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Physical Chemistry: Thermodynamics, Statistical  
Mechanics, and Kinetics 

 

Objectives Review Questions 
 

Chapter  1 
 

1.1  By the first law of thermodynamics, ΔE = q+w.  If ΔE = 0, therefore, then q = −w:   q = −743 

kJ. 
 

1.2  We’re taking  the square  root  of the  average  momentum.   The  Maxwell-Boltzmann distribution 

Pv(v) gives the  probability of the molecules having  any given speed v, and  since m  is a constant, this 

also gives us the probability distribution of the momentum p = mv.  To calculate the mean value of p, 

we integrate Pv(v) p over all possible values of v, from zero to infinity.  And finally, remember  to take 

1/2
the square root to get the rms:   

     ∞ 
Pv(v)(mv)2 dv

,
 ,  with Pv(v) given by Eq.  1.27.

 

Chapter  2 
 

2.1  If Ω = 7776 The  number  of ways of arranging  5 distinguishable particles  in 6 slots  is 65  = 7776, 

and this is our ensemble size for the system  described.  For that value of Ω, the  Boltzmann entropy is 

given by 

SBoltzmann  = kB  ln Ω = (1.381 · 10-23 J K-1) ln(7776) = 1.30 · 10-22 J K1. 
 

For  the Gibbs  energy,  we set  the  probability P(i) for each of the 5 molecules equal  to 1/6  (because 

there  are six states  and each state  is equally likely).  We set N  = 5 and get: 
 

k 

S = −NkB 

e 
P(i) ln P(i)                              Eq.  2.16 

i=1 

1     1 
= −5kB(6)

6 
ln 

6                                                  
k = 6,  N  = 5 

 

= 1.24 · 10-22 J K-1. 
 

The expression has a factor  of 5 from N  = 5 and a factor  of of 6 because we add the term P(i) ln P(i) 

k = 6 times.  For a system that is this rigidly defined, the Gibbs and Boltzmann entropies are the same. 
 

2.2  We evaluate  the sum in Eq.  2.33 over the lowest values of e (which here means the lowest values of 

the quantum number  n),  until  additional terms  do not contribute significantly: 
 

∞ 

q(T ) = 
e 

g(ε)e-ε/(kBT )
 

ε=0 

∞ 

= 
e

(3n + 1) e-(100 K)kB n
2/[kB(298 K)]

 

n=0 

= (1)e0  + (4)e-0.336  + (7)e-1.34  + (10)e-3.02 + (13)e-5.37  + (16)e-8.39  + . . .  
 

= 1.000 + 2.860 + 1.829 + 0.488 + 0.061 + 0.004 + 0.0001 + . . . = 6.24. 
 

2.3  For a nondegenerate energy level, g = 1. Using the canonical  distribution, Eq.  2.32, we find 
 

g(ε)e-ε/(kBT )

P(ε) =  
 

 

= 

 
q(T ) 

(1) exp 
,

 

 

(2.2 · 10-22 J)/ 
 
(1.381 ·  10-23 J K

-1
)(373 K)

,,
 

1205 

 

 
 
= 0.00080.
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Chapter  3 
 

3.1  If we assume  that the equipartition principle  is valid  for these degrees of freedom,  then each O2 

molecule has  Nep = 3 for translation,  Nep = 2 for rotation (because  O2   is linear),  and  Nep = 1 × 2 

for vibration (1 vibrational mode with kinetic  and  potential energy terms).  For  each mole of O2,  the 

equipartition  principle  predicts  that the  contribution to the energy  will be NepRT/2,  so we multiply 

these values by 3.50 mol to obtain  the energy contribution to our system: 

E = Etrans + Erot + Evib 

nRT 

 

 

(3.50 mol)(8.3145 J K-1 mol-1)(355 K)

=         (3 + 2 + 2) = 
2 

(3 + 2 + 2) 
2

 

These contributions come to:   trans:  15.5 kJ; rot:  10.3 kJ; vib:  10.3 kJ. 

 
3.2  We need  to  solve for P(v  = 1),  where  v here  is the  vibrational quantum number,  based  on the 

vibrational constant  (which  with  v will give us the  energy)  and  the temperature  (which  with  ωe  will 

give us the partition function).  We combine the vibrational partition function (Eq.  3.26)

 
qvib(T ) = 

1
 

 

1 

e-ωe/(kBT ) 
=

 

 

1 

1 − e-(1)(891 cm−1)/[(0.6950 cm−1/ K)(428 

K)] 

 
= 1.05

 

with  the vibrational energy  expression  Evib = vωe  in the  canonical  probability distribution given by 

Eq.  2.32: 
 

g(v)e-Evib/(kB T )

P(v) =  
qvib (T ) 

1                            −1

(1)e-(1)(891 cm−  )/[(0.6950 cm 
= 

1.05 

/ K)(428 K)]

= 0.0475. 
 

Note  that the  vibration of a diatomic  is a nondegenerate mode,  so we can  always  set g =  1  for the 

vibration of a diatomic. 

A couple of quick checks are available  here.  First,  we notice that ωe is more than  twice the thermal 

energy kBT  (as a very rough guide, the thermal energy in cm-1  is about 1.5 times the temperature in 

K). That means that we expect most of the molecules to be in the ground  state, because few will have 

enough energy to get across the gap between v = 0 and  v = 1.  Sure enough,  qvib  = 1.05 is very close 

to  one, meaning  that only one quantum state  (the  ground  state) is highly  populated.  Secondly,  the 

partition function is only about 5% bigger than 1.0, which suggests that about 5% of the population is 

in excited  states.   Since the closest excited  state  is v = 1, it makes sense that the probability of being 

in v = 1 turns out to be 0.0475, which is just about 5%. 

 
3.3  Asking  for  the fraction  of molecules,  the population in  a  given  quantum state,   the number  of 

molecules or moles (out  of some total  in the system)  at a particular  energy—all  of these  are ways of 

asking us to find the probability of an individual  state  or an energy level using the canonical distribution 

Eq.  2.32.  To do this,  we will always need three  things:  the  degeneracy  of the energy level (unless  we 

are looking for a particular state among several that share the same energy), the energy expression, and 

the partition function.  For rotations of any linear molecule (which includes all diatomic  molecules), the 

expressions  we need are these:
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grot  = 2J + 1                       Erot = BeJ(J + 1)                      qrot  = 

 
kBT 

. 
B
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−1 

X 

2 

0 

1 

 

We can quickly verify that the integral approximation for the partition function  is valid, because Be   × 

kBT  = (0.6950 cm-1/ K)(428 K) = 297 cm-1.  Then  we put  all this into Eq.  2.32 to get the probability: 
 

g(J)e-Erot/(kBT )

P(J  = 4) = 
qrot (T )

(2J + 1)e-BeJ(J+1)/(kB T ) 
= 

kBT/Be 

(9)e-20(20.956 cm      )/(297 cm−  ) 
= 

 
 
 
 

= 0.155.

(297 cm-1)/(20.956 cm-1) 
 

In this problem,  we expect  that the molecules are spread  out over a large number  of quantum states, 

because the rotational constant Be   is small compared  to the thermal energy kBT . A fraction  of 15.5% 

for the J = 4 energy level is as high as it is only because Erot = 20Be  = 419 cm-1  is fairly close to the 

thermal energy of 297 cm-1, meaning that there is a high probability of molecules colliding with enough 

energy to get to this energy level. The fact that the degeneracy  increases with J  also helps, because it 

means that a collision that lands in any of the g = 2J + 1 = 9 quantum states  that correspond  to the 

J = 4 energy level contribute to this probability. 
 

3.4  The  average  of the momentum  vector  p  = m v should  be zero for physical  reasons,  because  every 

particle  has  an  equal  probability of traveling  in either  direction  along  any  Cartesian axis (unless  we 

add  forces of some type  that push  or pull  the molecules along a particular direction).  To show that 

this  average  is zero mathematically,  we would use the classical integrated  average,  which is obtained 

by integrating over all space the property times  its  probability distribution, which in this case is the 

velocity  vector  distribution Pv3 ( v) given by Eq.  1.15.  For  each vector  component of the momentum, 

we would need to solve an integral of the form (shown here just  for the X component)
 

 

(pX) = m 

   ∞ , 
0 
,1/2 

-∞   π 

 
e-a(v2  ) 

 

 
vX dvX .

 

But this integral is always zero because the Gaussian  function  e-a(vX ) is symmetric about zero whereas 

vX  is antisymmetric.  For  every value of vX  from −∞ to +∞, the integrand is equal and  opposite to 

the value of the integrand at the point −vX . The integral sums all these values together and gets zero. 
 

Chapter  4 
 

4.1  The goal is to obtain a mean value of a property of our system, so we can use the integrated average, 

which in general has the form

(f (z)) = 

  
 

all  space 

Px(z) f (z) dz,

but  for this we need the  probability distribution function  Px(z).  What do we need before we can find 

the probability? We need the  partition function  q(T ).  Therefore,  the sequence of steps  we would need 

is something  like this: 
 

1.  Integrate 
  ∞ 

e-mgZ dZ to get the partition function qZ
t(T ). (I'm using q t  here instead of q because 

this is not a true unitless  partition function,  similar instead  to the q t   that was introduced in Eq. 

3.7. As long as we integrate over Z  with volume element dZ  below, the units  will cancel.) 
 

2.  Combine  this with the canonical  distribution to formulate  an expression for PZ (Z): 
 

e-mgZ (kBT )
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PZ (Z) =  qZ
t . 
(T )
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0 

V 

V (5.57 L  bar mol    )   , 

3.  And finally we would integrate 
  ∞ 

PZ (Z) Z dZ  to get the mean value of Z. 

 
4.2  The van der Waals  equation  (Eq.  4.47) reads

,   
a  

\ 
P +    

2 
m 

 

 

(Vm  − b) = RT.

 

If we know the pressure  P , the molar  volume  Vm,  and  the  values  of the van  der  Waals  coefficients 

a = 5.57 L2 bar mol-2  and b = 0.06499 L mol-1, then we can solve for T :

1 
, 

T =      P + 
R 

 
= 

a  
\ 

2      
(Vm  − 

b) 
m 

1 

 
 
 
r 

(24.0 bar) + 

 
 
 

2                   -2   , 
(1.00 − 0.06499) L mol-1

,

0.083145 bar L K-1 mol-1 
 

= 333 K. 

(1.00 L mol-1)2

For the ideal gas, the temperature would be 
 

 

T = 

 
 
P Vm 

R 

 

 
 
= 289 K,

 

so a pressure  of 24.0 bar is high enough that we see significant deviation from ideality. 

 
4.3  The  goal here is to use the Lennard–Jones parameters to approximate the potential energy curve 

u(R) for the interaction between ethane  molecules  using  Eq.   4.11,  and  then to use  this potential 

function  in the approximate expression  from Eq.   4.59 for the pair  correlation  function.   Combining 

these  equations and obtaining  the parameters from the table,  we have:
 

 

G(R)  ≈ exp 

 , 
Re  

\12 

−ε       
R 

,
Re 

\6
 

 
− 2    

R 

  
 

/(kBT )    ,

 
where ε/kB = 230 K and Re   = 4.42 A. 

