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Chapter 1 
 

INTRODUCTION 
 

 

Conceptual Questions 
 

1.  Knowledge of physics is important for a full understanding of many scientific disciplines, such as chemistry, 
biology, and geology. Furthermore, much of our current technology can only be understood with knowledge of 

the underlying laws of physics. In the search for more efficient and environmentally safe sources of energy, for 
example, physics is essential. Also, many people study physics for the sense of fulfillment that comes with 
learning about the world we inhabit. 

 

2.  Without precise definitions of words for scientific use, unambiguous communication of findings and ideas would 

be impossible. 
 

3.  Even when simplified models do not exactly match real conditions, they can still provide insight into the features 

of a physical system. Often a problem would become too complicated if one attempted to match the real 

conditions exactly, and an approximation can yield a result that is close enough to the exact one to still be useful. 
 

4.  (a) 3 (b) 9 
 

5.  Scientific notation eliminates the need to write many zeros in very large or small numbers, and to count 

them. Also, the number of significant digits is indicated unambiguously when a quantity is written this way. 
 

6.  In scientific notation the decimal point is placed after the first (leftmost) numeral. The number of digits written 

equals the number of significant figures. 
 

7.  Not all of the significant digits are known definitely. The last (rightmost) digit, called the least significant digit, 

is an estimate and is less definitely known than the others. 
 

8.  It is important to list the correct number of significant figures so that we can indicate how precisely a quantity is 

known and so that we do not mislead the reader by writing digits that are not at all known to be correct. 
 

9.  The kilogram, meter, and second are three of the base units used in the SI, the international system of units. 
 

10.  The international system SI uses a well-defined set of internationally agreed upon standard units and makes 
measurements in terms of these units, their combinations, and their powers of ten. The U.S. customary system 
contains units that are primarily of historical origin and are not based upon powers of ten. As a result of this 

international acceptance and of the ease of manipulation that comes from dealing with powers of ten, 
scientists around the world prefer to use SI. 

 

11.  Fathoms, kilometers, miles, and inches are units with the dimension length. Grams and kilograms are units with 

the dimension mass. Years, months, and seconds are units with the dimension time. 
 

12.  The first step toward successfully solving almost any physics problem is to thoroughly read the question and 

obtain a precise understanding of the scenario. The second step is to visualize the problem, often making a 

quick sketch to outline the details of the situation and the known parameters. 
 

13.  Trends in a set of data are often the most interesting aspect of the outcome of an experiment. Such trends are 

more apparent when data is plotted graphically rather than listed in numerical tables.
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14.  The statement gives a number for the speed of sound in air, but fails to indicate the units used for the 

measurement. Without units, the reader cannot relate the speed to one given in familiar units such as km/s. 
 

15.  After solving a problem, it is a good idea to check that the solution is reasonable and makes intuitive sense. It 
may also be useful to explore other possible methods of solution as a check on the validity of the first. A good 
student thinks of a framework of ideas and skills that she is constructing for herself. The problem solution may 
extend or strengthen this framework. 

 

Multiple-Choice Questions 
 

1. (b) 2. (b) 3. (a) 4. (c) 5. (d) 6. (d) 7. (b) 8. (d) 9. (b) 10. (c) 
 

Problems 
 

1.  Strategy The new fence will be 100% + 37% = 137% of the height of the old fence. 

 
Solution Find the height of the new fence.       1.37  1.8 m =   2.5 m 

 

Discussion. Long ago you were told that 37% of 1.8 is 0.37 times 1.8.
 

 

2.  Strategy There are 1 

 
60  s 

min   

 

60  min 
1      h  

 

24   h 
1d 

 

 

= 86,400 seconds in one day and 24 hours in one day.

 

Solution Find the ratio of the number of seconds in a day to the number of hours in a day. 
86,400 = 24  3600 =

 

 

24             24 

3600 1 
 

 
2

3. Strategy Relate the surface area A to the radius r using A = 4r . 
 

Solution Find the ratio of the new radius to the old. 

A1 = 4r1
2 

and A2 = 4r2
2 

= 1.160A1 = 1.160(4r1
2 

). 

4 r2
2 

= 1.160(4 r1
2 

) 

r2
2 

= 1.160r 
2
 

r   2 
= 1.160

 
 r1 

 
 

r2 
=    .160 = 1.077 

r1
The radius of the balloon increases by 7.7%. 

Discussion. The factor of 4π plays no part in determining the answer. The answer just comes from the 

proportionality of area to the square of the radius. The circumference also increases by 7.7%. 

2 
4.  Strategy Relate the surface area A to the radius r using A = 4r . 

 

Solution Find the ratio of the new radius to the old.

A = 4 
2 and A    = 4 

2
 = 2.0A = 2.0(4 

2 
).

1            1              2            2             1                    1

4  
2 = 2.0(4 r  2 )      so        r 

2 = 2.0 
2

2                           1                                    2               1 
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 r  
2                                                               

r 
      2    = 2.0                     and                  2          =     2.0 = 1.4 

    r1                                         r1 

The radius of the balloon increases by a factor of 1.4.
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5.  Strategy 
 

Solution 
 

 mh  
3/4 

To find the factor by which the metabolic rate of a 70 kg human exceeds that of a 5.0 kg cat use a ratio. 
 

Find the factor. 

 70    
3/4       


 mc 


 

=                 

 5.0 

=   7.2

 

Discussion. Get used to using your calculator to follow the order of operations without your having to re-enter 

any numbers. On my calculator I type 70  5 = ^ 0.75 = . 

6.  Strategy To find the factor Samantha’s height increased, divide her new height by her old height. Subtract 1 

from this value and multiply by 100 % to find the percentage increase. 
 

Solution Find the factor. 

1.65 m 

1.50 m 
=    1.10 

Find the percentage. 

1.10  1 = 0.10, so the percent increase is 10 % . 
 

7.  Strategy Recall that area has dimensions of length squared. 
 

Solution Find the ratio of the area of the park as represented on the map to the area of the actual park.

  map length             1   
4       

  map area   
 

4  2         8

 

actual length 
= 

10,000 
= 10

 
, so = (10 

actual area 
)   =   10    .

 

8.  Strategy Let X be the original value of the index. Follow what happens to it. 
 

Solution Find the net percentage change in the index for the two days. 

final value = (originalvalue)  (first day change factor)  (second day change factor) 

= = X  (1+ 0.0500)  (1 0.0500) = 0.9975X 

The net percentage change is (0.9975  1)  100% = 0.25%, or down 0.25% . 
 

9.  Strategy Use a proportion. 
 

 

2         3 
2     3         T         R

T    R , so      J        =        J  = 5.19
3
. Thus, T             = 5.19

3/2
T =               11.8 yr  .

T2 R3 J E 
E E   

Discussion. People since the ancient Babylonians have watched Jupiter step majestically every year from one 

constellation into the next of twelve lying along the ecliptic. (You should too.) In Chapter 5 we will show that 

Kepler's third law is a logical consequence of Newton's law of gravitation and Newton's second law of motion. 

Science does not necessarily answer "why" questions, but that derivation and this problem give reasons behind the 

motion of Jupiter in the sky.

10.  Strategy The area of the circular garden is given by A =  
2
 

 

A2 = r2
2

, respectively. 

. Let the original and final areas be A1 = r1
2

 
 

and

Solution Calculate the percentage increase of the area of the garden plot. 

       2    2       2
 

 

 
        2

 1A                  r2
2  

 r1
2                       

r2
2  r1

2                        
1.25  r1

  r1 1.25

A    100% = 2      
 100% = 2    

 100% = 2           
 100% = 1        100% =  56%
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11.  Strategy The area of a rectangular poster is given by A = !w. Let the original and final areas be A1 = !1w1 and 

A2 = !2w2, respectively. 

 
Solution Calculate the percentage reduction of the area. 

A2 = !2w2 = (0.800!1)(0.800w1) = 0.640!1w1 = 0.640A1
A   A 

1 

A
 

A 
2  100% =   1 

 0.640A  
1  100% = 36.0%

1                                    
A

1 

Discussion. Proportional reasoning is so profound that it applies to a triangular, round, star-shaped, or dragon- 

shaped poster, as long as the final shape is geometrically similar to the original and length and width are 

interpreted as two perpendicular maximum distances across the poster. 
 

12.  Strategy The volume of the rectangular room is given by V = !wh. Let the original and final volumes be 

V1 = !1w1h1 and V2 = !2w2h2, respectively. 

 
Solution Find the factor by which the volume of the room increased.

V        ! w h 
    2            2    2   2 

= 

 

(1.50!1)(2.00w1)(1.20h1) 
= 

 
=   3.60

V         ! w h                      ! w h 
1          1    1 1                           1    1 1 

 

13.  Strategy Assuming that the cross section of the artery is a circle, we use the area of a circle, A =  
2

. 
 

Solution 

A1 = r1
2 

and A2 = r2
2 

=  (2.0r1)
2 

= 4.0r1
2

. 

Form a proportion. 
A

2 = 
4.0r 2 

= 4.0 

A
1     r1

2 

The cross-sectional area of the artery increases by a factor of 4.0. 
 

Discussion. To keep on feeling a lot (four times?) better, the patient needs to exercise and reduce risk factors. 
 

14.  (a) Strategy The diameter of the xylem vessel is one six-hundredth of the magnified image. 

 
Solution  Find the diameter of the vessel. 

d
 

d 
actual 

=
   magnified  

=
3.0 cm  

=  5.0 10
3

cm 
600          600

(b)  Strategy The area of the cross section is given by A = r
2 

=  (d
   2 = (1 4) d

2
.

