, just  working off part (b)  of the figure, may be written (rv1/c, y2, 0) and 

has length
 
 
 

Therefore,  the force vector  is 

r = 

-( 
rv1 

  2
 

c 

 

+ y2
 

71/2 

.

 

Fδ = 

 

    

@1@2 

4ne0r2 

\ 
δr 

r 

 

=    
@1@2 

4ne0r3
 

 
(rv1 /c, y2, 0)

and the electric field vector  is 

 
δ
 

 
 

Fδ           @1

E1 = 
2 

=           (rv1 /c, y2, 0). 
4ne0r3

 

b.  Write  Bδ  in vector form.  Here we just have to be careful to correctly evaluate  the cross product.

We are using the equation  Bδ  = 1  δ 
× δv  , and we have an equation  for δ 

already.  The velocity
c2 E1          1                                                                             E2 

vector  consists  only of an a-velocity  component:  δv1   = (v1, 0, 0).  Notice  that because  these  two 

vectors  lie in the  ay  plane,  their  cross product—which is perpendicular to both vectors—will lie 

along the z axis.  The z component of the cross product δa ×δb is equal to axby  - aybx, so we have
 

Bδ  = 
1 δ 

 
× δv

 

 

@1 
=             (0, 0, v y ) .

mailto:@2E1
mailto:-@1
mailto:@2
mailto:@1
mailto:@2
mailto:@1
mailto:@2
mailto:@1
mailto:@1


33 Copyright Qc   2014 Pearson Education, Inc. 

 

0 

c2 
E1

 
1        

4ne0c2r3                   1   2

 

c.  Find  the magnetic  force  vector.   Again,  we take  a cross product with  the velocity.   This  time, 

the Bδ  vector  lies along z, and δv1  lies along a, so the cross product lies along y: 

@1@2                   
2

 

Fδmag = @2δv1 × Bδ  = 
4ne c2r3   

(0, v1 y2, 0) .

mailto:@1
mailto:@2
mailto:@2δv1
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2 

0 2 

2 

0 y 

2 0        2 

- c 

d.  Calculate the difference between the actual and classical values of the Coulomb force.  To compute 

the actual  Coulomb force, we use the distance  r, so Fδ  has a magnitude 

qlq2
 

F =            . 
4ne0r2

 
 

The classical Coulomb  force would be 

F I  =  
qlq2     

, 
4ne0y2

 
 

and the difference between  the two forces is 

qlq2  

, 
1       1 

,

F - F I  = 
4ne r2  

- 
y2     

.

 
 

We can simplify this by relating r2  and y2: 

r2  = 
(

rVl 
\2  

+ y2 

c             
2

 
,       

2
,-l

r2  = y2
 

( Vl 
\ 

1 -   
c             

.

 

So, finally, we have  

qlq2  

, 
1  
, 

 

(Vl 
\2
,      

1 
,

F - F I  = 
4ne     y2 

qlq2    

, 

1                   -   2 
2 

l    
2
,             

l  2   
2

= 
4ne0y2

 

(V  \ 
-   

c 

q q Vl 
= -

4ne  c2y2 .

 

 
In comparison,  the magnitude of the magnetic  force we calculated from the standard equations is 

 

Fmag = qlq2V2   
2              0

 
 

and for V « c, we can allow r ≈ y2, so that 

l y /(4ne  c2r3),

 

Fmag = qlq2V2
 

 

0        2).

 

Magnetic  forces are  a natural result  of the motion  of electrical  charge  when  special  relativity  is 

taken  into account.  It was this relationship between  electric and magnetic  forces that was the basis of 

Einstein’s  original paper  on special relativity. 
 