 
4.4  We are looking for individual  particles  where all the  spins sum to an integer.  Atomic  hydrogen, 

like several of the other group 1 elements, has an odd mass number  (so its nucleus is a fermion) and an 

odd electron number  (so the electron  spins sum to a half-integer). That means that the combination of 

nucleus and electron(s)  forms an integer spin particle—a boson, and in principle,  a BEC can be formed 

from 1H. Like the alkali metals,  1H has the advantage that its unpaired electron  allows it to be steered 

in a magnetic  field and magnetically cooled, but its relatively  low mass and its tendency to form strong 

chemical  bonds  make it much  more challenging  to form H atom  BECs,  but  researchers  accomplished 

this in 1998 [1].  Neon has an integer spin nucleus and an even number  of electrons,  so is a boson also. 

Because it is not paramagnetic, however, it cannot be confined by a magnetic  trap, and so experimental 

methods do not yet exist that allow us to form a BEC from neon.  And 19F-, which has an odd number 

of nucleons (with a total nuclear spin of 1/2)  and an even number  of electrons,  is a fermion, and cannot 

be used to form a BEC. So the candidates are only  a and c,  with some significant hurdles to overcome 

before we see a Ne BEC formed in the lab. 

 

Chapter  5 
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5.1  Equation 5.13,  

λ = 
(v)  

= √ 
1    

,
γ        2ρσ
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· 

D       = 

-1 

P 
= 

 

tells us that the  mean free path depends  on the  number  density ρ (which we can calculate  if we know 

P and T ) and the collision cross section σ: 

ρ = 
NAP (6.022   1023 

= 
mol-1 )(0.23 · 105 Pa)  

24      -3

RT 
 

λ = √ 

(8.3145 J K-1 mol-1)(220 K)      
= 7.57 ·  10   m

 

1 
= 7.7 ·  10-8 m.

2(7.57 ·  1024 m-3)(121 · 10-20 m2) 
 

5.2  For  a gas, we can predict the diffusion  constant from Eq.  5.34.  Let A be N2  and  B be acetylene 

(HCCH): 
 

(vAB) 
B:A

 

 
(vAB)  = 

 

 
μ = 

2ρAσAB 

 
 

8kBT 

πμ 

(26.04)(28.01) 

26.0 + 28.0 

 
 
 
 

 
amu = 13.49 amu

 
       

16(1.381 ·  10-23 J K-1)(298 K)
(vAB)  = = 683.8 m s 

π(28.0 amu)(1.661 ·  10-27 kg amu-1)

ρA  = 
NA (6.022 ·  1023 mol-1)(1.0 · 105 Pa) 

 

= 2.431 · 1025 m-3

RT            (8.3145 J K-1 mol-1)(298 K) 

1              √
σAB  =  

4 
(σA  + 2 

 
σAσB + σB)

1 ,    √ , 
˚2                          2

=       37 + 2  
4 

 

D = 

37 ·  72 + 72   A 
 

(683.8 m s-1) 

= 53.06  

 
= 2.651 · 10-5 m2 s-1  = 0.265 cm2 s-1.

2(2.431 · 1025 m-3)(53.06 ·  10-20 m2) 

Then  we can use the Einstein  equation  (Eq.  5.36) rrms = 
√

6Dt  to estimate the time required. 
 

r2                                            2
 

t ≈   rms =     
(100 cm)                           3

6D       6(0.265 cm2 s-1)  
= 6.3 ·  10

 
s = 1.7 hr.

 

5.3  This problem is asking about  the relationship between a flux and the change in concentration from 

one place to another (i.e., a concentration gradient). That relationship is the subject  of Fick's  first law, 

so we employ Eq.  5.42:

 
DΔρ/ΔZ = 

 

(1.0 ·  10-15 m2 s-1)(1.0 ·  10-1 mol m-3) 

(1.0 · 10-8 m)

= 1.0 ·  10-8 mol s-1 m-2. 
 

Chapter  6 
 

6.1  No matter how we heat  the water,  the heat  must  be  carried  from  one part  of the bath to the 

reaction  container,  which  will require   convection,    and  then  transferred  from  the water  in  contact 
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with  the  container  into  the  reaction  mix by   conduction. At a temperature of 373 K, we don't expect 

blackbody  radiation to be as efficient a means of conveying heat. 

 

6.2  Problem  6.5 gives a detailed  and precise way to approach this problem  (but  for a different temper- 

ature), so let's  use a quicker and dirtier method  here.  If we examine Fig.  6.2, we see that the peaks of
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·                                                              · 

(40 · 10-20 m2) 

-1 

the  three curves shown are at  roughIy  Iog10 v( s-1) equaI to 12.9 for T = 100 K, 13.9 for T = 1000 K, 

and 14.9 for T = 104 K.  This suggests that the peak power occurs at a frequency such that 
 

Iog10 vmax( s-1) ≈ 10.9 + Iog10 T ( K). 

 

From  this, we can find an equation for vmax, and then  use the speed of Iight to soIve for λmax: 
 

vmax( s-1) ≈ 1010.8T ( K) = 6.3 · 1010T ( K)
 

λmax = 
v
 
c 

 

max 

2.229 · 108 m s-1
 

≈  
6.3 · 1010T ( K)

0.0049 
= 

T ( K) 

 

= 1.3 · 10-5 m.

 

This is equaI to 13 μm.  Carrying  out the work as in ProbIem  6.5 yieIds the precise resuIt   13.7 μm. 

6.3  We use the Beer–Lambert Iaw: 
 

 
 

A = − 
Iog10 

 
, 

Il 

\ 

I0 

 

 
 
= e C l

and soIve for e:  

A 
e =     = 

Cl  

 

(0.95) 

(3.0 · 10-6 M )(1.0 cm) 

 

 

= 2.9 ·  105 M-1 cm-1.

AIthough  these units  for e are not SI, they are probabIy  as cIose as we have to a standard unit for this 

type of measurement, simpIy because concentrations in soIution are normaIIy reported in moIarities and 

pathIengths in cm. 

 
6.4  The equations we have for these two Iinewidths  are (Eqs.  6.57 and 6.52) 

 
4v0 

     
2kBT In 2 

δvDoppler =   
c             m 

δvcollision = 4γ. 
 

For the DoppIer  width,  we can pIug in the moIecuIar  mass of 29.0 amu and the temperature, obtaining

 
4(2150 cm-1) 

 

 
   

2(1.391 · 10-23 J K-1)(229 K) In 2
δvDoppler = 

2.229 · 108 m s-1 
= 0.010 cm    . 

(29.0 amu)(1.661 ·  10-27 kg amu-1)

 

For  the coIIision-broadened Iinewidth,  we wiII have  to  know the  coIIision frequency,  which we 

obtain from the average speed, density,  and coIIisions cross section: 

 ,
NAP 

\ 

σ
 16kBT

δvcollision = 4ρσ (vAA)  = 4     
RT                πm

,
(6.022   1023 moI-1)(1.0   105 Pa)

\ 
= 4  

(9.3145 J K-1 moI-1)(229 K) 
 

= 0.97 cm-1. 

    
16(1.391 · 10-23 J K

-1
)(229 K) 

(29.0 amu)(1.661 ·  10-27 kg amu-1)
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At this  waveIength,  gas-phase  spectra  taken  at atmospheric pressure  are strongIy coIIision-broadened. 

PartIy for this reason, most gas-phase  spectroscopy  experiments are carried  out under  vacuum. 

 
Chapter  7
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7.1  For  this  probIem,  we can work from both  ends  to  meet  in the  middIe.   We rewrite  κT    and  α  in 

terms  of the partiaI derivatives:

1 
, 

∂V 
\ 1 

, 
∂T 

\

κT   = −
V 

 

∂P    T,n 

α = 
V     ∂V 

. 
P,n

 

This  Iets us know that we need to convert the partiaI derivative of V  that we're starting with  to two 

derivatives  invoIving V . The chain ruIe in TabIe A.4 Iets us break up the originaI partiaI derivative and 

aIso introduce the pressure  as one of the variabIes:

, 
∂V 

\
 

∂S    T,n 

, 
∂V 

\
 

= 
∂P    T,n 

, 
∂P 

\
 

. 
∂S    T,n

 

At some point in the process, the entropy S  ceases to be a variabIe  in the  expression.  That's the cIue 

that we need a MaxweII reIation to change variabIes,  and Eq.  7.30 does exactIy what we need, taking a 

partiaI of S with T heId constant and deIivering a partiaI of V  with P heId constant. Combining  these 

strategies gives the soIution:

, 
∂V 

\
 

, 
∂V 

\
 

= 

, 
∂P 

\
  

chain ruIe

∂S    T,n ∂P    T,n ∂S    T,n

,
∂V 

\
 

= − 
∂P    T,n 

, 
∂T 

\
 

∂V    P,n 

 

by Eq.  7.30

= 
κT 

α 

 

.                                                          by Eqs.  7.31 and 7.32

 

7.2  At such high temperature, we expect aII the vibrationaI degrees of freedom in the moIecuIe (as weII 

as the transIations and rotations) to contribute to the heat capacity. The moIecuIe is nonIinear  and has 

11 atoms,  so the number  of equipartition degrees of freedom is 
 

Nep = 3 trans +  3 rot  +  (3Natom − 6) × 2 vib  =  

60. 
 

According to the equipartition principIe,  the moIar heat capacity  at constant voIume CV m  is then

 
CV m  = 

, 
∂E 

\
 

∂T    V 

 

1 
=   NepR = 30R. 

2

 

The vaIue of CP m  is greater  than this by R, so we predict 
 

CP m  = 31R = 259 J K-1 moI-1. 
 

This is the same as the experimentaIIy measured  vaIue. 
 

7.3  The energy for heating  at constant pressure is the integraI of the heat capacity over the temperature 

range, but for smaII temperature changes we often assume that the heat  capacity is constant:

 
ΔE = 

 
   T2 

 
T1 

 
CP  dT ≈ nCP m 

 
   T2 

dT 
T1
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V 

 

 
 

Chapter  8 

= nCP m(T2 − T1) = (1.00 moI)(0.71 J K-1 moI-1)(10.0 K) = 7.1 J.

 

8.1  Here we can use the equation  for the reversibIe expansion  (Eq.  9.2) 

, 
V2 

\ 
wT,rev = −nRT In            

. 
1
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b 

b 

 

The onIy difference is that V2 < V1  for the compression,  so the sign of the work is reversed: 
,

1.00
\

wT,rev = −(0.100 moI)(9.3145 J K-1 moI-1)(229 K) 

In 

 

2.00 
= 172 J.

 

The vaIue is positive instead  of negative  in a compression,  because work is done to the system,  and the 

system  absorbs  energy (which may Iater  be reIeased by aIIowing the system  to expand). 
 

8.2  Equation 9.24 reIates the JouIe–Thomson coefficient to the van der WaaIs coefficients and the heat 

capacity: , 
∂T 

\
 

∂P    H 

2a 

= RT 
−    

. 
CP m

From  TabIe  4.2 we Iearn  that for neon a = 0.209 L
2 

bar moI
-2  

and  b = 0.01672 L moI
-1

, and  from the 

Appendix  we find CP m  = 20.796 J K-1 moI-1.  Substituting these vaIues in we predict

, 
∂T 

\
 2a 

= RT   
−

∂P    H 

 

= 

CP m 
,

2(0.209 L2 bar moI-2)/ 
,
(0.093145 bar L K-1 moI-1)(100 K)

,, 
− (0.01672 L moI-

1) 

20.796 J K-1 moI-1

= 0.00160 L K J
-1  

= 0.160 K bar
-1

. 
 