 

Solution Find by what factor the cross-sectional area has been increased in the micrograph. 

A                   1  d              2               3.0 cm    2                      
       magnified   

A
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 

= 
 4                    magnified                     

= )              = 600
2 

= 
360,000   .

actual                  
1   d         2       5.0      10

3
cm( 

4        actual
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15.  Strategy Use the fact that RB = 1.42RA. 
 

 
Solution Calculate the ratio of PB to PA. 

V 
2 

P         R       R            R
     B    =   B 

P              

V 
2
 

A 
RA 

=   A   =      A        =     1 
R      1.42R       1.42 

B                 A 

=   0.704

16.  Strategy Recall that each digit to the right of the decimal point is significant. 
 

Solution Comparing the significant figures of each value, we have (a) 5, (b) 4, (c) 2, (d) 2, and (e) 3. From fewest 

to greatest we have c = d, e, b, a. 

17.  (a) Strategy To see what is going on, rewrite the numbers so that the power of 10 is the same for each. Then add 

and give the answer with the number of significant figures determined by the less precise of the two numbers. 
 

Solution Perform the operation with the appropriate number of significant figures. 

3.783 10
6 

kg + 1.25  10
8 

kg = 0.03783 10
8 

kg + 1.25  10
8 

kg = 1.29  10
8 

kg 

(b)  Strategy Find the quotient and give the answer with the number of significant figures determined by the 

number with the fewest significant figures. 
 

Solution Perform the operation with the appropriate number of significant figures.

(3.783 10
6 

m)  (3.0     
2 

 

s) = 1.3 10
8 

m  s

Discussion. Notice also the units. A number of meters plus a number of meters is still a number of meters. A 

number of meters divided by a number of seconds is a number of m/s. 
 

18.  (a) Strategy Move the decimal point eight places to the left and multiply by 10
8

. 
 

Solution Write the number in scientific notation. 

310,000,000 people =  3.1 10
8 

people 
 

(b)  Strategy Move the decimal point 15 places to the right and multiply by 10
15

. 
 

Solution Write the number in scientific notation. 

15 
0.000 000 000 000 003 8 m =  3.8  10       m 

19.  (a) Strategy Rewrite the numbers so that the power of 10 is the same for each. Then subtract and give the 

answer with the number of significant figures determined by the less precise of the two numbers. 
 

Solution Perform the calculation using an appropriate number of significant figures.
 

3.68     
7 

 

g  4.759  10
5 

 

g = 3.68  10
7 

 

g  0.04759  10
7 

 

g = 3.63    
7 

g

(b)  Strategy Find the quotient and give the answer with the number of significant figures determined by the 

number with the fewest significant figures. 
 



Chapter 1: Introduction Physics Physics Chapter 1: Introduction 

7 
7 

 
 
 

 
 
 

Solution Perform the calculation using an appropriate number of significant figures. 

6.497  104 m2 
= 1.273 102 m 

2 
5.1037  10  m
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20.  (a) Strategy Rewrite the numbers so that the power of 10 is the same for each. Then add and give the answer 

with the number of significant figures determined by the less precise of the two numbers. 
 

Solution Write your answer using the appropriate number of significant figures.

6.85    
5 m + 2.7  10

7 m = 6.85     
5 m + 0.027  10

5 m = 6.88  10
5 

m

 

(b)  Strategy Add and give the answer with the number of significant figures determined by the less precise of 

the two numbers. 
 

Solution Write your answer using the appropriate number of significant figures. 

702.35 km + 1897.648 km = 2600.00 km 

 
(c)  Strategy Multiply and give the answer with the number of significant figures determined by the number with 

the fewest significant figures. 
 

Solution Write your answer using the appropriate number of significant figures. 

5.0 m  4.3 m = 22 m
2
 

 

(d)  Strategy Find the quotient and give the answer with the number of significant figures determined by the 

number with the fewest significant figures. 
 

Solution Write your answer using the appropriate number of significant figures. 

(0.04  ) cm = 0.01 cm 
 

(e)  Strategy Find the quotient and give the answer with the number of significant figures determined by the 

number with the fewest significant figures. 
 

Solution Write your answer using the appropriate number of significant figures. 

(0.040  ) m = 0.013 m 
 

21.  Strategy Multiply and give the answer in scientific notation with the number of significant figures determined by 

the number with the fewest significant figures.
 

Solution Solve the problem. 

(3.2 m)  (4.0  10
3 

m)  (1.3    
8 

10 

 

 

m) = 1.7     
10 

m
3 

10

 

Discussion. If you use your calculator to find (3.2 m)(10
–3 

m)(5.2 × 10
–8 

m), what keys would you hit? On my 

calculator it is 3 . 2 × 1 enterexponent changesign 3 × 5 . 2 enterexponent changesign 8 = . Make sure you can 

make sense of where the 1 comes from.
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22.  Strategy Follow the rules for identifying significant figures. 

 

Solution 

 
(a)  All three digits are significant, so 7.68 g has 3 significant figures. 

 
(b)  The first zero is not significant, since it is used only to place the decimal point. The digits 4 and 2 are 

significant, as is the final zero, so 0.420 kg has 3 significant figures. 

 

(c)  The first two zeros are not significant, since they are used only to place the decimal point. The digits 7 and 3 

are significant, so 0.073 m has 2 significant figures. 

 

(d)  All three digits are significant, so 7.68      
5

g has 3 significant figures. 
 

(e)  The zero is significant, since it comes after the decimal point. The digits 4 and 2 are significant as well, so 

4.20     
3

kg has 3 significant figures. 

(f) Both 7 and 3 are significant, so 7.3    
2 

 

m has 2 significant figures.

 

(g)  Both 2 and 3 are significant. The two zeros are significant as well, since they come after the decimal point, 

so 2.300  10
4

s has 4 significant figures. 
 

23.  Strategy Divide and give the answer with the number of significant figures determined by the number with the 

fewest significant figures. 
 

Solution Solve the problem.

 3.21 m  =       3.21 m    
 

=  459 m s

7.00 ms     7.00  10
3 

s 

Discussion. With m = milli = 10
–3

, we could say 1/milli = kilo = k . 
 

24.  Strategy Convert each length to meters. Then, rewrite the numbers so that the power of 10 is the same for each. 

Finally, add and give the answer with the number of significant figures determined by the less precise of the two 

numbers. 
 

Solution Solve the problem.

3.08     
1

 

 

km + 2.00  10
3
 

 

cm = 3.08  10
2
 

 

m + 2.00  10
1
 

 

m = 3.08      
2
 

 

m + 0.200  10
2
 

 

m = 3.28     
2 

m
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25.  Strategy Use the rules for determining significant figures and for writing numbers in scientific notation. 

Solution (a) 0.00574 kg has three significant figures, 5, 7, and 4. The zeros are not significant, since they are 

used only to place the decimal point. To write this measurement in scientific notation, we move the decimal 

point three places to the right and multiply by 10
3

. We have 5.74 × 10
–3 

kg. 

(b)  2 m has one significant figure, 2. This measurement is already written in scientific notation, or we could show 

it as 2 × 10
0 

m. 

(c)   0.450  10
2 

m has three significant figures, 4, 5, and the 0 to the right of 5. The zero is significant, since it 

comes after the decimal point and is not used to place the decimal point. To write this measurement in 

scientific notation, we move the decimal point one place to the right and multiply by 10
1

 

(d)  45.0 kg has three significant figures, 4, 5, and 0. The zero is significant, since it comes after the decimal point 

and is not used to place the decimal point. To write this measurement in scientific notation, we move the 

decimal point one place to the left and multiply by 10
1
 

(e)  10.09  10
4 

s has four significant figures, 1, 9, and the two zeros. The zeros are significant, since they are 

between two significant figures. To write this measurement in scientific notation, we move the decimal point one 
1 

place to the left and multiply by 10  . 

5
(f)   0.09500  10 mL has four significant figures, 9, 5, and the two zeros to the right of 5. The zeros are significant,

since they come after the decimal point and are not used to place the decimal point. To write this 

2 
measurement in scientific notation, we move the decimal point two places to the right and multiply by 10   . 

The results of parts (a) through (f) are shown in the table below. 
 

 
 
 

(a) 

Measurement 

 
0.00574 kg 

Significant Figures 

 
3 

Scientific Notation 
 

5.74  10
3 

kg 

(b) 2 m 1 2 m 

 

(c) 0.450  10
2 

m 
 

3 4.50     
3

m
 

10 
 

(d) 

 

45.0 kg 

 

3 4.50  10
1 
kg 

 

(e) 
4 

10.09  10 s 
 

4 1.009     
5

s
 

10 
 

(f) 
5 

0.09500  10  mL 
 

4 9.500     
3

mL
 

10 

 

Discussion. It would be more natural to convert to scientific notation first and then count the significant digits. 