Chapter  1 
 

1.1  Radiation behaves  more  classically  at  large  wavelengths,   because  the smaller  frequency  allows 

smaller  energy  increments  to be  absorbed   or  emitted  by  matter.   Therefore,   the energy  of long- 

wavelength  radiation appears  more like a continuous,  rather than quantized,  variable.   Radiation can 

be expected  to behave like a classical wave provided that its wavelength  is long compared  to the system 

of interest.  For  example,  radiofrequency radiation can  be directed  by  reflection  and  refraction  more 

easily  than  the  relatively  particle-like  x-ray  and  γ radiation.   Therefore,  a  correspondence  principle 

would suggest that radiation must be treated by quantum mechanics  as the wavelength  becomes small 
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compared  to  the  system  of interest.  (Furthermore, it turns out that photons  do carry  a momentum, 

described  exactly  by de Broglie’s equation  p = h/λ, and  this  decidedly  non-classical  property is most 

apparent at short  wavelengths.)
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1.2  The  quantized picture,   while  accurate in  some  aspects,  is the  misleading  one.   Radiofrequency 

photons,  in particular, carry so little  energy that single-photon  detection at those wavelengths  is quite 

challenging.  Related  to this  is the fact that, in order  to maintain a detectable signal, our transmitter 

must  emit  photons  at an  enormous  rate.   A tiny  100 W  transmitter emits  more  than  1027   photons 

per second at  a frequency  of 100 MHz.  And these are big photons,  with  wavelengths of a few meters. 

Even  10 km away from the source, nearly  10l8  photons  fly through each square  meter  of space every 

second.  The numbers  are so big that as we move away from the transmitter, the signal appears  to drop 

continuously.  Furthermore, as we get to very great distances,  photons  will continue to strike the source, 

but  at a reduced  rate.   Although  the photon  energy itself is a discrete  quantity, the rate  at which the 

photons  impinge  on our antenna remains  a continuous  variable,  and  the  signal deteriorates smoothly 

until  we can no longer detect  it.  That said,  experiments  that detect  single photons  are not rare,  but 

they  are normally  carried  out with higher energy photons,  such as in the visible or UV. 
 

 

1.3  Although  the electron beam leaving the source was incoherent (with  random  phases),  the reflection 

off the  surface  sets  a  boundary condition  where  the phase  goes to  zero,  in  the  same  way  that the 

wavefunction of our  particle  in a box goes to zero at the walls of the box.   From  that point on,  the 

electrons  reflected  towards  the detector are coherent,  and the interference  pattern becomes observable. 
 

 
1.4  Mass and energy and charge must  each be conserved, at least in chemistry, so the electrons  cannot 

just  disappear.  Because  they  have  wave-like character, the electrons  are  not  constrained to a single 

trajectory: they  can be detected at angles other than the normal  reflection  angle for particles.  If some 

particular reflection angle corresponds  to destructive interference—where no electron signal is detected 

– then there will be other angles at which an excess signal be detected. 
 
 

1.5  An exact  value of λdB requires  an exact  value of the momentum, which the uncertainty principle 

tells  me is only possible  for a particle  with  infinite  uncertainty in position.   So the answer  is yes:  if 

particle 1 has a momentum that is known precisely, then it effectively has an infinite size (it is possible 

for the particle to be detected  anywhere).  But this is true of both my measurement λdB in the laboratory 

and the student’s measurement in the reference frame of particle 2. In practice,  if I have any idea where 

the particle is (so the position uncertainty is finite), then I can’t know exactly what the momentum is; in 

other words, I will not always get the same value for p when I measure it.  The student on particle 2 will 

find the same thing—the measured  momentum will cover a range of different values.  The mean p values 

(and  therefore  the apparent de Broglie wavelengths) will be different in the  two sets of measurements, 

but  the student will always find that the mean value of λdB is finite. 
 

 
1.6          a.  The spectrum of the neutral helium atom. 

b.  The wavefunction  of the electron  in the neutral hydrogen  atom. 

c.   The second ionization  energy of the helium atom. 

The Bohr model works only for one-electron  atoms,  and does not correctly  predict  the distribution 

of the electron. 
 

 
1.7  This should be more energy than for the same transition in the H atom, because the greater  nuclear 

charge on He+  makes the electron more tightly bound and harder  to pull out to an excited state  orbital. 

The He atom  has two electrons,  and the He+  ion has one electron.  He+  therefore  obeys the  equations
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n 

λ 

n 

2 

 

for a one-electron  atom,  with the atomic  number  Z = 2. 
 

Z2 

En = - 
2n2 

(1 Eh)
 

Z2 
    

1       1 
\    

3   2                                                                +E2  - El  = - 
2 

3  2
 

22  
- 

12 
Eh   = 

8 
Z

 
Eh                                                   He 

 
-l8

 

:  Z = 2 

E2  - El  = - 
8

2
 

Eh   =  1.5 Eh      = 6.54 1 10      J.