8.3  The efficiency of the Carnot engine is given by Eq.  9.37: 
 

Thot  − 
Tcold

 

e =                    . 
Thot 

We need to soIve for Thot, which is a matter of reorganizing  the equation: 
 

Thote = Thot  − 
Tcold 

Tcold = Thot  − 
Thote

 
 

 
Chapter  9 

Tcold 
= T 

1 − e 

 
hot 

229 K 
= 

1 − 
0.30 

 

= 430 K.

 

9.1  The  heat  capacity  of air  is roughIy  the heat  capacity  of nitrogen  or oxygen gas,  which  covers a 

narrow  range from 22.099 J K-1 moI-1  for N2  to 22.355 J K-1 moI-1  for O2.  A good estimate is about 

22.1 J K-1 moI-1,  because  air is mostIy  N2.  To caIcuIate the change in entropy,  we integrate dS  over 

the temperature range at constant pressure  and use the heat  capacity to rewrite dS  in terms  of dT :

 
ΔS = 

 
   T2  

dS = 

 
   T2  T dS

T1 

   T2 

= 

T1          
T 

1 
, 

T ∂S 
\

 
dT

T1     
T 

   T2   1 

∂T     
P,n  

   T2   dT

= 
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T 

T1     
T CP  dT ≈ CP 

 

T2
 

 

T1        
T

= nCP m In     . 
1 

Next,  we use the ideaI  gas Iaw to find the number  of moIes of the air  at  the initiaI  temperature  of 

229 K (Keep in mind  that we must  use keIvin for temperatures in any equation  where T  is muItipIied 

or divided):
P V  

n =      = 
RT 

(1.00 · 105 Pa)(100. m3) 

(9.3145 J K-1 moI-1)(227 K) 
= 4.05 ·  103 moI,
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·                                                                           
− 

− 

5 

T 

 

and we pIug this in to find ΔS , using an initiaI temperature of 229 K and finaI temperature of 226 K: 
 

ΔS = (4.05   103 moI)(22.1 J K-1 moI-1) In 
226 

=    722 J K
-1

. 
229 

 

9.2  AIthough  this  may appear  to be a simpIe exercise in pIugging numbers  into  an equation,  we find 

that it takes some care to arrive at a set of vaIues where the units are aII consistent.  We begin with Eq. 

2.11:  
5          

   ,
2πmkBT 

\3/2     
RT

Sm = R + In 
2                    h2

 
. 

NAP

 

Let's work on some of the parts separateIy: 
,

2πmkBT 
\

 

h2               
=

 

2π(222 amu)(1.661 · 10-27 kg amu-1)(1.391 ·  10-23 J K
-1

)(229 K) 

(6.626 · 10-34 J s)2

 
 

RT 

NAP 

= 2.17 · 1022 m-2
 

(9.3145 J K-1 moI-1)(229 K) 
= 

(6.022 ·  1023 moI-1)(1.00 · 105 Pa) 

 

 
= 4.11 · 10-26 m3.

 

Combining  these, we have 
  

22      -2  3/2
 

 
-26

 
 

3  
    

-1          -1

Sm = R + In 
2 

(2.17 · 10    m    ) (4.11 · 10 m  )      = 21.2R = 176 J K moI    .

 

This is the same as the experimentaI vaIue to three significant digits. 

 
Chapter 10 

 
10.1   The moIar mass of CCI4  is 153.9 g/ moI, so we have n = 0.693 moI. We break the process into two 

steps:  the condensation (which takes pIace at CCI4's  normaI  boiIing point of 342.2 K) and the cooIing. 

For  the condensation, the  change  in enthaIpy and  entropy are caIcuIated from the  Iatent enthaIpy of 

vaporization ΔvapH-◦  , keeping in mind that the direction  of the process indicates  that ΔH and ΔS wiII 

both be negative: 

 

ΔH1 = −nΔvapH-◦    = −(0.693 moI)(22.92 kJ moI-1) = −20.4 kJ

ΔvapH-◦  (22.92 ·  103 J moI
-1                                    

1

ΔS1 = −n 
b 

= −(0.693 
moI) 

=   59.2 J K-   . 
342.2 K 

 

For the cooIing step,  we wiII need the heat capacity: 
 

ΔH2  = nCP m(T2 − T1) = (0.693 moI)(131.75 J K-1 moI-1)(−27 K) = −2.43 kJ

 
ΔS2  = nCP m

 

   T2   dT T2 
= nCP m In 

 

= (0.693 moI)(131.75 J K-1 moI-1) In 323 
 

= −7.20 J K-1.

T1       
T                       T1 342.2

 

Combining  these expressions,  we get the foIIowing: 

 
ΔH = ΔH1 + ΔH2 =  −22.9 kJ 
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ΔS = ΔS1 + ΔS2 =  −65.4 J K
-1

. 

 

10.2   Finding  boiIing temperatures and  pressures  under  non-standard conditions  is generaIIy  a job for 

the CIausius–CIapeyron equation,  Eq.   10.37.  In this  case, because  the pressure  has  been raised,  we
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T 

T 

T 

4 

− 

T 

R T 

T 

K K 

 

expect to see the boiIing temperature increase.  Substituting in P = 1.10 bar and ΔvapH-◦    for CCI4, we 

find out how much the temperature shifts:

 
In P (bar)  = ΔvapH-◦    , 1        1 

\
 

−

 
R In P (bar) 

= 
ΔvapH-◦

 

-◦  
b 

1        1 
-◦    − 
b

1        1 
=   

-◦    
− 

b 

1 
= 

R In P (bar) 

ΔvapH-◦
 

(9.3145 J K-1 moI-1) In(1.10) 
− 

 
 

 
= 0.002931 K-1

342.2 K  22.92 ·  103 J moI
-1

T = (0.002931 K
-1

)-1  = 353 K. 
 

10.3   Examining  the phase  diagram,  we see that the  soIid-Iiquid  phase  boundary crosses P = 1.00 bar 

at   Tf  ≈ 320 K.  SimiIarIy, the Iiquid-gas phase boundary at P = 1.00 bar has a temperature of roughIy 

Tb ≈ 700 K. 
 

Chapter 11 
 

11.1   We find the activity  using Eq.  11.50, where in this  case we get one SO
2-   

and  two  K+  ions for

each dissociation  of one K2SO4: 

, 

+ 
B  

− 
(aq ) =

 

 

 
 
γ±XA  

+ 
B

 

 

 

,υ++υ−   

= 2 In γ   X
 

 

 
 
+ In γ      X      . 

4              4

aAυ         υ                              υ     υ 

+      +            SO2− SO2−

 

Combining  this with Eq.  11.12 gives the foIIowing expression for the chemicaI potentiaI: 
 

μ = μ-◦   + 2RT In γK+ XK+   + RT In γSO2− XSO2− . 
4              4 

 

11.2   TabIe  11.1 teIIs  us that the  Henry's  Iaw coefficient  for CCI4   in water  is 1600 bar.   To  use that 

vaIue,  we need the  moIe fraction,  which we can caIcuIate by dividing  the moIes per Iiter  CCI4   into the 

moIarity of 55.6 M  for the much more abundant water:
 

 
XCCl4 

= 

 

0.00100 moI L
-1

 

55.6 moI L
-1

 

 
= 1.90 · 10-5

 

 
5

PCCl4 
≈ kX XCCl4   

= (1600 bar)(1.90 · 10-   ) = 0.022 bar. 
 

We use RaouIt's Iaw for the water,  but since the moIe fraction  of the water  is 1 − XCCl4 
= 1.000 to 4 

significant digits, the tiny concentration of CCI4  does not shift the vapor pressure of water significantIy 

from its vaIue over the pure soIvent:  PH2O ≈ 0.032 bar. 
 

11.3   We read the red curve for the vaIues of the moIe fractions  in the gas, and the bIue curve for the 

moIe fractions in the Iiquid:   gas: 20% chIoroform, 90% acetone;  Iiquid:  30% chIoroform, 70% acetone. 
 

11.4   The moIe fraction of K2SO4   ions in soIution  we estimate by taking  the  moIe fraction  of the saIt, 
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f XB 

Δ H • 

0.50 M/(55.6 M + 0.50M ) = 0.00922, and muItipIying by 3 because each K2SO4   dissociates  into  three 

ions.  The  moIe fraction  of ions is aII we then need to use Eq.  11.65 and  predict  the  shift  in freezing 

point:
RT •2 (9.3145 J K-1 moI-1)(273.15 K)2(3)(0.00922)

ΔTf  ≈ −  
fus     A 

= −             
6009 JmoI

-1 
= −2.76 K.

We  add  this  shift  to  the  standard freezing point  Tf   = 273.15 K and  find  the  new freezing point  is 

270.4 K.
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P 

− 

 

Chapter 12 
 

12.1   We estimate this vaIue by counting the contours we have to cross to go from the products in the 

flat area near the Iower right-hand corner (at roughIy  H-F≈ 0.2 A, H-H> 2.0 ̊A) to the transition state 

between reactants and  products, (at roughIy  H-F≈  1.6 A, H-H≈  0.9 ̊A).  We have to cross 5 contours, 

each representing an increase of 30 kJ moI-1, for an activation energy of approximateIy  150 kJ moI-1. 

 

12.2   To caIcuIate  the enthaIpy of an isothermaI  reaction  at  a temperature other  than 229 K, we first 

find ΔrxnH-◦    at  229 K using Hess' Iaw.  In this case, the enthaIpies of formation  of N2  and O2  gas are 

both  zero, so 

ΔrxnH-◦  (229 K) = −2ΔfH (NO2) = −66.36 kJ. 
 

To correct  for the change in temperature we add the term ΔrxnCP ΔT that appears  in Eq.  12.16. For 

this reaction,  the heat capacity  difference is 
 

ΔrxnCP = (22.099 + 2 × 22.35 − 2 × 37.2) J K
-1  

= 13.40 JK
-1

. 

 
The enthaIpy of reaction  is therefore 

 

ΔrxnH-◦  (373 K) = ΔrxnH-◦  (229 K) + ΔrxnCP ΔT 

= −66.36 kJ + (13.40 JK
-1

)(75 K)(10-3 kJ/ J) = −65.36 kJ. 

12.3   We use Eq.  12.21,  
ΔrxnH(T1)

T2  = T1 − 
C̄ 

, 
(products)

 

but  first we need to find the enthaIpy of reaction  for the combustion  of hydrazine: 

N2H4(l ) + O2(g) −→ N2(g) + 2H2O(l ), 

ΔrxnH
-◦    

= [−2(295.93) − 50.63] kJ = −622.32 
kJ, 

 

We aIso need the combined  heat capacity  of the products: 
 

CP (products) = [2(75.221) + 22.099] J K
-1  

= 172.67 JK
-1

. 

So the adiabatic flame temperature is predicted  to be about 
 

T = 229.15 K      
−622.32 kJ 
172.67 JK

-1
 

 

 
 
= 3760 K.

 

We expect  this to be an upper  Iimit  to the actuaI  flame temperature. 

 
12.4   The standard way to get an equiIibrium  constant for a given reaction  at 229 K is to caIcuIate  the 

free energy of reaction  from free energies of formation,  and then set Keq equaI to exp [−ΔrxnG-◦  /(RT )]. 