 
26.     Strategy Convert each length to scientific notation. 

Solution In scientific notation, the lengths 

are: (a) 1 m = 1 10
6 

m,    (b) 1000 nm = 1 10
3 

 10 

 

 

m = 1 10
6 

m,

(c) 100000 pm = 1 10
5 

 10
12 

m = 1 10
7 

m, (d) 0.01 cm = 1 10
2 

 10
2 

m = 1 10
4 

m, and

(e) 0.0000000001 km = 1 10
10 

     
3 m = 1 10

7

m. From smallest to greatest, we have c = e, a = b, d .
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cm 

m 

10 10 

 

 
27.  Strategy Convert each length to meters and each time to seconds. From the inside front cover, 1 mi = 1609 m. 

 
Solution In scientific notation, we have: 

(a) 55 mi h  1609 m mi  1h 3600 s = 25 m s, (b) 82 km h  1h 3600 s  1000 m km = 23m s, 

(c) 33m s,     (d) 3.0 cm ms  1m 100 cm  1000 ms s = 30 m s, and 

(e) 1.0 mi min  1min 60 s  1609 m  mi = 27 m s. 

From smallest to greatest, we have b, a, e, d, c . 
 

Discussion. Can you directly make sense of how one mile per minute is greater than 55 mi/h? Three centimeters 

per millisecond is greater than either because a millisecond is so short a time. 
 

28.  Strategy Recall that 1 kg = 1000 g and 100 cm = 1 m. 

 

Solution Convert the density of body fat from g cm
3 

to kg m
3

.

0.9 g
    3

  1kg 1000 g  (100 cm m)3
 = 900 kg     

3

 

29.  Strategy There are exactly 2.54 centimeters in one inch. 
 

Solution Find the thickness of the cell membrane in inches.
 

7.0     
9

 

 
m  0. 

1 
0254 

inch 
 

m = 2.8      
7

 
 
inches

 

Discussion. The thickness of plastic film or the diameter of a wire can be stated in mils, where one mil is 

a thousandth of an inch. But no one speaks of a microinch or a nanoinch. 
 

30.  (a) Strategy There are approximately 3.785 liters per gallon from the inside front cover, and 128 fluid ounces 

per gallon. 
 

Solution  Find the number of fluid ounces in the bottle.

128 fl oz      1 gal     355 mL       1 L   

3 

 

= 12.0 fluid ounces

1 gal       3.785 L                     10  mL 

(b)  Strategy From part (a), we have 355 mL = 12.0 fluid ounces. 
 

Solution Find the number of milliliters in the drink. 
355 mL

16.0 fl oz  

12.0 fl oz 

= 473 mL

 

31. Strategy There are exactly 2.54 centimeters in an inch and 12 inches in one foot. 
 

Solution Convert to meters. 
 

 

12 in     0.0254 m                         2
(a) 1595.5 ft   

1 ft 
    

1 in 
=  4.8631 10  m
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(b) 6016 ft  
12 in 0.0254 m 

 
 

= 1.834 

103 m 1 ft 1 in
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32.  Strategy For (a), convert milliliters to liters; then convert liters to cubic centimeters using the conversion 

1 L = 10
3 

cm
3
. For (b), convert cubic centimeters to cubic meters using the fact that 100 cm = 1 m. 

 

Solution Convert each volume. 

(a) 255 mL  
103 L 

 
103 cm 

= 255 

cm3 1 mL 1 L 

    1 m  3                             1 m
3

 

(b)   255 cm
3                 

  

3                         
 

2.55  10
(4 

m
                               = 255 cm 

 100 cm 

       6           3    = 

10   cm

33.  Strategy For (a), we can convert meters per second to miles per hour using the conversion 1 mi/h = 0.4470 m/s. 

For (b), convert meters per second to centimeters per millisecond using the conversions 1 m = 100 cm and 1 s = 

1000 ms. 

Solution Convert each speed. 

 

(a)  80 m s      1mi h      =  180 mi h 
0.4470 m s 

2 

(b)  80 m s   
10

 

 

cm  
    1s      =  8.0 cm ms

1 m       10
3 

ms 

Discussion. John Kennedy was President for a thousand days. Quoting the speed of the nerve impulse either in 

miles per hour or in meters per second should make it sound fast to you. Quoting it in centimeters per 

millisecond suggests that one bit of the cell responds quickly to a stimulus from an adjacent bit. 
 

34.  Strategy With the datum quoted to five significant digits, we use the exact conversions between miles and feet, 

feet and inches, inches and centimeters, and centimeters and kilometers. 
 

Solution Find the length of the marathon race in miles.

42.195 km  
100,000 cm   


 1 in 

  
1 ft 

  
1 mi 

 

= 26.219 mi

1 km          2.54 cm    12 in    5280 ft 
 

35.  Strategy Calculate the change in the exchange rate and divide it by the original price to find the drop. 
 

Solution Find the actual drop in the value of the dollar over the first year. 
1.27  1.45 = 0.18 = 

 

 

1.45          1.45 

0.12

The actual drop is  0.12 or 12% . 

 
36.  Strategy There are 1000 watts in one kilowatt and 100 centimeters in one meter. 

 

Solution Convert 1.4 kW m
2 

to W cm
2

. 

1.4 kW   1000 W      1 m  2 


 

 

=  0.14 W cm
2
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2                                         

1 m          1 kW      100 cm
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37.  Strategy Convert the radius to centimeters; then use the conversions 1 L = 10
3 

cm
3 

and 60 s = 1 min. 

Solution Find the volume rate of blood flow 

2                              1 L         60 s 

                                 = 4.9 L min

volume rate of blood flow =  
2 v =  (1.2 cm)(18 cm s)     

3     3
 

 

1 min

Discussion. The given equation for the volume flow rate makes sense because the volume passing in one unit of 

time can be visualized as the volume of a cylinder with base area equal to the cross- sectional area of the vessel 

and length equal to the distance that one atom travels in a unit of time, representing its linear speed. 

38.  Strategy The distance traveled d is equal to the rate of travel v times the time of travel t. There are 1000 

milliseconds in one second. 

Solution Find the distance the molecule would move.
 

d = vt = 459 m 
 7.00 ms 

      1 s   
 

= 3.21 m

1 s                       1000 ms 
 

39.  Strategy There are 1000 meters in a kilometer and 1,000,000 millimeters in a kilometer. 

Solution The volume can be visualized as that of a very thin, wide ribbon of plastic film that rolls out from a 
press in a factory, perhaps in a couple of days. We multiply its three perpendicular dimensions to find its volume, 

3
just as if it were a brick. We find the product and express the answer in the huge unit of km 
appropriate number of significant figures. 

with the

(3.2 km)  (4.0 m)  (13 10
3   

  1 km   
 
        1 km   

= 1.7  10
10 

km
3

1000 m    1,000,000 mm 
 

40.  (a) Strategy There are 12 inches in one foot and 2.54 centimeters in one inch. 

Solution Find the number of square centimeters in one square foot. 

2   12 in 
2 

 2.54 cm 2                   2
1 ft                                                                     =  929 cm 

 1 ft         1 in  
 

(b)  Strategy There are 100 centimeters in one meter. 

Solution Find the number of square centimeters in one square meter. 

2      100 cm   2               4    2 
1 m                                = 1 10  cm 

    1 m  

(c) Strategy   Divide one square meter by one square foot. Estimate the quotient. 
Solution  Find the approximate number of square feet in one square meter. Ten thousand divided by one 

thousand is ten, so ten thousand divided by nine hundred is a bit larger than ten.

1 m
2
 10,000 cm

2 
= 

2 

 

   11

1 ft
2       

929 cm 

41.  (a) Strategy There are 12 inches in one foot, 2.54 centimeters in one inch, and 60 seconds in one minute. 

Solution Express the snail’s speed in feet per second. 

5.0 cm    1min        1 in         1 ft                    3 

1 min 
 

60 s 
 
2.54 cm 

 
12 in 

= 2.7  10 ft s

 

(b)  Strategy There are 5280 feet in one mile, 12 inches in one foot, 2.54 centimeters in one inch, and 60 minutes 

in one hour. 
Solution Express the snail’s speed in miles per hour. 

5.0 cm    60 min      1 in       1 ft      1 mi                   
3 

1 min 
   

1 h 
 
2.54 cm 


12 in 


5280 ft 

= 1.9  10 mi h
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Discussion. It is natural to use a small unit for a low speed. Continents can drift at a few cm/yr. 
 
 
 
 

11
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s m  



[T] = 

s 

2 

 

 

42.  Strategy A micrometer is 10
6 

m and a millimeter is 10
3 

m; therefore, a micrometer is 
 

Solution Find the area in square millimeters. 

10
6  

10
3 

= 10
3 

mm.

 

2      103 mm  
2 

 
4       2

150 m                         (       =  1.5 10     mm

   1 m    
 

43.  Strategy Replace each quantity in U = mgh with its SI base units. 

 
Solution Find the combination of SI base units that are equivalent to joules.

U = mgh     implies    J = kg  m
 2  m = kg     

2      2

 

44.  (a) Strategy Replace each quantity in ma and kx with its dimensions. 

 
Solution Show that the dimensions of ma and kx are equivalent. 

 
ma has dimensions [M]   [L] and kx has dimensions    [M]  [L] = [M]    [L] . 

[T] [T]                          [T] 

Since   [M][L][T]
2 

= [M][L][T]
2 

, the dimensions are equivalent. 

 

(b)  Strategy Use the results of part (a). 
 

Solution Since   F = ma and F = kx,          the dimensions of the force unit are   [M][L][T]
2    

. 
net 

 

45.  Strategy Replace each quantity in T
2 

= 4 
2

r
3  

(GM) with its dimensions. 

 

Solution Show that the equation is dimensionally correct. 
2 3                                      3                3              2

2                              2        
4  r

 
[L]

 
[L]

 
[M][T]

T   has dimensions [T]
 

and
  

GM    has dimensions          3  
 

 

=                 3
 

= [T]
2

.