 

1.8  This  will be a small  transition  energy,  because  the energy  levels get  very  close together  at  high 

n.  What does that imply  for the wavelength  λ?  That it  will be long, because  λ  ∝    1/Ephoton.  The 

wavelength,  frequency,  and  energy of radiation are all related  through Planck’s  law E   = hν  and the 

constancy  of the speed of light ν  = c/λ. For helium,  Z = 2.
 

 
ΔE = Z2 

     
1         1  

\
 

-        Eh

2 
 

= (2) 

nII2
 

    
1
 

1002 

nI2
 

1   
\

 
- 

1012       
Eh

= 3.94 1 10-6 Eh   = 0.865 cm-l
 

1
λ = 

ΔE( cm-l) 
= 1.16 cm  =  0.0116 m,

 

which is in the  microwave. 
 

1.9  Energy  has been added  to the atom by the  first photon  (to  reach state  nl)  and removed with  the 

second photon  (landing  us in the final state  n2),  so the final energy change in the atom ΔEn2 ,n1  
is equal 

to the difference in energy of the two photons: 

Z2 
    

1       1 
\

ΔEn2 ,n1  
=  

2
 

n2   
- 

n2       
Eh

l            2 

9 
           

1 
\

=     1 -  
2 
2 

Eh                                                                                                                                        Z = 3,  nl  = 1 

hc 
ΔEphoton  = 

l 

hc 
- 

λ2 

 
 
            

1                         1          
\

= (6.626 1 10-34 J s)(2.998 1 108 m s-
l) 10.4 1 10-9 m 

-
 

 

828 1 10-9 m

 

= 1.89 1 10-l7 J = 4.33 Eh  = 
9 
 

 

2    
1 -

 
1 
\

 

2       
Eh 

2

 

n2  = 

, 
9 

2 
- 4.32

 

\ 
2
,-l/2

 

9 

 

= 5.
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Maple. By the time you’ve entered the constants and worked out the relationships, a symbolic math 

program  may not save you much  effort on a problem  like this, but  the  same setup  can be applied  to 

numerous  problems: 
 

•  First,  declare the constants in the problem: 

h :=  0.66260755e-33:  c :=  299792468.: Eh:=4.35980e-18:  Z:=3;  n1:=1; lambda1 := 

10.4e-9; lambda2 := 828e-9; 
 

•  Define any equations  that relate the variables  and parameter values: 

DeltaE :=(n1,n2)->((Zˆ2)/2)*((1/n1ˆ2)-(1/n2ˆ2))*Eh;
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≈ 

0 

 

•  And use the solve function  to extract the value you’re looking for: 

solve(DeltaE(n1,n2)=h*c*(1/lambda1-1/lambda2),n2); 
 

In this case, as with many others,  there  is more than one solution  and you have to choose the one that 

is valid.  Here, the solutions  are ±5, and you have to recognize that n2   must be positive. 
 

1.10   The longest wavelength  corresponds  to the lowest transition energy: 
 

hc 
λ =        , 

ΔE 
 

and n = 2 → 3 is the lowest-energy  absorption from n = 2. 

Z2 
    

1        1 
\

ΔE = Z 
2

 
n2   

Z 
n2       

Eh

2            l  
1     1 

\

= Z2 
 

5 
9 

Z 
4    

Eh

= 
18 

Eh   = 0.278 Eh.
 

 

1.11   [Thinking Ahead:   Why  are these energy  values  so close together?  Based  on the pattern of 

energy levels for the one electron  atom,  this  means  that the upper  state energies are approaching the 

ionization  energy.  This means the upper  state  n values almost don’t matter – it’s enough to know that 

they are large.]
 

Z2 

ΔE = En Z El  = Z 
2n2   

(1 har) Z
 

  
ZZ2 

\ 

2 

 
(1 har)   1 Eh  = 27.2 eV

 

The absorption energies differ by small fractions;  therefore, n is a large number. 
 

Z2

n large,  ΔE ≈ ZEl = (1 har)      1626 eV 
2

 
        

2 · 1626 eV 
Z ≈    

(27.2 eV (1 har)
-l   

= 10.93                             Z = 11
 

 

The atom  is   Nal0   . 
 