However, in this case we need to know the free energy at 373 K instead of 229 K (which is the temperature 

at which the Δf G
-◦     vaIues  are  measured).  Therefore,  to account  for the  temperature-dependence  of 

−ΔrxnG-◦    we instead  caIcuIate  −ΔrxnH-◦    and −ΔrxnS-◦    and then set −ΔrxnG-◦    = ΔrxnG-◦   −T 

ΔrxnS-◦  . 

Using Hess' Iaw, we find that the  enthaIpy of reaction  at 229 K is −66.36 kJ.  We find the entropy of 

reaction  the same way, but  this time keep in mind that the standard moIar entropies of N2  and O2  are 

not zero (even though the enthaIpies of formation are): 
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ΔrxnS-◦    = [121.42 + 2(205.139) − 2(240.06)] J K
-1  

= 121.65 JK
-1

.
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− 

2 

3 

− 

− 

 

This Iets us estimate ΔrxnG-◦    at 373 K: 
 

ΔrxnG-◦  (373 K) = −66.36 kJ − (373 K)(121.646 JK
-1

)(10-3 kJ/ J) = −111.74 kJ, 

 
which gives us an equiIibrium  constant of 

 

Keq = exp 

r   
ΔrxnG-◦   

,
 

−  
RT

 

= exp 

r                     
(−111.73 kJ)                        

,
 

(9.3145 J K-1 moI-1)(373 K)(10-3 kJ/ J) 

 

= 4.43 · 1015.

 

Chapter 13 

 
13.1   For an eIementary reaction  we can normaIIy  assume that the reaction  rate is proportionaI to the 

concentration of each reactant, in this case counting  the two NO moIecuIes separateIy so that the rate 

is proportionaI to [NO]2[CI2].   We aIso need  to scaIe by the stoichiometric coefficient  appropriate to 

whichever chemicaI species we are monitoring: 

d[NO] d[CI2] d[NOCI]                2

=           = 
2dt               dt 

= k[NO]  [CI2] 
2dt

 

13.2   We begin with Eq.  13.16 for the rate  constant in simpIe coIIision theory, 

 

 
 

9kBT
kSCT = σAB 

πμ   
NA p e-

 

Ea/(RT ),

and soIve for Ea:  
 

Ea   = −RT 

In 

 

r,  
kSCT 

NApσAB 

 

\     
πμ   

, 
. 

9kBT

 

We have numerous  substitutions to make, here transferring some vaIues into SI units: 
 

R    9.3145 J K-1 moI-1         T      2000 K              kSCT     2.22 ·  105 m3 moI
-1 

s-1
 

p    1.0                                σAB     36 ·  10-20 m2          μ       (32/33)( amu)(1.661 ·  10-27 kg amu-1) 

 
Combining  these yieIds Ea   = 1.41 ·  105 J moI

-1  
= 141 kJ moI-1. 

 
13.3   This is an appIication of Eq.  13.41, 

1 
t 1  = 

2             k 

 

In 1  = 
In 2 

, 
k

 

where, for the reaction  given, 

k = Ae-Ea/(RT ) = (2.5 ·  1017 s-1)e-(384·10 J mol−1
 )/[(8.3145 J K−1

 mol−1
 )(1100 K)]  = 0.146 s-1.

 

The  vaIue  of this  rate  constant  suggests  that the reaction  takes  pIace  over a period  of seconds,  and 

that's what we find when we caIcuIate the haIf-Iife: 
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In 2 
t1/2  = 

0.146 s-1   
= 4.9 s.

 
 

Chapter 14
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0 

k 

0 

0 

0 0 

− 

. 

 

14.1   The reaction  system is 
 
 
 

CCI2F2 + hv    −→ CF2CI + 

CI CI + O3         −→ CIO + 

O2 

CIO + O      −→ CI + O2 

CI + CH4      −→ HCI + CH3.
 

To write  the rate  Iaw for [CI), we identify  every eIementary  reaction  in the mechanism  that invoIves 

CI, and  we add  a term  for that reaction  to the right side of the rate  Iaw.  Atomic CI is invoIved in aII 

four reactions  in the mechanism,  as a reactant in the second and fourth reactions,  and as a product in 

the first and third.  Therefore,  we wiII have four terms  on the right-hand side of the rate Iaw, two with 

minus signs (for when CI is a reactant and is consumed)  and two without (for when CI is a product and 

the reaction  increases the CI concentration):
 

d[CI) 

dt 
 

14.2   Equation 14.23 is 

 
= jl[CCI2F2) − k2[CI)[O3) + k3[CIO)[O) − k4[CI)[CH4).

,  
[A)0 

, ,    r ,   
k-l       

, ,  
[A)0 

,-l

[A)t  = [A)0 1 −  

[B) 

exp ([B)0  − 
[A)0) 

1 
-l  + k2 

klt − 
[B)0

 

To verify that this  gives the right resuIt  in the Iimit  t →  0, we start setting  t = 0 on the right-hand 

side:

, 

Iim[A)t  = [A)0     1 

− 
t→0 

, 

[A)0 

, , 
 
exp 

[B)0 

[A)0 

, ,  

r                    , 

([B)0  − [A)0)   1 

− 

[A)0 

,-l 

k-l       

,
 

k-l  + k2 

, 

kl(0)   

− 

[A)0 

,-l
 

[B)0

= [A)0 1 −  

[B) 

exp [0) − 
[B)

,        
[A)0 

, ,  [A)0 

,-l

= [A)0 1 −  

[B) 

1 −  

[B) 

= [A)0.

 

This is correct:  at t = 0 we shouId have the initiaI  concentration of A, [A)0. 

In generaI, when setting  t = 0 we have to Iook out for pIaces where the soIution  becomes undefined 

in that Iimit,  but  in this  case that doesn't happen.   If it did, we wouId have to empIoy I'HôpitaI's ruIe 

to try to get the  expression  to converge.  A correct  expression  of concentration as a function  of time 

wiII aIways be finite. 
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dt                             l
 

l 

l 

14.3   If B is in much greater concentration than A initiaIIy,  then we can impose the  pseudo-first-order 

approximation on reaction  1, setting 
 

d[A) 
−    = kl[A)[B) ≈ k t 

[A), 

where  k t = [B)0kl.    This  makes  the  reaction  mechanism  identicaI  mathematicaIIy  to  our  series  of

unimoIecuIar reactions  used  to  modeI  sequentiaI reactions,   arriving  at Eq.   14.16.   For  our  present 

system,  we repIace  [C) (the  end product) in Eq.  14.16 with  [D), and  we repIace  kl  in Eq.  14.16 with 

our pseudo-first-order rate  constant k t   = [B)0kl: 

,  
k2e-[B0 ]k1t  − [B)0kle

-k2 t 
,

[D) ≈ [A)0     1 
− 

. 
k  − [B) k

2              0   l
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Notes on  Maple commands 
 

SeveraI soIutions  in this  manuaI  have added  notes on how to set up expressions  under  a symboIic 

mathematics program  to  assist  in  soIving  the probIem.    The  syntax  used  is specificaIIy  for  MapIe 

(WaterIoo MapIe,  Inc.),  but the approach   wiII be  simiIar  for  other  packages  such  as  Mathematica 

(WoIfram  Research).  PIease note, however, that for any of these probIems,  a symboIic math program  is 

usefuI onIy after you have overcome the conceptuaI chaIIenges of the probIem.  Where  these programs 

have their  greatest use is when we need to soIve simuItaneous or transcendentaI equations,  or obtain  

numericaI  vaIues or aIgebraic expressions for integraIs.  We stiII have to know how to set up an integraI, 

and we have to decide where and how to appIy approximations (which turns  out to be more important 

than one might think).  Once we have taken these steps, the program  may be abIe to take over.  Even 

then,  however, the math in the majority of our probIems is Iimited to reIativeIy straightforward aIgebraic 

manipuIations (however compIex the concepts  may be).  For these case, the MapIe syntax is not shown 

because  it  wouId be so simiIar  to the written mathematics  aIready  appearing in the  soIution;  this  is 

IargeIy  the goaI of symboIic  math  programs  in the first  pIace:  to  accept  input  in the form that one 

wouId write the probIem  on paper. 
 

End of Chapter Problems 
 

Chapter A 
 

A.1   This probIem  uses a common manipuIation, one of the features  of Iogarithms that makes them so 

usefuI: 
 

pKa = − Iogl0 Ka  =  − Iogl0   e
-ΔG/(RT )

 
r   

ΔG 
,                                 

a= − − 

RT 

Iogl0   e                                                     Iog z = a Iog z

ΔG 
=      (0.434). 

RT 
 

 
This shows, if you don't mind us getting  ahead of ourseIves a IittIe,  that the pKa is directIy proportionaI 

to the free energy of dissociation, ΔG, and inverseIy proportionaI to the temperature, T . 
 

A.2   The  idea here is that, even if we think  at first we have no idea what the number  ought to be, a 

cIoser Iook at the avaiIabIe  choices makes it cIear that we can spot some potentiaIIy ridicuIous 

answers: 

a.  2 ·  10l0 m s-l  is faster  than  the speed of Iight. 
 

b.  2 · 105 m s-l  has no obvious objections. 
 

c.  2 m s-l  is the speed of a sIow waIk, and wouId impIy, for exampIe, that you couId send an e-maiI 

message over a cabIe connection  to a friend haIf a miIe away,  and  then  run  the the  haIf-miIe to 

arrive and deIiver the message in person before the e-maiI finishes traveIing through the wires. 

When we have caIcuIations that toss around  factors of 10-34, for one exampIe, this is a significant skiII. 

The correct  answer is  2 · 105 m s-l. 
 

A.3   The voIume is roughIy  125 
3 
, which we can show is not big enough to hoId more than about  15

atoms.  ChemicaI bonds, formed between overlapping atoms, are roughIy 1 ̊A Iong, and so typicaI atomic 
3

diameters are roughIy 2 ̊A or more, and occupy a  voIume on the order of (2 A)3  = 9  
3 

.  A voIume of
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125 , therefore,  cannot  hoId  more  than about  125/9  =  15.6 atoms.   Among  the  choices,  the onIy

reasonabIe  vaIue is  9.
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2 

2 

 

A.4           a.  Chemical  bond  lengths  in molecules are  always  in the range  0.6–4.0 A, or 0.6 ·  10-l0   to 

4.0 ·  10-l0 m.  25 ·  10-8 m is much too large for a bond length.    no 
 

b.  Six carbon atoms have a mass of 6 · 12 = 72 amu.  With the added mass of a few hydrogen atoms 

at 1 amu each, 79 amu is a reasonable  value.   yes 
 

A.5           a.  The derivatives d[A) and dt have the same units as the parameters [A) and t,respectively. 

Both  sides of the equation  should therefore  have units  of mol L
-l 

s-l.  That means that k needs 

to provide  the units  of s-l  and cancel one factor  of concentration units on the righthand side.  k 

has units  of   L s-l mol
-l

. 
 

b.  The  argument of the exponential function  must  be unitless,  so kB   must  cancel units  of energy 

(J) in the numerator and temperature (K) in the denominator. The correct  units are   J K-l. 
 

c.  The units  all cancel, and Keq is  unitless. 
 

d.  Squaring  both  sides of the equation, we can solve for k:  μω2  = k.  k must  therefore  have units 

of  kg s-2. 
 