 
 
 

Since       
2 

 
 
 

2 
[T] 

[L] 

[M][T] 

 

, the equation is dimensionally correct. 

 [M]    [M]       [L]

 

Discussion. It might seem more natural to you to write the test in terms of units, like this: 

s  2 is supposed to be equal to        m3              =m
3 

kg  s
2 

= s 2   and it is.

(m  3 

 

/ kg  s 
2
 )kg kg   m

3
 

The test in terms of dimensions is

stated in more general terms. Someone might insist on measuring the period of a planet in years or the 
comparative masses of astronomical objects as multiples of some large mass that is actually unknown, but those 
choices still leave the equation dimensionally correct. 
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46.  Strategy Determine the SI unit of momentum using a process of elimination. 
 

Solution Find the SI unit of momentum.

 p
2
 

K = 

 
 
has units of 

 kg  m
2
 

2 

 

. Since the SI unit for m is kg, the SI unit for      p
2 

is 
kg

2 
 m

2
 

2 

 
 
. Taking the square

2m                          s                                                                                                s 

1
 

root, we find that the SI unit for momentum is   kg  m  s      .
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47.  (a) Strategy Replace each quantity (except for V) in FB = gV with its dimensions. 

 
Solution  Find the dimensions of V.

F                                        2 
B                                             [MLT   ] 

V =        has dimensions 

 
3 

=    [L ] .

g                             [ML
3

]  [LT
2

] 
 

(b)  Strategy and Solution Since velocity has dimensions [LT
1

] and volume has dimensions [L
3

], the correct 

interpretation of V is that is represents volume . 

 

48.  (a) Strategy a has dimensions 
[L]

2 ; v has dimensions 
[L]

[T] ; r has dimension [L]. We assume that a depends just[T] 
 

on v and r. 
 

Solution Let a ∝ vp 
r
q 

where p and q are unknown exponents. The units in the equation, m⋅s
–2 

= (m/s)
p
m

q
 

must agree across the equality sign, so we have m
1 

= m
p+q 

and s
–2 

= s
–p

. Then p = 2 and 1 = 2 + q so 

v
q = –1. The equation must be a = K r

2 
, where K is a dimensionless constant.

 

(b)  Strategy Divide the new acceleration by the old, and use the fact that the new speed is 1.100 times the old. 

 
Solution Find the percent increase in the radial acceleration. 

2

a     K 
v2  v   

2     
 1.100v     

2

         2                         r   
  2

 
=        2 


 

=          1
 

v 
= 1.100

2 
= 1.210

a1     
K 

v1              v1                     1    
 

r 

1.210  1 = 0.210, so the radial acceleration increases by 21.0%. 
 

49.  Strategy Approximate the distance from your eyes to a book held at your normal reading distance. 
 

Solution The normal reading distance is about 30 to 40 cm, so the approximate distance from your eyes to a book 

you are reading is 30 to 40 cm. 
 

50.  Strategy Estimate the length, width, and height of your textbook. Then use V = !wh to estimate its volume. 
 

Solution Find the approximate volume of your physics textbook in cm
3

. 

The length, width, and height of your physics textbook are approximately 30 cm, 20 cm, and 4.0 cm, respectively. 

V = !wh = (30 cm)(20 cm)(4.0 cm) = 2400 cm
3 

or on the order of 10
3 

cm
3
. 

 
51.  Strategy and Solution The mass of the lower leg is about 5 kg and that of the upper leg is about 7 kg, so an order 

of magnitude estimate of the mass of a person’s leg is 10 kg = 10
1 

kg. 
 

52.  Strategy and Solution A normal heart rate is about 70 beats per minute and a person may live for about 70 years,
 

 
s

o 

t

h

e 

hea

rt beats about 
 

9 
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10 

 

70 beats 

1 min 

 

  70 yr   
lifetim

e 

5.26 

 10
5 

min 
        1 

yr 

 

= 2.6      
9
 

 

 

times per 

lifetime, or 

about

3 10 heartbeats .
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53.  Strategy One story is about 3 m high. 

 

Solution Find the order of magnitude of the height in meters of a 40-story building. 

(3 m)(40) ~ 100 m = 10
2 

m 

 
54.  Strategy The area of skin is the area of the sides of the cylinder approximating the human torso plus 2 times the 

2
area of each arm. The surface of a cylinder, including the ends, is 2rh + 2r (see Appendix A.6).

 

Solution Estimate the surface area of skin covering a human body.

A       A + 2A = 2r h + 2 
2 + 2  2r h + 2  2 

2

skin                        t      (         a               )(     t t              )            t   ( 
)                      

a a                        (       a                             )(             )                        (                          )

= 2  0.15 m   2.0 m   + 2   0.15 m 
2 

+ 2  2 0.050 m   1.0 m  + 2  2 0.050 m   2 = 2.7 m
2
 

The contributions of the ends of the cylinders to the total area are comparatively small, so for an estimate we 

could ignore them. Then the estimate would be 2.5 m
2
, still on the order of 1 m

2 
= 10

0 
m

2
. 

 

55.  Strategy The plot of temperature versus 

elapsed time is shown. Use the graph to 

answer the questions. 
 
 
 
 
 
 
 
 
 

Solution 

 
(a)  By inspection of the graph, it appears that the temperature at noon was 101.8F. 

 

(b)  Estimate the slope of the line.

m = 
    102.6F  100.0F   =

 2.6F 
 

= 0.90F h

1:00 P.M.  10:00 A.M.        3 h 
 

(c)  After the next twelve hours, the temperature would, according to the trend, be 

approximately T = (0.9 F h)(12 h) + 102.5F = 113F. 

The patient would be dead before the temperature reached so high a value. So, the answer is no. 
 

56.  Strategy Use the two temperatures and their corresponding times to find the rate of temperature change with 

respect to time (the slope of the graph of temperature vs. time). Then, write the linear equation for the 

temperature with respect to time and find the temperature at 3:35 P.M. 
 

Solution Find the rate of temperature change. 

m = 
 T  

= 
 101.0F  97.0F  

= 1.0F h 
t                4.0 h 

Use the slope-intercept form of a graph of temperature vs. time to find the temperature at 3:35 P.M. 
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T = mt + T0 = (1.0 F h)(3.5 h) + 101.0F = 104.5F
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57.  Strategy Put the equation that describes the line in slope-intercept form, y = mx + b, with v replacing y and t 

replacing x. 

at = v  v0      becomes    v = at + v0 

 

Solution 

(a) v is the dependent variable and t is the independent variable, so a is the slope of the line. 
 

(b)  The slope-intercept form is y = mx + b. Find the vertical-axis intercept. 

v  y, t  x, a  m, so v0  b. 

Thus, +v0 is the vertical-axis intercept of the line. 
 

Discussion. A graph shows the data as individual points, and shows a model describing all of them as a line. The 

most important thing about a graph is its shape. In this case the straightness of a line fitting the data points 

convincingly indicates that the acceleration is constant. The scatter of the points away from the best-fit line can 

give an estimate of the experimental uncertainty. Plus, as the problem notes, the slope and vertical-axis intercept 

of the line give values for the acceleration and original velocity. 
 

58.  (a) Strategy Modeled on y = mx + b, the equation of the speed versus time graph is given by v = at + v0, where a 

2
= 6.0 m   s and v0 = 3.0 m  s.

 

Solution Find the change in speed. 

v2 = at2 + v0 

 (v1 = at1 + v0 ) 

v2  v1 = a(t2  t1)

v                   v = (6.0 m   
2
 

2                 1 
)(6.0 s  4.0 s) =  12 m s

 

(b)  Strategy Use the equation found in part (a). 
 

Solution Find the speed when the elapsed time is equal to 5.0 seconds. 

v = (6.0 m s
2 

)(5.0 s) + 3.0 m s = 33 m  s 

 
59.  (a) Strategy Refer to the figure. Use the definition of the slope of a line and the fact that the vertical axis 

intercept is the distance (x) value corresponding to t = 0. 
 

Solution Compute the slope. 
x = 17.0 km  3.0 km =

 
 

t         9.0 h  0.0 h 

1.6 km h .

When t = 0, x = 3.0 km; therefore, the vertical axis intercept is 3.0 km. 
 

(b)  Strategy and Solution The physical significance of the slope of the graph is that it represents the speed of 

the object. The physical significance of the vertical axis intercept is that it represents the starting position of 

the object (position at time zero). 
 

60.  Strategy To determine values for c and A0 from the experimental data, graph A versus B
3

. 
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Solution To graph A versus B
3

, graph A on the vertical axis and B
3 

on the horizontal axis . Then the slope is the 

experimental value of c and the vertical-axis intercept is the experimental value for A0. Both can then be 

compared with theoretical or separately-measured values for c and A0.
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61.  Strategy Use the slope-intercept form, y = mx + b. 

Solution Since x is on the vertical axis, it corresponds to y. Since  
4 

 

is on the horizontal axis, it corresponds to x

(in y = mx + b) . So, the equation for x as a function of t is x = (25 m    
4   4 

 

+ 3 m .

 

Discussion. A graph of x versus t from the same data would curve strongly upward as a "quartic parabola." Your 

eye can judge the straightness of a straight line and how well it fits points around it. But a quartic parabola is 

much less familiar. That is why we make the particular choice to use the fourth power of every t value as the 

horizontal-axis coordinate of a data point. 
 