1.12   Coulomb forces control almost all molecular interactions and structure. In total,  these forces wield 

sufficient strength, for example,  to prevent the atoms  of a car from sliding between  the  atoms  of the 

Brooklyn Bridge to fall into the East River.  But these forces work individually  over tiny, molecule-sized 

areas.  In order to add up to a macroscopic force over a large area, they need to be fairly strong individ- 

ually.  Quantitatively, with charges on the order of 10-l9  C and distances  of 10-l0  m, the forces should 

be of magnitude (don’t forget the 4ne0, which is about 10-l0  in SI units)  (10-l9)2/(10-l0)(10-l0)2  = 

10-8  N, larger than  you might have expected. 
 

Z = 1                                  rl  = a0  = 5.292 · 10-ll m 

Ze2 

FCoulomb =  Z 
4ne r2 

 
 
 

(1)(1.602 · 10-l9 C)2

= Z
(1.113 · 10-l0 C2 J-l m-l)(5.292 · 10-ll m)2 
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=    Z8.24 · 10-8  N . 
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0   n 

0 

Z 

2 

 

1.13   [Thinking  Ahead:  Is this a positive or negative number,  and how does it compare  to the 2 Eh 

ionization  energy of He+?  We’ve defined U = 0 for the ionized electron, and the n = 1 electron must be 

at a lower potential energy in order to be bound to the nucleus, so U is a negative number.  To ionize the 

atom, we have to overcome the stabilization represented by this negative potential energy.  The kinetic 

energy  of the  n  = 1 state is a positive number,  so some of the negative  potential energy  is already 

canceled before we ionize the  He+.  Therefore,  U must  be lower than Z2 Eh   to begin with.  We expect 

to find that the potential energy is less than  Z2 Eh.]  This question  takes advantage of the fact that the 

distance  r between the nucleus and the electron is a constant for each state  n in the Bohr model.  Since 

the potential energy only depends  on r, the potential energy of the electron  is also constant:
 

Ze2 

Un  = Z
4ne  r 

 

Z2mee4 
= 

(4ne0)2n2h̄
2

because  
 
 
rn = 

 
 

4ne0n2h̄
2

 

Zmee2

n = 1.                                                                                                       Z=2 for He+
 

(2)2(9.109 · 10-3l kg)(1.602 · 10-l9 C)4 

Un=l  = Z
(1.113 · 10-l0 C2 J-l m-l)2(1)2(1.055 · 10-34 J s)2 

 

=  Z1.745 · 10-l7  J 
 

or, more quickly by using atomic  units, 

Z2 
       

mee4     
\

Un=l  = Z 
n2 (4ne0)2h̄

2
 

= Z4 Eh.

 

1.14   [Thinking  Ahead:   Does kinetic  energy decrease or increase  with  Z  and  with  n?  It increases 

with Z (the electron has to move faster when the nucleus pulls on it more strongly)  and decreases with n 

(the electron requires less centripetal force to balance the weaker nuclear attraction at large distances).] 

The kinetic energy is always mv2/2, which is a handy  form in this case because we know the mass (me) 

and the speed is obtainable from the Bohr model: 
 

Ze2 

vn = 
4ne nh̄

 
Kn = mev2 

n 
= me 

      
Ze2      

\

2           2      4ne0n

Z2mee4 
= 

2(4ne0)2n2h̄
2

 

 

= ZEn.

 

The kinetic energy is equal to the total energy times Z1.  This result is predicted by the virial theorem: 

for any  stable,  dynamic  system  involving  a central force law (i.e.,  the force depends  only on r),  the 

average kinetic  and potential energies are related  as follows: 
 

U = Z2K. 
 

Since the total  energy is the sum of these two contributions, 
 

E = K + U = ZK. 
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1.15   [Thinking  Ahead:  Do the changes in Z  and n push these numbers  in the same direction?  No. 

Increasing  Z  from 2 to 3 increases  the attraction between  electron  and  nucleus,  decreasing  r and  U
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r 

0 

e 

e 

n 

3 

 

(making  it more negative) while increasing  v.  Increasing  n from 2 to 3 pulls the electron  further  away, 

having  all the opposite  effects.  ]  Given  the  values  for He+  n = 2, we only need to know how Z  and 

n affect the  equations  for these parameters, and  then  substitute Z  and  n = 3 for Z  and  n = 2.  The 

radius  rn varies as n2/Z (Eq.  1.13), vn varies as Z/n (Eq.  1.14), and the potential energy Un  as Z/rn 

or Z2/n2. 