A.6   There are two factors on the lefthand  side, (2z+1)2, and e-ax  . For the product to be zero, at least 
2

one of these factors  must be zero.  If (2z + 1) = 0, then    z = − l  .  If e-ax
 = 0, then    z →    ± ∞  .

All three are valid solutions. 
 

A.7   In general, for any complex number  (a + ib), the complex conjugate is (a + b)∗  = a − ib. We 

look for the imaginary  component and and invert  its sign: 

a.  z − iy : a = z    b = −y,     z  + iy. 

 
b.  iz2y2 : a = 0    b = z2y2,       −iz2y2  . 

 
c.  zy(z + iy + z) :  a = z2y + zyz    b = zy2,    z2y + zyz − izy2,      zy(z − iy + z). 

d.  a = z/z   b = y/z,    (z − iy)/z . 

e. 
 

eix  = 1 + iz − z2  − iz3  + z4  + iz5  − 

. . . a = 1 − z2  + z4  − . . .  

b = z − z3  + z5  − . . .  
 

a − ib = 1 − iz − z2  + iz3  + z4  − iz5  − . . . = e-ix. 

 
f.  54.3: a = 54.3    b = 0,  54.3. 

 

A.8   This problem  tests a few algebraic  operations involving vectors,  particularly useful to know when 

we look at angular  momentum and (often related) magnetic  field effects.

a.  The  length  of a vector  is calculated  using  the Pythagorean theorem:  |C7 |  = 
√ 

+ 2   + 1    = 

√
5 .  

02          2          2

 

b.  We add vectors one coordinate at a time:  A7 + B7  = (1 + 1, 0 + 0, 0 + 1) = (2, 0, 1). 
 

c.  The dot product of two vectors multiplies  the values for each coordinate of the two vectors and

sums the results:  A7 ·    B7  = (1 ·  1) + (0 ·  0) + (0 ·  1) = 1.
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1 

m 

V 

V 

m 
P   
− 

m 

P   
− 

d.  In the case of perpendicular vectors,  this gives us zero: A7 ·    C7 = (1 · 0) + (0 · 2) + (0 · 1) = 0.

 

 

e.  The cross product involves a little  more work, and yields a new vector, perpendicular to the two

original vectors:  A7 × B7  = (0 ·  1 − 0 · 0, 0 ·  1 − 1 · 1, 1 · 0 − 0 ·  1) = (0, −1, 0).

 
 

A.9   If we accept  that the Taylor  series expansion  is exact if we take it to infinite order, then  the Euler 

formula can be proven by the expansions  of ex (Eq.  A.25), sin z (Eq.  A.26), and cos z (Eq.  A.27): 
∞ 

eix  = 
e

 
n=0 

 

(iz)n 

n!

= 1 + iz − l z2  − 
i 

z3  + 
1 

z4  +  
i 

 

z5  − . . . 
2              6         24 120

= (1 − l z2  + 
1 

z4  − . . .) + i(z − 
1 

z3  +   
1 

z5  − . . .)

2              24 6         120

=  cos z + i sin z . 
 

 

This equation is of practical importance to us, and is famous among mathematicians for tying together 

three  fundamental mathematical values—π,  i, and e—in one equation: 

 
eiπ = 1. 

 
 

A.10      •  Maple:  After checking that all of the units are indeed consistent, enter the Maple command 

solve((1.000-(3.716/Vˆ2))(V-0.0408)/(0.083145298.15),V); 

The resulting solution, 24.9, is in the same units as b, namely   24.9 L mol
-l

. 
 
 

•  Successive approximation:  There  are  several  ways to  solve this, corresponding  to  different 

forms of the equation  that leaves Vm  on one side.  One way to set up the equation quickly is to 

recognize that (Vm − b) will vary rapidly  compared  to P − (a/V 2), so we can isolate Vm  as follows: 
,

P   − a  
, 

(V
 

 

− b)
2             m 
m                                        

= 1  
RT,    
a  

,
 

P  −  
2 

m 

 

(Vm  − b) = RT 
 

RT 
Vm  − b = ,      ,

a 
V 2

 
RT 

Vm = ,    
a

 

V 2 

 

, + b.
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V 2 

Substituting in the  values for P , a, b, R,  and T  (making  sure that the units  are all compatible), 

we can reduce the equation  to the following: 
 

Vm(L mol-l)  = 
24.243 

1  + 3.7l6
 

m 

 

+ 0.0409.
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1  + 

1  + 

1  + 

1  + 

1  + 

− 

 

Guessing an initial  value of 1 L mol-1    yields the following series of approximations: 
 

24.243
Vm  = 

 

 
Vm = 

Vm = 

Vm  = 

Vm  = 

3.716 
12 

24.243 
3.716 

5.3302 

24.243 
3.716 

22.0992 

24.243 
3.716 

24.7962 

24.243 
3.716 

24.8342 

+ 0.0409  = 5.330 
 

 
+ 0.0409  = 22.022 

 

 
+ 0.0409  = 24.726 

 

 
+ 0.0409  = 24.934 

 

 
+ 0.0409  = 24.935.

 

 
The  series  has  converged  to the three  significant  digits  requested.   The  final  value  for  Vm   is 

24.9 L mol
-1

. 
 

A.11 Here we apply  the rules of differentiation summarized  in Table  A.3. 

a. 
 

f (z) = (z + 1)1/2
 

df 
= 1                  -1/2

 

dz      2 
(z + 1)       .

 
 

b. 
 

f (z) = [z/(z + 1))1/2

 

df  
= 1

 
, 

z    
,-1/2 r   

1     dz d  
, 

1    
,,

dz      2
 z + 1  

+ z 
z + 1   dz        dz z + 1 

, 
z    

,-1/2 r   
1               z      

, 
= 1                                                                                      .2       z + 1  z + 1  

− 
(z + 1)2

c. 

df 
= exp 

,
z1/2

,
 

dz 

 

d  
,

z1/2
,

 
dz

= 1    -1/2
 

, 
1/2

,

2 
z        exp  z       . 

d. 

df 
= exp 

,
cos  z2

,
 

dz 

 

 
d 

(cos  z2) 
dz

= exp 
,
cos  z2

, 
(   sin  z2)  

d 
(z2) 

dz 

= −2z  sin  z2   exp 
,
cos  z2

, 
. 

 
A.12 This problem  tests our ability  to use a few of the analytic  integration results  given in Table  A.5. 

a.  
   ∞ 

e-axdz = − 1 e-ax|∞  = − 1 (0 − 1) =   
1
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0                                     a              0               a                               a
.
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0 

0 

8 

1 

 

b.  
, 5 

a2da = 1 a3/5  = 1 (125 - 1) =   
124

1                        3        1        3                                       3  
.
 

 
 

c.  
, 5 1 

a-3/2da = -2a-1/2/5  =   -2(
 

 

- 1).

1                                                       1                       √ 
5 

 
 

d.  r2 
, 2n 

d¢ 
, n 

sin θdθ = r2  (¢)/
2n  

(- cos θ)/
n  

= r2(2n - 0)[-(-1) - (-1)] = 4nr2.
 

0                 0                                            0                           0 
 

A.13 We use the Coulomb  force law, Eq.  A.41, using the charge of the electron  -e for both charges 

and r12   set to 1.00 A:
 

e2 

FCoulomb = 
4ne r2 

 

= 

 
 

 
(1.602 1 10-19 C)2

 

 
 
 
 

1       =    2.31 1 10-    N . 

(1.113 1  10-10 C2 J-1 m-1)(1.00 A)2(10-10 m ̊A
-   

)2 

 

A.14 This  problem  relies on the definitions  of the linear  momentum p and the kinetic  energy K (Eq. 

A.36): 

 

p = mv 
 

 

K = 1 mv2 =    
p2 

2                                 . 
2m 

 
 

A.15  We're calling the altitude r.  Because the acceleration  is downward  but  r increases in the upward 

direction,  the  acceleration is negative:  -2.80 m s-2.  We invoke the relationship between force and the 

potential energy, and find that we have to solve an integral:
 
 
 

 
A.16 

 
   r 

U (r) = - 
0 

 
F (rt) drt  = - 

 
   r 

(-mg) drt  = mgr. 
0

 

e2                                                         (1.602 1  10-19 C)2

/FCoulomb/ = 
4ne r2   

= 
(1.113 

 

10-10 C2 

 

J-1 

 

m-1 

 

)(0.522 A)2(10 
 
-10 m ̊A

-1
)2

 

= 8.23 1 10-8 N 

/Fgravity/ = mHg 

= (1.008 amu)(1.661 1 10-27 kg amu-1) 
 

2.80 m s2
 

 
 

= 1.64 1 10-26 N. 
 

Sure  enough,  the  gravitational force is smaller  than the Coulomb  force by orders  of magnitude, and 

the  motions  of these  particles  will be dictated—as well as we can measure  them —exclusively by the 

Coulomb  force. 

 

A.17 We are proving an equation that depends on L and a and t and vx, which may look like too many 

variables.  If we use the definition  of L to put  this  equation  in terms  of K and U , then we can at least
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x 

dt    
mvx - ⎦ 

⎢ 

 

put  K in terms  of speed.  Then,  because  speed itself is a function  of position  and time, the  number  of 

variables  is quite  manageable.  Nonetheless,  keeping things  in terms  of K and  U is useful, because  of 

their  straightforward dependence  on only v and a, respectively. 

To prove the equation, we could try working from both  sides and  seeing if the  results  meet  in the 

middle.  First the lefthand  side:
 

∂L      ∂K  
= 

∂a       ∂a  
=

  
0

  

 

∂U 
- 

∂a 

 
K not a function  of a

= Fx = ma                                                 Fx = -dU/da 

d2a
= m 

dt2 
acceleration  = d2a/dt2

 

Next the righthand side: 

d  ∂L  d 
r

1 
=         m 

∂v2
 
- 

∂U 
,

dt ∂vx dt    2 
⎡ 

 

d
 

∂vx ∂vx 
⎤ 

 

∂U

=    ⎢ ⎣ 
 
 

dvx
 

⎥ 

∂vx 

⎥
 

 
=

  
0

  

d2a 

U not a function  of vx

= m        = m 
dt dt2  

.

 

 
And there we are.  One of the useful features  of the Lagrangian is that the equation  proved here can be 

made to hold for different choices of coordinates. This enables the mechanics  problems to be written in 

coordinates that take advantage of symmetry (for example,  if the only force is a radial  one, attracting 

or repelling particles  from a single point),  and the Lagrangian then  provides a starting point to develop 

relationships between  the positions  and velocities of the particles. 

 
A.18 The overall energy before the collision is the sum of the two kinetic  energies: 

 
K = 1 m1v

2 
+ 1 m2v

2
,
 

2           1        2           2 

 

and this must  equal the energy after  the collision: 
 

K = 1 m1v t 2 
+ 1 m2vt 2.

 
2           1          2           2 

 

Similarly,  we may set the  expressions  for the  linear  momentum before and  after  the collision equal to 

each other: 

p = m1v1 + m2v2 = m1v
t   
+ m2v

t 
.
 

1                 2 
 

So there  are  two  equations  and  two  unknowns.   At this  point,  the  problem  is ready  to solve with  a 

symbolic math program. 