62.  Strategy Use graphing rules 3, 5, and 7 under Graphing Data in Section 1.9 Graphs. 
 

Solution 
 

(a)  To obtain a linear graph, the students should plot v versus r
2
, where v is the dependent variable and r

2 
is 

the independent variable. 
 

(b)  The students should measure the slope of the best-fit line obtained from the graph of the data; set the value 

of the slope equal to 2g(  f )  (9); and solve for . 

63.  (a) Strategy Plot the decay rate on the vertical axis and the time on the horizontal axis. 
 

Solution The plot is shown.                                              
 

(b)  Strategy Plot the natural logarithm of the decay rate on the vertical axis and the time on the horizontal axis. 
 

Solution. We find the natural logarithm of each decay rate.  The first is ln(405) = 6.00. The others are 

shown: Time (min)        0            15          30          45          60          75          90 
 

ln(decay rate in Bq)      6.00       5.47       4.94       4.50       4.00       3.47       2.94 
 

The plot is shown. 
 

Presentation of the data in this form—with the 

natural logarithm of the decay rate—is useful 

because the graph is linear, demonstrating that 

the decay rate decreases exponentially. That is, 

the data points fit a function like R = R0 e–λt 

where R0 and λ are constants. In this case ln(R ) 

= – λt + ln(R0), which has the form y = mx + b.
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64.  (a) Strategy Make an order-of-magnitude estimate. Assume 8 seconds per breath. 

 
Solution Estimate the number of breaths you take in one year.

1 breath     3.156  10
7 

s               6 
breaths per year =     

8 s      
       

1 yr         
= 4  10

 

 

breaths y   10
7 

breaths y     We choose to write the

order of magnitude as 10 
7 

breaths instead of 10
6 

because our answer differs from 10
7 

by a factor of only 

2.5 while differing from 106 by a factor of 4. 
 

(b)  Strategy Assume 0.5 L per breath. 
 

Solution Estimate the volume of air you breathe in during one year.
 

6 
volume = 4  10 

 

breaths  
 0.5 L   

= 2  10
6 L  

103 m3 
= 2000 m

3 

 

 10
3 

m
3

1 breath                           1 L 
 

65.  Strategy Replace v, r, , and m with their dimensions. Then use dimensional analysis to determine how v 

depends upon some or all of the other quantities. 
 

[L]              1

Solution v, r, , and m have dimensions [T] , [L], [T] , and [M], respectively. Let v = r
e 
ω

f 
m

g
, where e, f, and

 

[L]         e       1        g                                                         1  1         0

g are unknown exponents. Then [T] 
= [L] [T] 

f [M]         The lefthand side is [L] [T] [M]      so we require

e = 1, –f = –1, and g = 0. Thus f = 1.      We have  v = r
1ω1 

and v does not depend upon m.    With no 

dimensionless constant involved in the relation, v is equal to the product of  and r, or           v = r   . 
 

Discussion. The argument could be stated in terms of units. We need a combination of        m and s
–1 

and kg that 

will equal m/s, and the only combination is    (m)(s
–1

). 

66.  Strategy (Answers will vary.) We use San Francisco, California, for the city. The population of San Francisco is 

approximately 750,000. Assume that there is one automobile for every two residents of San Francisco, that an 

average automobile needs three repairs or services per year, and that the average shop can service 10 

automobiles per day. 
 

Solution Estimate the number of automobile repair shops in San Francisco. 

If an automobile needs three repairs or services per year, then it needs  3 repairs   1 yr   0.01 repairs  . 

auto  yr    365 d          auto  d

 
If there is one auto for every two residents, then there are 

    1 auto    

2 residents  750,000 residents  4  10   autos.

If a shop requires one day to service 10 autos, then the number of shops-days per repair is 

1 shop        1 d       =0.1 shop d  . 

10 repairs         repair

The estimated number of auto shops is 4     
5 

 

autos  
 0.01 repairs 0.1 shop  d 

 
 
=  400 shops   .

auto  d              repair 
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Checking the phone directory, we find that there are approximately 463 automobile repair and service shops in 

San Francisco. The estimate is off by 
 400  463 

400 

 

 100% =   16% . The estimate was 16% too low, but in the

ball park!
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67.      (a) Strategy Plot the weights and ages on a 

weight versus age graph. 
 

Solution See the graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b)  Strategy Find the slope of the average-gain line shown, between age 0 and age 5 months. 

Solution Find the slope. m =   
 13.6 lb  6.6 lb  =

 7.0 lb  
 

= 1.4 lb mo

5.0 mo  0.0 mo    5.0 mo 

(c)  Strategy Find the slope of the average-gain line between age 5 and age 10 months. 

Solution Find the slope.  m =    
 17.5 lb  13.6 lb  =

 3.9 lb  
 

= 0.78 lb mo

10.0 mo  5.0 mo     5.0 mo 

(d)  Strategy Write a linear equation for the weight of the baby as a function of time. The slope is that found in 

part (b), 1.4 lb mo. The intercept is the weight of the baby at birth. 

 
Solution Find the extrapolated weight of the child at age 12 years. 

W = (1.4 lb mo)(144 mo) + 6.6 lb = 210 lb 

68.  Strategy For parts (a) through (d), perform the calculations. 

Solution (a)    186.300 + 0.0030 =   186.303                 (b)    186.300  0.0030 =   186.297
 

(c) 

 

186.300  0.0030 =     0.56 
 

(d) 186.300 0.0030 = 

 

62,000 

0.0030

(e)  Strategy For cases (a) and (b), the percent error is given by  Actual Value  100%.

Solution Find the percent error. Case (a):   0.0030 

186.303 
 100% = 0.0016%

Case (b): 
 0.0030  

 100% = 
186.297 

 

0.0016%

For case (c), ignoring 0.0030 causes you to multiply by zero and get a zero result. For case (d), 

ignoring 0.0030 causes you to divide by zero and get an infinite answer. 

(f)   Strategy Make a rule about neglecting small values using the results obtained above. 
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Solution 
 

You can neglect small values when they are added to or subtracted from sufficiently large values. 

The term “sufficiently large” is determined by the number of significant figures required.
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69.  Strategy There are on the order of 10
3 

hairs in a one-square-inch area of a typical human head. An order-of- 

magnitude estimate of the area of the average human scalp is 10
2 

square inches. 
 

Solution Calculate the estimate. 10
3 

hairs in
2 

 10
2 

in
2 

= 10
5 

hairs 

Discussion. "On the order of 10
5
" includes all the numbers between about 3 × 10

4 
and about 3 × 10

5
. Our answer 

applies to very many people, if not to the bald. 

70.  Strategy Use the metric prefixes n (10
9 

),  (10
6 

), m (10
3

), or M (10
6 

). 

Solution

(a)  M (or mega) is equal to    
6
 , so 6  10

6 m =   6 Mm     .

 
(b) 

 
There are approximately 3.28 feet in one meter, so 6 ft  

 

  1 m   

3.28 ft 

 
= 2 m  .

 

(c)  (or micro) is equal to     
6 

9 
, so 10

6 
m = 

9 

 

1  m   .

(d)  n (or nano) is equal to 10 

9 
(e)  n (or nano) is equal to 10 

, so 3   10 

, so 3   10
10

 

m =    3 nm  . 
 

m =       0.3 nm . 

3
71.  Strategy The volume of the spherical virus is given by Vvirus = (4  3)rvirus 

billionth the volume of the saliva. 
 

Solution Calculate the number of viruses that have landed on you. 

. The volume of viral particles is one

9                                        3 
  10   V                   0.010 cm                


 

number of viral particles =                                         saliva        =                                                                                 10
4 viruses

V                                                     7 
virus                   9    4        85 nm  3  10 cm  3

10  ( 3  )( 2     )  
 

1 nm   

72. Strategy The circumference of a viroid is approximately 300 times 0.35 nm. The diameter is given by C =  d, or 

d = C  . 
Solution Find the diameter of the viroid in the required units.

 

(a) d = 
300(0.35 nm) 

 
109 m 

 

= 3.3 108 m

                1 nm
 

(b) d = 
300(0.35 nm) 

 
103m

 
 

= 3.3 102 m

                 1 nm 

300(0.35 nm)   10
7 

cm       1 in                     6 
(c) d =                                                      = 1.3 10     in 

              1 nm      2.54 cm 
73.  (a) Strategy There are 3.28 feet in one meter. 
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Solution Find the length in meters of the largest recorded blue whale. 1.10  10
2 

ft  
  1 m   

= 33.5 m 
3.28 ft 

(b)  Strategy Divide the length of the largest recorded blue whale by the length of a double-decker London bus. 
 

Solution Find the length of the blue whale in double-decker-bus lengths. 

1.10  10
2 

ft
 


  1 m   

=  4.2 bus lengths 

8.0 
       m            3.28 ft 
bus length 

Discussion. The picture in the textbook is quite accurate.
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74.  Strategy The volume of the blue whale can be found by dividing the mass of the whale by its average density. 

 
Solution  Find the volume of the blue whale in cubic meters. From ρ = m/V we have 

m      1.9     
5

kg   1000 g        1 m  3 

V =        =                   3  

     0.85 g cm 

 

                ( 

1 kg      100 cm 

=  2.2  10
2 

m
3

75.  Strategy Modeling the capillaries as completely filled with blood, the total volume of blood is given by the cross- 

sectional area of the blood vessel times the length. 
 

Solution Estimate the total volume of blood in the human body.
 