He+  n = 2              Li2+  n = 3  

rn               1.06 Å                     1.59 Å 

vn      2.19 · 106  m s-l       2.19 · 106  m s-l
 

Un        Z4.36 · 10-l8  J    Z4.36 · 10-l8  J 

1.16  

 
AµAµB 

Z   
r4         

= Z
 

 
 
mv2 

Fd-d  = Fcentripetal

AµAµB = mv2r3                                                                multiply  through by r4
 

= 
( r \ 

m2v2r2 = 
( r \ 

L2                                 L = mvr  for circular  orbit 
m                         m 

 

AµAµB = 
(

 r 
\ 

(nh̄)2                                                        L = n 
m

 

rn =   
AµAµBm 

. 
n2h̄

2
 

 
 

This is a weird result  if you look at it, because the orbit  actually  gets smaller as you increase n.  Going 

further and evaluating the total energy shows that the system is not stable  under  these assumptions. 

1.17  
 
 
rn = 

 
 

4ne0  n
2h̄

2
 

Zmee2 

Ze2

vn = 
4ne   n 

mev2 

Fn =      n
 

rn
, 

Ze2 
\2 , 

Zm  e2     
\

= me 
4ne0  n 4ne0  n

2h̄
2

 
Z  m2e6 

=                       . 
(4ne0)3n4h̄

4
 

 

 

The centripetal force should decrease with n, because it takes less force to keep a particle  in a circular 

orbit when the circle is bigger.  (You could also point out that the the Coulomb  force, which is equal 

to the centripetal force, is weaker at higher n because the orbital  radius  rn is bigger.  Or simply that r 

increases and v decreases with n, and therefore  Fn = merv2 /rn must  decrease.) 

 
1.18
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0 

Z 

 

parameter n = 1  n = 2  

momentum (kg m s-1) 1.99 · 10-24
 9.95 · 10-25  (p = mv,  v ∝ 1/n) 

de Broglie wavelength  (nm) 0.333 0.666 (λdB ∝  1/p ∝  n) 

kinetic  energy ( Eh) 0.500 0.125 (K ∝  v2  ∝  1/n2) 

transition energy to n = 3 ( Eh) 0.444 0.0694 

For the transition energy in the last row, 

Z2          
, 

1       1 
\

ΔE = E3  Z E2  = Z 
2  

Eh
 32  

Z 
22 

= 0.0694 Eh.

 

1.19   We set the speed greater  than 0.1 c and solve for Z : 
 

Ze2 

vn  =  
4ne  nh̄  

> 0.1 c                                                                                                                                        n = 1 

0.1 (4ne0)h̄c 
Z >          

e2               
=

 

0.1(1.113 · 10-10 C2 J-1 m-1)(1.055 · 10-34 J s)(2.998 · 108 m s-1) 

(1.602 · 10-19 C)2

= 13.7. 
 

The smallest value of Z (rounding  up to the nearest  integer)  is  14.  So relativistic corrections  are likely 

to start becoming important for atoms  beyond aluminum  in the periodic table. 
 

1.20   [Thinking  Ahead: How does this  transition  energy  compare  to  the  ionization  energy?   Given 

the ionization energy of Z2/2  = 2 Eh   for He+, this transition energy is a small fraction  of the energy 

range of the He+  quantum states.  The transition must  therefore be among the closely grouped,  higher 

energy n values.] 
 

n = nII  → nII  + 1       Z = 2  

Z2  
,  

1               1  
\

ΔE = Z 
2 (nII  + 1)2  

Z 
nII2       

Eh

, 
1 

= 2  
nII2

 

1       
\

 

(nII  + 1)2       
Eh

= 0.045 Eh. 
 

This can be solved numerically. 
 