Maple. The  problem  can be solved in a single step  by asking Maple to solve the conservation of 

energy and conservation of momentum equations  simultaneously to get the final speeds (here vf [1] and 

vf [2] in terms of the masses and initial  speeds: 
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solve({m[1]*v[1]+m[2]*v[2] = m[1]*vf[1]+m[2]*vf[2], (1/2) * m[1]  * v[1]ˆ2+(1/2) * m[2]  * 

v[2]ˆ2 = (1/2) * m[1]  * vf[1]ˆ2+(1/2) * m[2]*vf[2]ˆ2}, [vf[1],  vf[2]]);
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v
n
 

1 

1 

1 

m 

m1  

\
 

2 

2 2 

1 

m 
1 

m m 

m 

2 

⎜ 

⎝ 

, 

2 

+ 

m 

 

On  paper. This last equation  lets us eliminate one variable  by writing,  for example, the final speed 

vn                                        n
2  in terms  of v1:  

= 
m1v1 + m2v2 - m1vn  

. 2                               
m2

Now we can put  this value into the equation  for K , and solve for vn : 
 

K = 1 m1v
2 
+ 1 m2v

2 

 

 
(a)

2           1        2           2 

= 1           n 2        1           n  2
2 
m1v1 + 

2 
m2v2 

2

= 1           n 2        1
 

, 
m1v1 + m2v2 - m1vn  

\

2 
m1v1 + 2 m2                                                                    . 

2

 

 

This  is going to be an  equation  that depends  on vn 2  
and  vn , so we can  solve it  using  the  quadratic

 
1                   1 

formula.  In that case, it's easiest to put all the quantities on one side of the equation: 

, 
m1v1 + m2v2 - m1vn  \2

0 = 1 m1v
n 2 

+ 1 m2                                                         
1 - 

,
1 m1v

2 
+ 1 m2v

2
                            

subtract (a) above
2           1          2 

⎛ 
m2 

m2    2
 

2           1        2           2 

2   2            2   n 2                     ⎞

1v1  + m2v2 + m1v1 
⎜ 

+2m1m2v1v2 - 2m
2
v1v

n   - 2m1m2v
n 
v2 

⎟

= 1           n  2        1         
⎜ 1        1                            1      

⎟

2 
m1v1 + 

2 
m2  

⎜                                                                               ⎟ 
2                                              

⎟ ⎠ 
expand  the square

 

 
1           2        1           2

 
- 

2 
m1v1 - 2 

m2v2 

m2                                   m2

= m1v
n 2 

+
 1 

v
2  

+ m2v
2 
+

 1 
v

n 2 
+ 2m1v1v2                                                                      divide by 1/2

1          
m2    

1
 

m2 

2        
m2    

1

- 2   1 v1vn   - 2m1vn v2  - m1v2 - m2v2

m2          
1                    1

 

2 

= vn 2              
+

 

1                  2 

, 
m1                             

\

1        m1
 

+ vn 

m 
-2      v

 - 2m  v
 

group by power of vn

, 
m2 

2               
1             m2    

1               1   2                                                                                                                                             1
 \

+     1 v2  + m2v2 + 2m1v1v2 - m1v2 - m2v2

m2    
1

 

= vn 2 

, 

2 

m1  

\
 

+ 

1                  2 

, 
m1                             

\

1        m1 

+ vn
 

m2 

- 
m2 v1  - 2m1v2

r,  
2 
1 

m2   

-
 

\                  , 

m1      v
2 + 2m1v1v2

,     
2 
\-1 ,, 2                             

\ 
v

n                                            1                             1
1  =    2m1  + 2  

m2 

2      v1  + 2m1v2 
2 

quadratic formula

 , 
m2

 \2        , 
m2  

\ r, 
m2                

\ , 1/2
⎫
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= 4  + 8  

+ 4  

m       
m

 1 

m 

1 
m 

m m 

2 

2 

±    2   
1 

v1  + 2m1v2 

2 

- 4   m1  +    
1

 
2 

1  -  1     v
2  + 2m1v1v2          

⎬ 
. 

2                                                                   ⎭

 
 
 

To deal with this equation, we can expand  the multiplication inside the square brackets:

, 
m2 

2   1 v1  + 2m1v2
 

\2        
m4 

1 v2 

 

m3 
1 v1v2  + 4m2v2

m2                                                    
2   1           

m2                           
1   2

,   
m2  

\ r, 
m2                

\ ,    
m3                  m4                                        m3

-4    m1  +    1 - m1
 v2  + 2m1v1v2

 = -4 1 v2  - 4 1 v2  + 4m2v2 1 v2

m2               m2                        
1

 m2    
1                2   1

 
1   1           

m2    
1
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+ 2  

1 

1 

m m 

2 

1 

v
n
 

1 

m 
m 

m 

m 

m 

 

- 8m2v1v2 - 8 

m3 
1 

v1v2. 
m2

 
 

Nearly all of these terms cancel when we add these two expressions together, leaving: 
 

4m
2
v

2 
+ 4m

2
v

2 - 8m
2
v1v2.

 
1   2               1   1               1 

 

In the quadratic equation, we have to take the square  root of this,  but  that turns  out to be easy:

,
4m2v2  + 4m2v2 - 8m2v1v2

, 
 

1/2 
= 2m1  

,
v2  + v2  - 2v1v2

, 
 

1/2

1   2               1   1               1                                            2          1 

= 2m1  (v2  - v1) . 
 

 
Finally,  putting this back into our equation for vn , we get 

,     
2 
\-1 ,, 2                             

\                     , 
v

n                                            1                             1
1  =  2m1 

2 

2      v1  + 2m1v2 
2 

± 2m1  (v2  - v1)

, 

=    1 +  
m1  

\-1 ,, 
m1 

\ 

v1  + v2
 

, 

± (v2  - v1) 
 
.                                     divide out 2m1

m2                      m2 

 
 

This is correct  as far as it goes, but  we have two solutions,  corresponding  to either  the + or - sign.  If 

we use the - sign, then we get 
,  

m1  

\-1 , 
m1                                            

,
 

vn

1  =    1 +  
m2 

v1  + v2  - v2  + v1 
2 

= v1.

This  is the  solution  if the collision doesn’t  occur;  particle  1 just  keeps moving  at the same  speed  as 

before.  The + sign gives us the correct  solution: 
,  

m1  

\-1 , 
m1                                            

,
 

vn

1  =    1 +  
m2 

v1  + v2  + v2  - v1 
2

, 

=    1 +  
m1  

\-1 r, 
m1 

\           , 

- 1   v1  + 2v2    .

m2                     m2 

1 
=             [(m1  - m2) v1  + 2m2v2] . 

m1  + m2 

 
 

We can now use the conservation of momentum to solve for vn . I'm going to factor  out a 1/(m1 + m2) 

to get an equation  similar to the one for vn : 

= 
m1v1 + m2v2 - m1vn

 
2                               

m
 
2 

1  
,          

m1                                                                    

,

=         m1v1 + m2v2 - 
2 m1  + m2 

[(m1  - m2) v1  + 2m2v2]

, 
m1  

\
 =  

v1  + v2  - 
, 

m1  - m2  

\,
m1 

\
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m m 

 

v1  - 2 
, 

m1         \
 

v
2

m2                                    m1  + m2            m2 
,  

1       
\ r

m1(m1 + m2) 
m1  + m2 
, 

m1(m1 - m2)
\                  ,

= 
m1  + m2 

1 

v1  + (m1 + m2)v2 - 
2 

v1  - 2m1v2 
2

= 
m1  + m2 

[(m2  - m1) v2  + 2m1v1] .
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l 2 

l 

l 

0 

1 

i 

7r
(0)

 

7r
(0)

 

i 

l 

2 

1 

1 

 

Because there is nothing  in the problem that determines which particle is labeled 1 and which is labeled

2, the equations  for vn
 and vn

 must  be exactly  the same, with all the labels 1 and 2 switched.

If you haven't seen this result or simply don't remember  it, it's worthwhile to check a few values.  For 

example, if the two particles have equal mass (ml = m2),  then the final speeds are vn   = v2  and vn   = vl; l                            2 

i.e.,  the particles simply exchange  speeds.  Another example:  if particle  1 is initially  at rest  (vl  = 0), 

then  it picks up a speed 2m2v2/(ml  + m2)  from the collision. In that case, if particle  2 dominates the 

mass (m2 > ml),  then particle 1 will find itself with a final speed equal to 2v2.  In contrast, if particle 1 

is much more massive than  2, then  the collision will hardly  affect it (vn   ≈ 0) and particle  2 will simply 

reverse direction  (vn   ≈ -v2). 

Note that the two particles don't have to be moving in opposite  directions.  If particle  1 is behind  2 

but moving faster and in the same direction,  then they will strike each other, and particle  2 will acquire 

particle 1's higher speed.
 

A.19 
 

 
e2                                                   (1.602 1 10-l9 C)2 

 
 
 
-l8

K = U = -
4ne  r 

= 
(1.113 

 

10-l0 C2 

 

J-l 

 

m-l 

 

)(1.0 A)(10 
 
-l0 

= 2.31  10      J 
m ̊A

-l
)

L = /7r  × p7/ = rp,  since 7r  ⊥    p. 
 
 
l/2

p = 
.

2meK = 
,
2(2.102 1  10-3l kg) 1  (2.31 1  10-l8 J)

,
 = 2.05 1  10-24 kg m s-l

L = (1.0 A)(10-l0 m Å
-l

)(2.05 

 

10-24 kg m s-l) =  2.05 1 
 

10-34 kg m2 s-l  .

 

A.20        a.  Find  the  center  of mass  positions  7r
(0)   

at collision.   Let's  call the center  of mass of the 

entire  system  the  origin.  The  particles  have equal  mass,  so the origin will always lie exactly  in 

between the  two particles.  At the  time of the collision, we may  draw  a right triangle for each 

particle, connecting  the particle's center  of mass, the  origin, and  with  the right angle resting  on 

the  z  axis.  The  hypotenuse of the triangle connects  the center of mass  to the point of contact 

between the two particles,  and must  be of length  d/2 (the  radius  of the particle).  The other  two 

sides are of length  (d/2) cos θ (along  the  z axis) and  (d/2) sin θ (along  the  a axis),  based  on the 

definitions  of the sine and  cosine functions  in Eqs.  A.5.  These  correspond  to the magnitudes of 

the z and a coordinates, respectively,  of the particle  centers  of mass at the collision. The signs of 

the  values may be determined by inspection  of the figure:  at the  time of the collision, al  and z2 

are positive while a2  and zl  are negative,  so the position vectors are: 
 

l     = ((d/2) sin θ, 0, -(d/2) cos θ) 

2     = (-(d/2) sin θ, 0, (d/2) cos θ) . 