2 
V = r l =  (4  10

6 m)2 (10
8 m) = 0.005 m

3 
 
= 5 L

In reality, blood flow through the capillaries is regulated, so they are not always full of blood. On the other hand, 
we’ve neglected the additional blood found in the larger vessels (arteries, arterioles, veins, and venules). 

 

76.  Strategy The shape of a sheet of paper (when not deformed) is a rectangular prism. The volume of a rectangular 

prism is equal to the product of its length, width, and height (or thickness). 

Solution Find the volume of a sheet of paper in cubic meters.  
6   3

27.95 cm  8.5 in  0.10 mm      
1 m 


0.0254 m  

     
1 m 

= 6.0  10     m

100 cm         1 in        1000 mm 
 

77.  Strategy If v is the speed of the molecule, then v  T where T is the temperature. 

 
v              T 

       cold                                   cold  

Solution Form a proportion. v       = 
warm 

T 

T 
warm

Find v     .  v          = v      cold  = (475 m s) 250.0 K = 434 m s

cold          cold        warm    T                                      300.0 K 
warm 

 

Discussion. When we study thermodynamics, we will do a lot with the idea that a thermometer is like a 

speedometer for molecules. 
 

78.  Strategy Use dimensional analysis to convert from furlongs per fortnight to the required units. 

 
Solution (a)          Convert to m s.

 

  1 furlong   
 

 220 yd  

 

1 fortnight     1 day    

 

 3 ft    1  m=    1,000,000 m 
 

= 166 m s

1 fortnight    1 furlong      14 days      86,400 s  1 yd     3.28 ft           1 m 

(b) Convert to km day.       1 furlong   220 yd 1 fortnight    3 ft    1 m     1 km = 0.0144 km day
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1 fortnight  1 furlong     14 days     1 yd     3.28 ft    1000 m 
 

79.  Strategy There are 2.54 cm in one inch and 3600 seconds in one hour. 

 
Solution  Find the conversion factor for changing meters per second to miles per hour. The conversion equation

1 m 100 cm     1 in     1 ft     1 mi   3600 s 
 

= 2.24 mi h = 1 m/s

is 1 s          1 m      2.54 cm     12 in   5280 ft      1 h 

or the conversion factor is  (2.24 mi/h)/(1 m/s)) = 1 

So, for a quick, approximate conversion, multiply by 2.
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Solution The SI unit for weight is kg  
 m  

 

= 
kg  m 

 s   s 

 

10 

T  

     

                 T
 

 
r
 

 

m 

r 

 

 

80.  (a) Strategy There are 20,000 = 2 × 10
4 

quarter dollars in $5000. The mass of a quarter-dollar coin is about 6 

grams, or 6 × 10
–3 

kilograms. 

Solution Estimate the mass of the coins as 2× 10
4 

coins  6     
3

 kg coin = 1.2  10
2
 kg, or   100 kg .

 
(b)  Strategy There are $1,000,000  $20 = 50,000 twenty-dollar bills in $1,000,000. The mass of a twenty-dollar bill 

is about 1 gram, or 10
3 

kilograms. 

Solution Estimate the mass of the bills as 50,000 bills  10
3 

kg bill = 50 kg, or   100 kg . 
 

81.  Strategy The SI base unit for mass is kg. Replace each quantity in W = mg with its SI base units. 
 

 
 

2            2 
 

 

Discussion. In everyday life one meets combination units such as kilometers per hour, person-hours, and even 

dollars per person-hour. No doubt gloomy research has been done on how many people understand quantities 

involving these units. We may be glossing over the difficulty of forming a mental picture of a kilogram-meter- 

per-second-squared, when we call it a newton and feel one newton as the gravitational force on a particular apple. 

82.  Strategy It is given that   
2
 

3
. Divide the period of Mars by that of Venus.

 

Solution Compare the period of Mars to that of Venus.
2          3 

T            r   
2
 

 

  r         3 

               2
 2r          3 2 


 

 

 2.8T

Mars             =  Mars           , so T Mars , or T                  
Venus         

     T           =  23 2T                                                         .

T
2          

r
3                  Mars                                                           Venus                            Mars                                                                     Venus                                          Venus                                  Venus

 
Venus      Venus 

Venus                                                                  r
Venus        

83.  Strategy $59,000,000,000 has a precision of 1 billion dollars; $100 has a precision of 100 dollars, so his net 

worth is the same to two significant figure. 

 
Solution Find the net worth. $59,000,000,000  $100 =  $59,000,000,000 

 
84.  Strategy Solution methods will vary, but the order of magnitude answer should not. One example follows: In a 

car on the interstate highway you can drive a thousand kilometers in two days, but that does not get you around 

the circumference of the Earth by a very large angle. The circumference of the Earth is about forty thousand 

2

kilometers. The radius of the Earth is on the order of 10
7 

m. The area of a sphere is 4r , or on the order of

1    2 
10     r . The average depth of the oceans is about 4  10

3 
 

m. The oceans cover about seven tenths of the Earth’s

surface. 
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m 

 ! m 

Solution Calculate an order-of-magnitude estimate of the volume of water contained in Earth’s oceans. 

The surface area of the Earth is on the order of 10
1 

 (10
7 

m)
2 

= 10
15  2

; therefore, the volume of water in the

15 
oceans is about area  depth     (10    m 

2 
)(4  10

3
m)  3 10

18  3
 

18  3 
10          .
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85.  (a) Strategy There are 7.0 leagues in one step and 4.8 kilometers in one league. 

 
Solution  Find your speed in kilometers per hour.

120 steps 

7.0 leagues 

 
 4.8 km  


 60min 

= 2.4  10
5 

km h

1 min           1 step        1 league       1 h 
 

(b)  Strategy The circumference of the earth is approximately 40,000 km. The time it takes to march around the 

Earth is found by dividing the distance by the speed. 

Solution Find the time of travel. 40,000 km             1 h   

 10
5 

60 min = 10 min

2.4 km       1 h

Discussion. You could use the radius of the Earth as listed on the inside back cover. But we happen to know that 

a meter was originally defined to make the circumference of the planet (around meridians of longitude) forty 

thousand kilometers. 
 

86.  Strategy Use conversion factors from the inside cover of the book. 
 

3                           3 
12.5 US gal     3.785 L    10  mL    0.06102 in                   3

Solution (a) 
1         

 
US gal  

     
L 

       
mL 

= 2890 in

 

  1 cubit 
3 

= 
(b)                                           0.495 cubic cubits 

1          18 in  
 

87.   Strategy The weight is proportional to the planet mass and inversely proportional to the square of the radius, so W  m r2  . Thus, 
2887in3 

for Earth and Jupiter, we have WE = K mE   rE2  and WJ = K mJ   rJ2  . with some constant 

2     
m   r

  

320m
 

r   
2

Solution Form a proportion.   
 WJ      mJ rJ       J  E    2         E      E 320

W                                          =                            2                 = m  r                                  =        m                  11r               = 121

E      m r             E  J             E              E  
E  E                          

On Jupiter, the apple would weigh    
 320 

(1.0 N) =  2.6 N   . 
121 

88.  Strategy Replace each quantity in v = K 
p q

 

determine their values. 
 

Solution Find the values of p and q. 

 

by its units. Then, use the relationships between p and q to

 

 
In units, 

m 
= m

p 
 

 mq  mp 

= 
+q 

. 

 s s  
2q s2q  

So, we have the following restrictions on p and q: p + q = 1 and 2q = 1. 
Solve for q and p. 

2q = 1                            p + q = 1 
1 

q =   
1                           p + 

2 = 1    
2 
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p =   
1 
2 

 

Thus, v = K
1 2

g
1 2 

=   K    g .
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Then q = –1/2 and p = –q = + ½. The square root of      L g does indeed have dimensions of time, so 

 

ft ft 
= 

5 

10 

10 

5 

 

 

89.  Strategy Since there are about 3 × 10
8 

people in the U.S., a reasonable estimate of the number of automobiles is 1.5 × 

10
8
. There are 365 days per year. A reasonable estimate for the average volume of gasoline used per day per car is 

greater than 1 gal, but less than 10 gal; for an order-of-magnitude estimate, let’s guess 2 gallons per day.
 

8 
Solution Calculate the estimate. 1.5  10 

 
cars  365days  2 

 

    gal     
 

car  day 

 

10
11 

 

 
gal

Discussion. Not everyone uses the tilde symbol ~ for "is on the order of," but we find it convenient. 
 

90.  Strategy The order of magnitude of the volume of water required to fill a bathtub is 10
1 

ft
3

. The order of

magnitude of the number of cups in a cubic foot is 10
2

. Then 10
1   3  10

2 cups
 3 3 

cups

Solution Another chain of logic: Two cups make a pint, two pints make a quart, a quart is roughly a liter, a liter 
is one thousandth of a cubic meter, and two tenths of a cubic meter is plenty of water for a bathtub that will not 
overflow when you get in. Find the order of magnitude of the number of cups of water required to fill a bathtub. 

 

0.2 m
3 1000 L about 1 quart 2 pints 2 cups 

= 800 cups   
 

cups 

1 m
3          

1 L        1 quart 1 pint 

91.  (a) Strategy Inspect the units of G, c, and h and generate three simultaneous equations from how the units (or 

dimensions) must agree across the equality sign when these constants are used to compute a time. 