•  Maple:  A command  to solve this equation for nII   is 

solve(2*((1/nˆ 2)-(1/((n+1)ˆ 2)))=0.045,n); 
 

•  Iteration:
 

nII  = 
$

0.045 
+ 

2 

1 

(nII  + 1)2 

,-1/2

Start with nII  = 1 on the  lefthand  side; this  predicts  nII  = 1.92.  Plug  this  into the  lefthand  side, 

and this predicts  nII  = 2.67, then 3.22, 3.56, 3.77, 3.88, converging to nII  = 4. 
 

The transition is   n = 4 → 5. 
 

1.21   The linear momentum p is mass times speed, and we have an equation for the speed (Eq.  1.14): 
 

p = mevn                 me = 9.109 · 10-28 g
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0 

Ze2 2(1.602 · 10-19 C)2                                                                
6            1

vn = 
4ne nh̄  

= 
(1.113 · 10-10 C2 J-1 m-1)2(1.055 · 10-34 J s) 

= 2.187 · 10
 

 

p = (9.109 · 10-31 kg)(2.187 · 106 m s-1) =  1.99 · 10-24 kg m s-1
 

m s
-
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0 e 

e 

τ 

2n2 

nI2
 

 

1.22   [Thinking  Ahead:   Is this  a high or low frequency,  compared  for example  to radiofrequency? 

High.  The  speed of the electron  in a typical Bohr  atom is a significant fraction  of the speed of light, 

and the distance  to cover is microscopic.  Therefore,  the oscillation of the dipole moment would be quite 

fast.]  Radiation  is emitted by an oscillating  dipole because  the electric  field generated  by the  dipole 

must also be oscillating,  and that oscillation propagates through the surroundings at the speed of light. 

Therefore,  the  frequency  of the  radiation – the frequency  at which the  electric  field of the radiation 

oscillates  back and  forth—is  the  same as the frequency  at which the  dipole oscillates  back and  forth. 

For  the Bohr  atom,  with  a dipole arising  from the separation between the  positively  charged  nucleus 

and  the negatively charged  electron,  this  frequency  is the frequency  at which the  electron  orbits  the 

nucleus.  This we can obtain  from the speed vn of the Bohr atom  electron  and the circumference  2nrn, 

which gives the distance  the electron  travels in one orbit.
 

Ze2 

vn = 
4ne nh̄                                           

rn =
 

 

The time for one revolution  of the electron  around  the nucleus is 

 

4ne0n2h̄
2

 

Zm  e2    
.

 

 
τn = 

 

2nrn  
= 

vn 

 

2n(4ne0)2n3h̄
3 

Z2m e4         
,

 

so the frequency of oscillation,  and the frequency of any emitted radiation, is
 
 
 

 
For Li+2, Z  = 3. With  n = 4, 

 

1 
νn =     = 

n 

 

Z2mee4 
. 

2n(4ne0)2n3h̄
3

 

(3)2(9.109 · 10-31 kg)(1.602 · 10-19 C)4 

νn=4 = 
2n(1.113 · 10-10 C2 J-1 m-1)2(4)3(1.055 · 10-34 J s)3 

 

=  9.247 · 1014 s-1, 

which corresponds  to near-ultraviolet radiation. 

1.23   This  is an  application  of Bohr’s  expression  for energy  levels of one-electron  atoms.   The  lower 

quantum  state is known  (ground  state,  so n1   = 1) and  the  energy  is known,  so the upper  quantum 
2

states can be found:  En = Z Z Eh,  where Z = 4 for Be.

Z2  
, 

1 
ΔE(n → nI

) = Ent  Z En = Z  
2 

1 
\

 
Z 

n2

Z2  
, 

1         
\

= Z 
2 

, 

nI2   Z 1
 

1 

2ΔE 
,- 

2

n
I  
= 1 Z  

Z2 

1, 

=  1 Z 
2ΔE 

,- 
2 

16 

 

Z = 4 

 

ΔE   = 7.50 Eh       n
I  =  4 
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ΔE   = 7.68 Eh       n
I  =  5 

 

1.24   The  n  →  ∞  transition  energy  gets  smaller  as n  climbs,  and  the  photon  wavelength  increases. 

Therefore,  we are  looking for the lowest value  of nII   such  that the  photon  wavelength  is more  than
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≥ 

0 

n n 

0 

n 

≥ n = 

2 2 

 

1.0 mm, where Z = 2 for He+:

Z2  
, 

1        1 
\ Z2  

, 
1 
\    

Z2

ΔE = Z 
2 

hc 

2  
Z  

2 
∞ 

hc 

Eh   = Z 
2 

hcn2 

Z
n2 

Eh   = 
2n2  

Eh

λ =       = 
ΔE 

= 
Z2  Eh/(2n2) 
-3

 

 

2 Eh 
≥ 1.0 · 10-3 m

n
2         2(1.0 · 10

 
hc 

m) Eh  

 
1/2

 

 

 
1/2

,
2(1.0 · 10-3 m) Eh  

\
 

hc 

, 
2(1.0 · 10-3 m)(4.360 · 10-18 J)     

\
 

(6.626 · 10-34 J s)(2.998 · 108 m s-1) 

 

= 209.5.

 

So n is the smallest  integer greater  than 209.5, so  n = 210. 
 

1.25   [Thinking Ahead:    What about the energy  level distribution allows us to  solve for two un- 

known  n values  with  a single equation?  It’s the  converging  value  of the  energy  as n  increases.   It  is 

straightforward to prove that no two values of n have the same energy spacing as any other two values.] 

This  problem  approaches atomic  spectroscopy  from a more realistic  perspective:   when the  transition 

energy is measured,  how does the spectroscopist determine  the quantum states  involved?  The Li atom 

has atomic  number  Z  = 3, so Li+2  is a one-electron  atom.  This  time  we have the  energy and  need to 

obtain n. 

Z2         mee4 

En = Z 
n2  2(4ne  )2h̄

2

(3)2 

= Z 
n2 

(9.109 · 10-31 kg)(1.602 · 10-19 C)4
 

2(1.113 · 10-10 C2 J-1 m-1)2(1.055 · 10-34 J s)2

1.96 · 10-17 J 
= Z       

n2 

, 
1        1 

, 
1.74 · 10-17 J = 1.96 · 10-17             Z 

1            2 

1       1       1.74 

n2   
Z 

n2   
= 

1.96 
= 0.888 

1            2 

We have one equation  and  two  unknowns.   However, the pattern of energy  levels is such that all the 

energy levels except n = 1 are crowded together within En=1/4 of zero. Therefore,  transitions between 

any two states  n = 1 must  have transition energy less than En=1/4.  Since 

-17
 

1.74 · 10-17 J > Z
En=1 

= 
1.96 · 10      

J, 
4                  4 

 

then    n1  = 1    , so 

n2  = [Z(0.888 Z 1)]
-1/2  

= 3. 
 

1.26   These  parameters are all related  to the  speed at  which the electron  travels the  circumference  of 

its orbit,  which can be calculated from Eqs.  1.13 and 1.14. 

a.  Time to complete  one orbit  τ  = distance/speed:

 
τn = 

 

2nrn  
= 

vn 

 

(2n(4ne0)n2h̄
2
/Zmee2) 

Ze2/(4ne  )nh̄)         
=

 

 

2n(4ne0)2n3h̄
3

 

Z2mee4
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τ 

 

Number  of orbits  per second =  1 
n 

 

≡  fn:        fn = 
Z2mee4

 

2n(4ne0)2n3h̄
3
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0 

h 

h 

9 h 

0 

= 

Z 
· 

· 

·                                · 

 

b. 

Z2mee4      
, 

1       1 
\

Δfn = f5  Z f4  = 
2n(4ne  )2h̄

3 53  
Z 

43

(1)2(9.109 · 10-31 kg)(1.602 · 10-19 C)4
 

2n(1.113 · 10-10 C2 J-1 m-1)2(1.055 · 10-34 J s)3 

 

(Z7.625 · 10-3)

 

=  Z5.01 · 1013 s-1
 

 

c. 
 

ΔE 
ν =       = 

 

 
E5  Z E4 

 

Z2(4.360 · 10-18 J E-1) 
, 

1       1 
\

 
= Z                                      Z

h              h                                 2h 52        42

(1)2(4.360   10-18 J E-1) 
= 

2(6.626 · 10-34 J s) 

 

(Z0.0225)

 

=  7.40 · 1013   s-1
 

 

This value and the magnitude of the answer in part (b) become more similar as nII  and nI  increase. 