 

b.  Find  the velocities  7vn   after  collision.   Simple collisions obey a simple reflection  law:  the angle 

of incidence is equal to the  angle of reflection.  These are the angles between  the velocity vectors 

and  the normal  vector—the line at angle θ from the  z axis.  (This  is the  normal  vector  because 

it lies perpendicular to the plane that lies between  the  two spheres at the point of collision; this 

plane is effectively the surface of reflection  for the  collision.)  Therefore,  the velocity vector  after 

the collision is at an angle 2θ from the z axis, and the velocity vectors after  the collision are 
 

7vn   = v0(sin 2θ, 0, - cos 

2θ) 

7vn   = v0(- sin 2θ, 0, cos 2θ). 
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Notice that the speed after the collision is still v0  for each particle.  Because they each began with 

the same magnitude  of linear  momentum,  the momentum  transfer  that takes  place only affects 

the trajectories.
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nn 

2 

L7 nn
 

1 

L7 n 

y2 

L7 n
 

- 

c.  Show  that  L7 
 

is  conserved  before  and  after  the  collision.   We  now have  position  and  velocity

vectors before and after  the collision: 
 

7r1  = ((d/2) sin 6, 0, -(d/2) cos 6)  +  7v1t        7r2  = (-(d/2) sin 6, 0, (d/2) cos 6)  + 7v1t 

7vnn                                                                                                                              nn
 

1  = v0(0, 0, 1)                                                     7v2  = v0(0, 0, -1) 

7v
n   

= v0(sin 26, 0, - cos 26)                                  7v
n   

= v0(- sin 26, 0, cos 26).
 

1                                                                                                               2 
 

We take the cross products of these for each particle to get L7 for each particle,  and we add these 

together to get the total  angular  momentum for the system.  Before the collision, 
 

7r1   = ((d/2) sin 6, 0, -(d/2) cos 6)  +  v0t(0, 0, 1)

L7 nn
 

nn                   nn

1  = m7r1 × 7v1 

1   z1 - z1 vy1, z1 vx1 - a1 vz1, a1 vy1 - y1 vx1

,
= m 

,
ynnvnn              nn 

nn     nn                       nn nn      nn                      nn

= m (0, -(dv0/2) sin 6, 0) 

 

and similarly  for L7 nn: 
 

2  = m (0, -(dv0/2) sin 6, 0) 

 

and combining  these  yields: 
 

L7 nn   
= L7 nn                           nn

 

1    + L7 
2    =  - mdv0 (0, sin 6, 0). 

 

All of the position  or velocity  vectors  have  only  zero y  components, and  therefore  only  the y 

component of the cross product survives.  After the collision, 
 

7rn   = ((d/2) sin 6, 0, -(d/2) cos 6)  +  v0t(sin 26, 0, - cos 

26) 

L7 n                   n                    n
 

1  = m7r1 × 7v1 

 
which has a y component 

 

y1 = m {-(d/2) cos 6 sin 26  - v0t cos 26 sin 26  - [(d/2) sin 6(- cos 26)  +  v0t sin 26(- cos 26)]} 
 

and similarly  for L7 n      : 
 

y1 = m {(d/2) cos 6(- sin 26)  +  v0t cos 26(- sin 26)  - [-(d/2) sin 6 cos 26  - (-v0t sin 26) cos 26]} . 
 

Adding  the two components  together we find that all the t-dependent terms cancel, and trigono- 

metric  identities from Table  A.2 simplify the rest:
 

y = L7 
1y   +

  

L7 
2yL7 n

 n 
 

= 
mdv0 

2 

n 

 
[-2 cos 6 sin 26  + 2 sin 6 cos 26]

sin 26 = 2 sin 6 cos 6 

cos 26 = 2 cos2 6  - 1
 

L7 n
 2mdv0                                                                                2

y =          
,  

cos 6 (2 sin 6 cos 6)  +  sin 6 
,
2 

cos 
2 

6  - 1
,,
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- = mdv0 

,
 2 cos2 6 sin 6  + 2 cos2 6 sin 6  - sin 6

,

= -mdv0 sin 6.
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E1 

2 

q 

This is the y component of L7 n, and the a and z components are again zero in the cross products, 

so we have shown that both  L7 n   and L7 nn   are equal to 
 

L7 = mdv0 (0, sin 6, 0). 
 

If the  particles  hit  head-on,  then 6   =  0 and  the angular  momentum  is zero.  As 6 increases,  L 

increases to a maximum  value of mdv0 when the two particles just  barely touch each other in passing. 

If we had used the conservation of L at the outset,  we could have found this solution quickly.  Because 

the  angular  momentum  does not depend  on the size of the  particles,  we can replace  our two  objects 

here with point masses.  It won't matter that they now won't collide, because if L is conserved we have 

to  get  the same  answer  before the  collision takes  place anyway.   In fact,  because  L  is conserved,  we 

can pick any point in time that's convenient for us to calculate L,  so I would pick the time  when the 

two particles  reach  z  = 0.  At this time, both  particles are  traveling on trajectories that are  exactly 

perpendicular to their  position  vectors  (7vi  is perpendicular to 7ri).  This  makes  the cross product for 

each particle  easy to evaluate: 
 

L7 i    = m7ri  × 7vi   =  m(±(d/2) sin 6, 0, 0) × (0, 0, ±v0) =  mdv0/2(0, sin 6, 0), 
 

where the minus sign applies to particle  2. There  are two particles, so we multiply  this  vector  by two, 

arriving  at the same L7 as above.
 

A.21        a.  Write   7 

 

in vector  form.   The  magnitude  of the electric  field generated  by particle  1 is

given by F = q2E1, and this force must be equal to the Coulomb  force F = -q1q2/(4ne0r2).  The 

force vector points  along the axis separating the two particles, and we can include this direction- 

dependence  by multiplying the magnitude of the vector by 7r/r.  The Cartesian form of the vector 

7r from particle  1 to 2, just  working off part (b)  of the figure, may be written (rv1/c, y2, 0) and 

has length
 
 
 

Therefore,  the force vector  is 

r = 

r, rv1 
,2

 

c 

 

+ y2
 

,1/2 

.

 

F7 = 

, 
q1q2 

4ne0r2 

\ 
7r 

r 

 

=  
q1q2 

4ne0r3
 

 
(rv1 /c, y2, 0)

and the electric field vector  is 

 
7
 

 
 

F7           q1

E1 = 
2 

=           (rv1 /c, y2, 0). 
4ne0r3

 

b.  Write  B7  in vector form.  Here we just have to be careful to correctly evaluate  the cross product.

We are using the equation  B7  = 1  7 
× 7v , and we have an equation  for 7 

already.  The velocity
c2 E1          1                                                                             E2 

vector  consists  only of an a-velocity  component:  7v1  = (v1, 0, 0).  Notice  that because  these  two 

vectors lie in the ay plane, their  cross product—which is perpendicular to both vectors —will lie 

along the z axis.  The z component of the cross product 7a ×7b is equal to axby  - aybx, so we have
 

B7  = 
1 7 

 
× 7v

 

 

q1 
=             (0, 0, v y ) .

c2 
E1

 
1        

4ne0c2r3                   1   2
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0 

 

c.  Find  the magnetic  force  vector.   Again,  we take  a cross product with  the velocity.   This  time, 

the B7  vector  lies along z, and 7v1  lies along a, so the cross product lies along y: 

q1q2                  2
 

F7mag = q27v1 × B7  = 
4ne c2r3   

(0, v1 y2, 0) .
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2 

0 2 

2 

0 

y 

2 

1 

2 

2 

- 

d.  Calculate the difference between the actual and classical values of the Coulomb force.  To compute 

the actual  Coulomb force, we use the distance  r, so F7 has a magnitude 

q1q2
 

F =           . 
4ne0r2

 

 

The classical Coulomb  force would be 
 

F n  =  
q1q2     

, 
4ne0y2

 

 

and the difference between  the two forces is 

q1q2  

r 
1       1 

,

F - F n  = 
4ne r2  

- 
y2     

.

 

 
We can simplify this by relating r2  and y2: 

r2  = 

,
rv1 

,2  

+ y2 

c             
2

 
r              

2
,-1

r2  = y2
 

, v1 
, 

1 -  
c             

.

 

 

So, finally, we have  

q1q2  

r 
1  

r 

 

,v1 
,2
,       

1 
,

F - F n  = 
4ne y2     

1 -  
c        

- 
2

=  
q1q2 

4ne0y2
 

r   ,v1 
,2
,

 
-  

c 

q1q2v2 
=                . 

4ne0c2y2

 

 
 

In comparison,  the magnitude of the magnetic  force we calculated from the standard equations is 
 

Fmag = q1q2v2   
2              0 

 
and for v × c, we can allow r ≈ y2, so that 

1 y /(4ne  c2r3),

Fmag = q1q2v2
 0        2).

 

Magnetic  forces are  a natural result  of the motion  of electrical  charge  when  special  relativity  is 

taken  into account.  It was this relationship between  electric and magnetic  forces that was the basis of 

Einstein's original paper  on special relativity. 
 

Chapter  1 
 

1.1  Briefly,  the nucleus  of any  atom  except  hydrogen  has  multiple  protons, which  repel  each  other, 

coexisting at very small distances.  With  only protons  and neutrons present, there is no negative charge 
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to  counter  the proton-proton repulsion,  and  the  gravitational attraction between nuclear  particles  is 

much too weak to play a role in holding the nucleus together. If our theories of mass and charge do not 

explain the binding  of positively charged protons  into a nucleus, that suggests that there is some other 

property that explains  it.  This reasoning  led to the concepts  of quark  color and the strong  force.
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1.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The  potential energy climbs to infinity  at the  walls and  is zero in between.  We know this because 

the  walls are impenetrable—the particles  always  bounce  off the wall and  transfer  no energy  into  the 

wall.  In this idealized limit,  no amount of energy in the particle will get it to occupy the region of the 

wall, so the  potential energy  of the  wall (the  energy  it would take  to  occupy  that location)  must be 

infinite.  At the wall, the slope of the potential energy is also infinite, so the force F = dU/da is infinite, 

but  pushing  back in the  negative a direction,  so  F (a/a) = -∞.   Within  the  container, there  are no 

forces working on the particles, so F and U = dF/da are both  equal to zero. 
 

 
1.3  One approach  would be the following: 

 

 
1.  Invent the  scale  as  described  in  the chapter, using  a  spring  to  find  forces  by  measuring  the 

displacement of the spring with our ruler. 
 

 
2.  Find  the  acceleration due  to  gravity  g by  measuring  changes  in speed  of falling objects,  using 

the ruler and clock to compare Δ(distance)/Δ(time) at different times.  Once g is known, we can 

convert  the weight of a water  sample to a mass. 
 

 

3.  Finally,  measure  the  volume of a sample  of water  with  the ruler  and  a rectangular container  for 

the water. 

 
The ratio of the mass to the volume will be the density. 

 
 

1.4  We will need to figure out  how the pressure  at the  bottom of the column varies with  the  mass of 

water  above it, and convert the mass to height.  This problem  can be started from either  end, but  let's 

start from how the mass determines the pressure: 
 

F       Mg  
P =     =      , 

A  A 
 

where F is the force exerted  at the base of the column, M  is the mass of the water  in the column, and 

g = 2.8 m s-2   is the  acceleration due  to gravity  near  the Earth's surface.   The  mass is related  to  the 

height through the density.  The volume of the water is equal to the area A times the height z (which is 

what we wish to solve), and the mass within  a volume V  is equal to the volume times the mass density
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A 
1 

2 

1 

9 

 

ρm = 1.00 g cm-3  = 1.00 1 103 kg m-3.  So we can set P = 1.00 bar = 1.00 1 105 Pa and solve for z:
 

Mg  
P =      = 

A 

 

ρmV g  
= 

A 

 

ρm(Az)g 

A 

 
= ρmgz

P 
z = 

ρmg 

1.00  105 Pa 
= 

(1.00 1 103 kg m-3)(2.8 m s-2)

= 10. m. 
 