Solution Do not assume that p, q, and r are integers, but they are dimensionless numbers in 
 

p      q  r                                                            1  m 
p 

   m
3  

q 
 kg1m2   

r
t
Planck 

= c              G   h   , requiring in terms of units   s  =               1 2   1      Then the base units must

 s      kg s        s    
separately appear to the same power on both sides of the equation. For seconds, 1 = –p –2q – r. For meters, 0 
= p + 3 q + 2r. For kilograms, 0 = 0 – q + r. Substitute r = q from the last equation into the first two to get 
down to two equations in two unknowns: 1 = –p –3q and 0 = p + 5q . Now substitute p = –5q from the 
second equation into the first: 1 = +5q –3q . Then q = +1/2. If you tried to solve simultaneous 
equations with determinants, you would have to do much more work to find the other two unknowns. The 

method of substitution makes all the answers after the first come out easily, just as when the cat has kittens. 

From above, p = –5q = –5/2   and r = q = +1/2. We find that the only combination of G, c, and h that has 

the dimensions of time is     
hG      

. 
c 

 

(b)  Strategy Substitute the values of the constants into the expression found in part (a). 

3 
               

 6.6  10 
34 kgm

2   
)  6.7  10 

11 m  
2   )           

 

Solution Find the time in seconds. 
hG  

==                                                            s  (                         kgs     ( 
=  1.3    

43
s

c                                       

(     8m
 

3.0  10  s    )5
 

92.  Strategy The dimensions of L, g, and m are length, length per time squared, and mass, respectively. The period 
has units of time, so T cannot depend upon m. (There are no other quantities with units of mass with which to 
cancel the units of m.) Use a combination of L and g.

Solution In T = Lpgq we require for the units to agree s = mp (m/s2)q  so separately 1 = –2q and 0 = p + q.

 

L 
T = C  g 

 
, where C is a constant of proportionality . 
 

 



Physics Chapter 1: Introduction Chapter 1: Introduction Physics 

 
 
 

 

 
 
 
 

2
3



Chapter 1: Introduction Physics Physics Chapter 1: Introduction 

24 25 

 
 
 

 
 
 

C 

2.20 mile                                                                                                                    

 

 
93.  Strategy The dimensions of k and m are mass per time squared and mass, respectively. Dividing either quantity 

by the other will eliminate the mass dimension, so the equation giving frequency must involve the quotient of m 

and k. 
 

Solution The square root of k m has dimensions of inverse time, which is correct for frequency. So, 

f = C k m. where C is some dimensionless constant. We set up a proportion to find k.
 

f = C      k    , so f 
2 

=   
2   k   

        2  
, or k =    m1 f1    .

1          
m1                

1            
m1                         C2 

Find the frequency of the chair with the 75-kg astronaut.

  k             m1 f1
2             m   

62 kg 10.0 kg  

f     = C         = C              = f 1  = (0.50 s
1

)                                        = 0.46 s
1

2                   m2         C
2

m2       1   m2                             75 kg + 10.0 kg 
 

Discussion. We will study this bouncing of a mass on a spring in a chapter on vibration. Here we see that 

dimensional analysis and proportional reasoning are more powerful than you might imagine. 
 

94.  Strategy Approach it as a unit-conversion problem. 
 

Solution (a) The length of the road section, expressed as a multiple of the distance between reflectors, is 

 5280 ft 1 yd   1 space between reflectors 
= 220 spaces . We may need an extra reflector to

 1 mile  3 ft  17.6 yd                

furnish both ends, so we requisition 221 reflectors. 
 

 1000  1 space between 
(b) As in part (a), 3.54 km = 3.54 km                                                                                                                                              = 221 spaces between,                     so we order         222 reflectors 

    k                  16 m 
in case adjoining road sections have none. 

 

Within the strict limit of doing routing calculations that people have thought of in advance, U.S. customary units 

(or "former British" units) are fine. The reflectors are just 1/100 mile apart. In real life SI units are better. 

Professionals built the Titanic. Noah thought about what he was doing while building the ark. 
 

95.  Strategy and solution. The doctor prescribed ¾ milliliter for each dose. The pharmacist printed ¾ teaspoon for 

each dose, which is larger by 4.9 times. The most common unit-conversion mistake comes from ignoring the 

units. 
 

96.  Strategy. Approach it as a unit-conversion problem. 
 

Solution. The captain (pilot) intended to dive from 1450 m to 1500 ft(1 m/3.28 ft) = 457 m, a downward vertical 

distance of 1450 m – 457 m = 990 m. The first officer (copilot) made the most common unit-conversion mistake: 

ignoring the units.
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97.   (a) Strategy Plot the data on a graph with 

mass on the vertical axis and time on the 

horizontal axis. Then, draw a best-fit 

smooth curve. 
 

Solution See the graph. 
 

 
 
 
 
 

(b)  Strategy Estimate by eye the value of the total mass that the graph appears to be approaching asymptotically. 
 

Solution The graph appears to be approaching asymptotically a maximum value close to 100 g, so the 

carrying capacity is about 100 g . 

(c)  Strategy Plot the data on a graph with the natural 

logarithm of m  m0 on the vertical axis and time on the 

horizontal axis. Draw a line through the points and 

find its slope to estimate the intrinsic growth rate. 
 

Solution We find for the starting point m/m0 = 1 and 

ln(m/m0) = 0. For the first nonzero point , 

m/m0 = 5.9/3.2 = 1.84 and ln(m/m0) = 0.612. We 
compute similarly 

 

Time, h 0 2 4 6 8 

ln(m/m0) 0 0.612 1.22 1.79 2.28 
 

 

From these we plot the graph. Only the zeroth point and the next three lie close to a single straight line, so we 

  m 
omit the point for 8 hours. From the plot of ln m  vs. t, the slope r appears to be 

0

r = 
  1.83 0.0   =

  1.83 = 0.305 h
1    

.

6.0 s  0.0 h     6.0 h 
 

Discussion. Many politicians and economists behave as if our national motto was "In Growth we trust." They put 
their faith in promoting "steady growth" by some nice percentage per year. They try to sell the idea to other 

societies, not understanding that this exponential increase is always unsustainable. An equation like y = At
2 

or y = 

Bt
5 

does not describe exponential growth—those equations are associated with some constant factor of increase in 

y whenever t increases by a constant factor. In the proportionality described by y = Bt
5 

, for example, 

y increases by 32 times whenever t doubles. The exponential function m = m0 e
rt 

is infinitely more sinister. It 
describes m doubling again and again, without limit, whenever t changes by a certain fixed step. From 
ln 2 = 0.693, the doubling time Td for the yeast cells with unlimited resources is given by rTd = 0.693 so 

Td = 0.693/(0.305 h
–1

) = 2.27 hours. As time regularly and inexorably ticks on as 2.27 h, 4.54 h, 6.81 h, 9.09 h, 
… the population of yeast cells counts up in the pattern 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 
8192, … . In every doubling time the population uses up as much resources as they have in all previous history. 
The numbers tabulated in the problem start their increase at "only" 30.5% per hour or 0.5 % per minute. But the 
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numbers show that this exponential growth could not continue even as long as six or eight hours. Again, "steady 
growth" is exponential increase and is unsustainable.
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Conceptual Questions 

Chapter 2 
 

MOTION ALONG A LINE

 

1.  Distance traveled is a scalar quantity equal to the total length of the path taken in moving from one point to 
another. Displacement is a vector quantity directed from the initial point towards the final point with a magnitude 
equal to the straight line distance between the two points. The magnitude of the displacement has no direction, 
and is always less than or equal to the total distance traveled. 

 

2.  The velocity of an object is a vector quantity equal to the displacement of the object per unit time interval. The 
speed of an object is a scalar quantity equal to the distance traveled by the object per unit time interval. 

 

3.  The area under the curve of a vx versus time graph is equal to the x-component of the displacement. 
 

4.  The slope of a line tangent to a curve on a vx versus time graph is equal to the x-component of the acceleration at 

the time corresponding to the point where the tangent line touches the curve. 
 

5.  The area under the curve of an ax versus time graph is equal to the change in the x-component of the velocity. 
 

6.  The slope of a line tangent to a curve on a graph plotting the x-component of position versus time is equal to the x- 
component of the instantaneous velocity at the time corresponding to the point where the tangent line touches the 
curve. 

 

7.  The average velocity of an object is defined as the ratio of the displacement of the object during an interval of 
time to the length of the time interval. The instantaneous velocity of an object is obtained from the average 
velocity by using a time interval that approaches zero. An object can have different average velocities for 
different time intervals. However, the average velocity for one particular time interval has a unique value. 

 

8.  Yes, the instantaneous velocity of an object can be zero while the acceleration is nonzero. When you toss a ball 
straight up in the air, its acceleration is directed downward, with a magnitude of g, the entire time it’s in the air. 
Its velocity is zero at the highest point of its path, however. At previous times its acceleration is associated with 
its upward velocity decreasing. At later times the same acceleration describes the downward velocity increasing in 
magnitude. At the apex of the motion, the same acceleration describes the object's changing direction. 

 

9.  (a) ax > 0 and vx < 0 means you are moving south and slowing down. 
 

(b)   ax = 0 and vx < 0 means you are moving south at a constant speed. 
 

(c)   ax < 0 and vx = 0 means you are momentarily at rest as you change your direction of motion from north to 

south. 
 

(d)   ax < 0 and vx < 0 means you are moving south and speeding up. 

 
(e)  As can be seen from our answers above, it is not a good idea to use the term “negative acceleration” to 
mean slowing down. In parts (c) and (d), the acceleration is negative, but the bicycle is speeding up. Also, in 
part (a), the acceleration is positive, but the bicycle is slowing down. 