 
1.27   [Thinking  Ahead:    Is this going to be  high  Z,  given  that the wavelength  for the H atom 

ionization  is 91.1 nm?  No. Increasing  Z increases the energy as Z2  and shortens the wavelength  for the 

transition as 1/Z2.  Here the wavelength is only about a factor  of 4 lower.] 

In units  of Eh: 
 

Z2             Z2 

ΔE = Ent Z Entt  = Z
2nI2  + 

2nII2 

Z2  
, 

1     1
\

 
=  

2     
Z 

9 
+ 

1 

4Z2 
= 

9 

λ = 25.6 · 10-9 m =   
hc   

=                  
hc

ΔE     
,

4Z2 
, 

(4.36 10-18 J E-1)

,
9(6.626   10-34 J s)(2.998   108 m s-1)

,1/2 

Z = 
4(4.36 · 10-18)(25.6 · 10-9) 

 
= 2.

 

The atom  is  He+. 

 
1.28   This  expression  for Fgrav  has  the same  dependence  on distance  as FCoulomb.  The  difference is 

that the constants Ze2/(4ne0) have been replaced  by m1m2G, where (since the masses are unchanged) 

m1m2 = memp. We could follow the same steps used to obtain  the Bohr energy expression,  but  since 

all we have done is change  one set of constants  for another,  we can just  take the result  for the Bohr 

energy and change out those constants: 
 

Z2mee4 
En = Z

2(4ne  )n2h̄2                                                
real atom,  Eq.  1.20

 

(mempG)2me
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En = Z 
2n2h̄

2                                                       gravity  atom

m3      2     2
 

empG 
= Z  

2n2h̄2    
.
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Z       · 

m 

μ 

 

For the ground  state, we set n = 1: 
 

(9.109 · 10-31 kg)3(1.673 · 10-27 kg)2(6.67 · 10-11 m3 kg
-1 

s-2)2 

 
 

 
-97

E1  = Z =    4.23  10      J. 
2(1.055 · 10-34 J s)2

 

Comparing  this  to the ground  state energy using the  charged  particles (E1 = 2.18 · 10-18 J),  you can 

see why we never worry about gravity when solving the quantum  mechanics  of atoms  and  molecules. 

Note:  one topic of ongoing speculation among physicists is whether  the gravitational force law stays the 

same at all distance scales.  Although gravitational forces have been measured  for individual  neutrons, 

that was over distances  of several micrometers—much larger than the distances  separating subatomic 

particles in an atom.   For  a further  exercise, try calculating the  radius  of the orbit  of the particles  in 

this gravity-atom. 
 

1.29   If there’s only one electron,  we need to know only the atomic number  Z  to identify  the ion. From 

Eqs.  1.13 and 1.14:
 

n2a0
 

 

Ze2                                e2

rn = = 1.286a0                                                   vn =            = 2.333 
Z                                                                   4ne nh̄                4ne

 

n2 
= 1.286 

Z 

0                                     0 

Z 
= 2.333 

n

Z = (2.3332)(1.286)  = 7. 

 

The ion is  N+6. 
 

1.30   [Thinking  Ahead:   Is this  longer or shorter  than λdB  for the electron  in hydrogen?   Shorter. 

The  heavier  mass of the  muon  compared  to the electron  makes the  system  more classical,  with  wave 

properties harder  to measure.  That implies a smaller  λdB.]  The  solution  will be identical  to the Bohr 

atom,  except with the muon mass mμ  substituted for me. 

 
 
 

-e 

m
μ

 

+e 
mp 

 

Ze2 
v = 

4ne0n 

 

Z = 1       n = 1 

h         4ne0h (1.113 · 10-10 C2 J-1 m-1)(6.626 · 10-34 J s)(1.055 · 10-34 J s)

λdB =       = 
μv m  e2     

=
 (1.884 · 10-28 kg)(1.602 · 10-19 C)2

 

=  1.61 · 10-12  m. 
 

1.31   The  total power  is the sum  of the contribution from each  photon  emitted, the  product of the 

number  of photons  per second and the energy per photon.  Setting  the average photon  wavelength equal 

to λ̄ , the energy per photon  is approximately given by

 Ephoton  ≈ 
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= 
 

hc      (6.626 · 10-34 J s)(2.998 · 108 m s-1) 

λ̄                          590 · 10-9 m

= 3.37 · 10-19 J/photon. 