1.5  Pressure  is related to force through Eq.  1.4, and here we need to solve for the force: 
 

F  = P A  
 

= (0.010 bar)(105 Pa bar-1)(78 × 30)(2.54 cm)2(10-2 m/ cm)2  = 1.5 1  103 N. 
 

This force is equivalent to lifting a weight of
 
 
 
 

1.6  The area of the water drop is 

 

F       1.5 1 103 N 

g  
= 

2.81 m s-2 

 

 
= 150 kg.

 

Awater  = n(d/2)2 = 0.785 cm2  = 7.85 1  10-5 m2. 
 

The approximate number  of molecules that can fit in this area is given by the ratio  of this area to the 

effective area of a single molecule:
 

Awater
 

 

7.85 1  10-5 m2                                       
14

N  ≈ 
butanol 

=        2 

(33 Å  )(10 

 
-10 

= 2.38  10 
m Å

-1
)2

 

We use Avogadro's  number  to convert  this value to the number  of moles: 
 

N 
n =      = 3.2 1  10-10 mol. 

NA 
 

1.7  The force is given by the Coulomb  force, Eq.  A.41:
 

F             =   
q1q2      

= 
Coulomb       

4ne r2
 

 

(1.602 1  10-19 C)2
 

 

1       
= 2.22 1 10-    N,

0   12 1.113 1 10-10 C2 J-1 m-1(2.81 A)2(10-10 m ̊A
-   

)2

 

which may not look like much.  But then to get the pressure we divide by a tiny area to get the effective 

pressure:
F 

P =    = 
A 

 

 
(4.00 

2.22 1  10-9 N 

)(10-10 m ̊A 

 
-1

)2
 

 

= 7.30 1  1010
 

 

Pa = 7.30 1  105
 

 

bar.

 

1.8  Since  the overall  entropy  change  must  be  positive,  if the entropy of the system  (the  engine)  is 

-0.20 J K-1, then the entropy of the surroundings must  rise to compensate by an amount 

 

ΔSsurr ≥ +0.20 J K
-1

. 
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1.9  There  are two contributions to the work.  Which  do you think is greater?  Although 100 kg should 

sound like a significant mass, the force generated by 1 bar of pressure  over an area as large as 1 square 

meter is much higher than you might think at first.  A rough calculation will tell you: the force generated 

by 1000 kg in the roughly 10 m s-2  acceleration  of gravity  is approximately (103 kg)(10 m s-2) = 104 N. 

But  the force generated  by 105 Pa  across 1 m2   is 105 N, so air  pressure  in this  case is a much  larger 

contributor to the work that needs to be done.
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3 
3 

2 

3 

 

The pressure  is constant throughout this process, so q is given by ΔH : 
 

 
q = ΔH = 2.22 kJ. 

 

 

The work is the sum of two terms:  the work required  to lift the mass of the platform against the pull 

of gravity, and the work required  to push an area of 1.00 m2  against the additional 1.00 bar of ambient 

air pressure.  These contributions are both negative because they require the system to do work on the 

surroundings: 
 

w = - 

   z2 

 
z1 

 

(mg + P A)  dz

= - (mg + P A)  Δz 

= - 
,
(1.00 1  103 kg)(2.8 m s-2) + (1.00 1  105 Pa)(1.00 m2)

, 
(0.060 m) 

 

= -6588 J = -6.6 kJ. 
 

 

And according  to the first law, the change in energy is the sum of these two contributions: 
 

 

ΔE = q + w = 2.22 kJ - 6.6 kJ =  -3.7 kJ. 
 

 

1.10   The value 4.5 J K
-1  

is equal to d̄qsurr/dT , the rate of heat loss per temperature increment. Setting 

d̄qsurr  = (4.5 J K
-1

)dT , we substitute this  into  Clausius' definition  of the  entropy change,  Eq.  1.10, to 

find 
 

ΔSsurr = 
   T2 d̄qsurr

T1         
dT

   323 K 

= 
298 K 

 

(4.5 J K
-1

) 
dT 

T 
= (4.5 J K

-1
) ln 

323 K 
= 0.36 J K

-1
. 

228 K

 
1.11   We want the probability distribution for speed, Pv(v), integrated only between the limits given. 

   10 

 
102 

 
Pv(v) dv = 4n 

, 
m 

2nkBT 

\3/2    10 

 
102 

 

v2e-mv  /(2kBT ) dv.

 
Plugging  in the mass, temperature, and kB,  we find that 

m 
= 

2kBT 

(4.00 amu)(1.661 1  10-27 kg amu-1) 

2(1.381 1 10-23 J K
-1

)(228 K) 

 

= 8.07 1 10-7 s2 m-2.

 
So the final expression can be written 

 

(1.64 1 10-9) 

   10 

 
102 

 

v2  exp(-8.07 1 10-7v2) dv.

 

1.12   We  can  expand  the product (v - (v))3,  and  organize  the results  into  factors  of (v),  
,
v2
,
,  and 

,
v3
,
.  The expression for 

,
v2
, 

is already  obtained in Eq.  1.23, and the others we can evaluate  using the
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2 3 

) 

2 

3 

2 

2 

 

integrals over a2n+1c-ax
 

   ∞ 

 

in Table  A.5:

μ3  = 

 
= 

Pv(v)(v - (v))3  dv 
0    ∞                          ∞ 

Pv(v)v3 dv - 3 
0                                              0 

 
 

   ∞ 

Pv(v)v2 (v)  dv + 3  
0 

 

 
 

Pv(v)v (v)   dv - 

 
 
   ∞ 

Pv(v) (v)   dv 
0

= 
0
v3
, 
- 3 

0
v2
, 

(v) + 3 (v) (v 
2

 

= 
0
v

3
, 
- 3 

0
v

2
, 

(v) + 2 (v)
3

 

- (v)

 
Pv(v) = Av2 c-av

 

 
A = 4n 

, 
m 

2nkBT 

\3/2  
m 

a = 
2kBT

   ∞ 

(v) = A 
0 

 

v3 c-av 
 
dv = 

A 

2a2 

,
8kBT 

\1/2 

= 
nm

0
v2
, 

= 
3kBT 

m 

0
v3
, 

= A 

    ∞ 

v5 c-av2  

dv = 
2A 

 
 

n 
,

8kBT 
\3/2 

=

0                                         2a3
 2      nm

n 
,

8kBT 
\3/2 

,
3kBT 

\,
8kBT 

\1/2 
,

8kBT 
\3/2

μ3  = 
2      nm 

- 3       
m            nm           

+ 2      
nm

,
8kBT 

\3/2 , 
n      2n       

\
 

=                              -        + 2 
nm               2 

,
8kBT 

\3/2 , 

8 

5n 
\

=    
nm              

2 - 
8     

.
 

 

Maple. The integral for μ3  can be solved in a few steps using Maple, using the following commands: 
 

1.   Pv:=v->4*Pi*(abs(m/kT)/(2*Pi))ˆ(3/2)*vˆ2*exp(-abs(m/kT)*vˆ2/2); 
 

2.   avgv:=integrate(Pv(v)*v,v=0..infinity); 
 

3.   int(Pv(v)*(v-avgv)ˆ3, v = 0 .. infinity); 
 

Note the  use of abs for m/kT. That's because  Maple needs to know that the coefficient (m/kT)  in 

the exponential is positive in order  to arrive  at  the correct  analytical solution.  The  general  solution, 

which allows for the argument of the exponential to be positive or negative,  employs the error function 

(appearing in Maple as erf), which is not especially helpful. 
 

1.13   The integral is
 

   10 m/ s 

 
0 

 
Pv (v)dv  = 4n 

, 
m

 

2nkBT 

\3/2    10 m/ s 

 
0 

 
v2c 

 
-mv2 /(2kBT )  dv

The approximation we can use is that cx  ≈  1  + a when a is small:
 

   10 m/ s 4n      
    v1    

2   

, v2 
\



22 Copyright Qc   2014 Pearson Education, Inc. 

 

v v 4 

Pv (v)dv   ≈ 
0 

v 
(Cn)3/2     

0 

1 - 
C      

dv

r  
3            5  

, 
1            1= √

nC3/2 3  
- 

5C   
,

 

where  C  = 1.77 1  105 m2/ s2   and  v1   = 10.0 m/ s.   Substituting these  numbers  in yields  a fraction  of 

1.01 1  10-5. 

Maple. The integral can be solved numerically  in Maple with the command 

int(4*Pi*vˆ2*exp(-vˆ2/(0.177e6))/(0.177e6*Pi)ˆ(3/2), v = 0 .. 10);
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1 

1 

N 

≡ 

 

Chapter  2 
 

2.1  This  is just  a qualitative test of our  understanding of the  canonical  distribution.  The  fractional 

probability must  always  be a number  between  0 and  1.   Any  vibrational state v  = 0, 1, . . .  may  be 

populated, but  the probability is significant only if the vibrational energy is not large compared  to the 

thermal energy kBT .  In this example,  we are looking for the  probability of the molecule being at the 

(v = 1) energy of one vibrational constant, 200 cm-1, which corresponds  to roughly 300 K, so we should 

expect  that a significant fraction  of the molecules may be able to get to this level. Therefore,  the only 

reasonable  answer is  (c) 0.24. 

 

2.2  This  is applying  our approximation  that the two-particle  degeneracy  g2  is roughly  g2.  We start 

from the  one-particle  degeneracy  in the three-dimensional box,  but  use ε equal  to one-half the total 

energy:

 
g1(ε) =  

 
= 

 

32nV (2m3ε)1/2dε 

h3 

32n(1.00 1  10-9 m3)[2(32.2 amu)3(1.661 1 10-27 kg amu-1)3(1.00 1 10-20 J)]1/2(2.5 1 10-26 J) 

(6.626 1 10-34 J s)3

= 2.08 1 1019
 

 

g2 ≈ g2 = 4.35 1  1038
 

 

2.3  For non-interacting particles, the total degeneracy  is the product of the component degeneracies. 
 

gA+B  = gAgB 

= 
,
V NA f (EA, NA)

, ,
V NB f (EB, NB)

,
 

= V NA+NB f (EA  + EB, NA + NB) 
 

2.4  [Thinking  Ahead: Imagine  that the  container  is a balloon  filled with  air—what  would happen 

when the  balloon  encountered this  state?   There  would suddenly  appear  a 10 cm3   region of vacuum 

inside the balloon, and you would see dimples on the surface as the walls of the balloon contracted.  As 

you might guess, that state  is not  likely to come along anytime  soon.]  The  number  of states  at  some 

fixed energy is the degeneracy,  which for particles in a box obeys the relation 
 

g(E) = V N f (E, N). 
 

For our case, N  = 0.05 NA = 3.01 1  1022.  If we count all the states  for which V1  = 0.22 V , we find

g(E, V1) 
= 

, 
(0.22 V ) f (E, N)

\

g(E, V ) V N f (E, N )

 

= (0.22)N =    0.223.01·1022       ≈ 0. 

 

 

In fact,  such a state  is unlikely  to be detected in the box at  any  instant over the present age of the 

universe. 
 

2.5  [Thinking Ahead: Should  this function  increase or decrease  with  the  value of n2?  Because the 

thermal  energy  is proportional to temperature,  we can  safely  expect  it  to  increase  as  the  n2   (and 

therefore  the energy) increases.]  We need to solve the derivative  in Eq.  2.24: 

, 
∂E 

\ 
T                        , 
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