 
10.  At the highest point of the coin's motion, it is momentarily at rest, so its velocity is zero. Throughout the coin's 

motion, its acceleration is downward, with magnitude called g, the local free-fall acceleration or the local 
gravitational field. (We ignore air resistance for a coin much denser than air, not shaped like a parachute or potato 
chip, and moving slowly compared to sound.) 

 

11.  The balls cross paths at a height above h/2. From the top of its flight, the first ball moves relatively slowly and for 
the same time interval as the second ball, which has higher speeds in its motion from the moment it is released 
until it meets the first ball. The higher speed of the second ball means it moves over a greater distance than the 
first ball in the section of motion we consider.
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12.         At the highest point of the coin's motion, it is momentarily at rest, so its velocity is zero. Throughout the coin's 

motion, its acceleration is downward, with magnitude called g, the local free-fall acceleration or the local 
gravitational field. (We ignore air resistance for a coin much denser than air, not shaped like a potato chip, and 
moving slowly compared to sound.) 

 

Multiple Choice Questions 
 

1. (c) 2. (d) 3. (a) 4. (b)  5. (c) 6. (a) 7. (b) 8. (a) 9. (a) 10. (c) 11. (a) 12. (a) 13. (d) 14. (c) 15. (d) 
16. (a) 17. (b) 18. (a) 19. (d) 20. (c) 21. + 22. +x 23. –x 24. not changing 25. – 26. +x 27. – 28. 0 
29. –x 30. decreasing 

 

Problems 
 

1.  Strategy Let east be the +x-direction. 

 
Solution Draw a vector diagram; then compute the sum of the three displacements. 
The vector diagram: 

 
 
 
 
 
 

The sum of the three displacements is (32 cm + 48 cm − 64 cm) east = 16 cm east . 
 

Discussion. We would get the same physical answer if we chose west as the positive direction. 
 

2.  Strategy Let the positive direction be to the right. Make a vector diagram with the location of the stone as the 
starting point. 

 
Solution The vector diagram: 

 
 

 
Add the displacements. 
r = 4.0 m right + 1.0 m left + 6.5 m right +8.3 m left 

= 4.0 m right − 1.0 m right + 6.5 m right −8.3 m right 

= 1.2 m right 

The squirrel’s total displacement from his starting point is 1.2 m to the right of the starting point. 
 

3.  Strategy Let east be the +x-direction. 
 

Solution Compute the displacements; then find the total distance traveled. 
 

(a)  The runner’s displacement from his starting point is 
 

r = rf − ri = 20 m west − 60 m east = 20 m west + 60 m west = 80 m west or −80 m . 
 

(b)  Since the runner is located 20 m west of the milestone, his displacement from the milestone 

is 20 m west or − 20 m . 
 

(c)  The runner’s displacement from his starting point is 
 

r = rf − ri = 140 m east − 60 m east = 80 m east or +80 m . 
 

(d)  The runner first jogs 60 m + 20 m = 80 m; then he jogs 20 m + 140 m =160 m. The total distance traveled is 
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80 m + 160 m = 240 m .
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4.  Strategy Let south be the +x-direction. 

 

Solution Draw vector diagrams for each situation; then find the displacements of the car. 

 
 

(a) 
 

 
 
 

x3 − x1 = 12 km − 20 km = −8 km 

The displacement of the car between 3 P.M. and 6 P.M. is 8 km north of its position at 3 P.M. 

 

(b)   

x1 + x2 = 20 km + 96 km = 116 km 

The displacement of the car from the starting point to the location at 4 P.M. is 116 km south of the starting point. 

 
(c) 

 

 

 

x3 − ( x1 + x2 ) = 12 km − 116 km = −104 km 

The displacement of the car between 4 P.M. and 6 P.M. is 104 km north of its position at 4 P.M. 
 

5.  Strategy Use the definition of average velocity. 
 

Solution  Find the average velocity of the train.
 

v 
av 

 

= r = 10 km east − 3 km east = 7 km east  60 min =   30 km h east 

t             3:28 − 3:14                14 min         1 h
 

Discussion. The values of r   depend on the choice of origin, but the values of   r  and  v do not. 
 

6.  Strategy Use the definition of average velocity. 
 

Solution Find the average velocity of the cyclist in meters per second. 

3
v 

av 
= r =  10.0 km east = 10.0 10  m east =   14.3 m s east 

t     11 min 40 s               700 s

 

7.  Strategy Since the swift flies in a single direction, use the definition of average speed and the fact that it flies due 

north. The conversion factor is 1 mi/h = 0.4470 m/s. 
 

Solution Find the average velocity of the swift. 

v   =   r =  3.2 10
3 

m = 98 m s and v    =  r =  3.2 10
3 

m     1 mi h    = 220 mi h , so 
av       t        32.8 s                             av      t          32.8 s        0.4470 m s 

 

vav =  98 m s (220 mi h ) due north . 
 

Discussion. We could have used the conversion factors 1 mi = 1609 m and 1 h = 3600 s. 
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v = 
r    

, so for the Boxster, v = r +186 m or r = vt −186 m. 
av  t av,B  t av,B 

 

po
si

ti
o 

n,
 

m
 

 

 
8.  Strategy Jason never changes direction, so the direction of the average velocity is due west. Find the average 

speed by dividing the total distance traveled by the total time. 

 
Solution The distance traveled during each leg of the trip is given by x = vav t. 

v   =   (35.0 mi h )(0.500 h) + (60.0 mi h )(2.00 h)=+ (25.0 mi h )(10.0 60.0) h  = 53.1 mi h 
av                                               0.500 h + 2.00 h + (10.0 60.0) h 

So, the average velocity is   53.1 mi h due west      . 
 

9.  Strategy When the Boxster catches the Scion, the displacement of the Boxster will be r +186 m and the 

displacement for the Scion will be r. For both cars the t will be the same. 
 

 
1000 

 
 
 
 
 
 
 

500 

 
 
 
 
 
 
 

0 

0                  10                 20                 30                  40 

time, s 

The steeper line represents the motion of the Boxster. The line that starts out on top is the Scion. On the graph it 
appears that the faster car overtakes in about 32 s. We can find a precise value algebraically: 

 

Solution Find the time it takes for the Boxster to catch the Scion. 
 

car 

 

For the Scion,
 

vav,S = 
  r 

 t , so r = vav,St.

Equate the two expressions for r. 

vav,S t = vav,Bt −186 m
(v 

av,S 
− v 

av,B 
)t =  

−186 m

t = 
   186 m     

= 
            186 m            

= 
 186 m  

=  32 s 
v       − v           24.4 m s −18.6 m s      5.8 m s 

av,B      av,S 
 

Discussion. The graph clearly shows the situation of the faster car overtaking the slower car, as the intersection 
of the two lines. The cars have the same position then. The graph complements the precise calculation we have 
done.
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10.  Strategy Use the area under the curve to find the displacement of the car. 

 
Solution The displacement of the car is given by the area under the v x vs. t curve. Under the curve, there are 

16 squares and each square represents (5 m/s)(2 s) = 10 m. Therefore, the car moves 16(10 m) = 160 m . 

Counting squares at 2-s intervals gives the motion diagram 

 
 

200 

 
 

 
150 

 
 
 

100 

 
 

 
50 

 
 
 

0 

0                            5                 10                15                20 
 

time, s                                  The motion diagram is drawn beside the graph, with 

the same scale as the vertical position axis of the graph. It is to be read vertically upward. It shows positions at t = 
0, 2 s, 4 s, 6, s, 8 s, 10 s, and, with the black box, at 12, 14, and 16 s.
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11.  (a) Strategy Use the area between the v y vs. t curve and the x-axis to find the displacement of the elevator. 

 
Solution From t = 0 s to t = 10 s, there are 8 squares. From t = 14 s to t = 20 s, there are 4 squares. Each square 

represents (1 m/s)(2 s) = 2 m. The displacement from t = 14 s to t = 20 s is negative (vy  0). So the total 

displacement is y = 8(2 m) + (−4)(2 m) = 8 m, and the elevator is 8 m above its starting point. 

 
(b) Strategy Use the slope of the curve to determine when the elevator reaches its highest point. 

 

Solution The vertical velocity is positive for t = 0 s to t = 10 s. It is negative for t = 14 s to t = 20 s. It is zero for t 
= 10 s to t = 14 s. So the elevator reaches its highest location at t = 10 s and remains there until t = 14 s before it 

goes down. Thus, the elevator is at its highest location from   t = 10 s to t =14 s . 
 

 

(c)  Strategy and Solution. 

 
The elevator starts from rest at the origin at time zero. It gains upward speed for 2 s, moves steadily upward at 2 
m/s for 6 s, and slows to a stop in another 2 s. It stays at height 16 m above its starting point for 4 s, then gains 
speed moving down for 2 s, coasts steadily down at 2 m/s for 2 s, and comes to a stop at elevation 8 m in a final 
2-s time interval. 

 

 
20 

 

position, m 

 

 
15 

 

 
 

10 

 

 
 

5 
 

 
 

 
(d) 

0 

0                      5                      10                     15                     20 

time, s

 

12.  Strategy and Solution Look at the slope or steepness of the line in each 1-s time interval. 4 to 5 s has the biggest 

(and only) downward slope. 2 to 3 s has zero slope. 0 to 1, 1 to 2, and 3 to 4 s have gentle upward slopes and 

5 to 6 s has the steepest upward slope. 
 

13.  Strategy and Solution Look at the steepness of the line in each 1-s interval without regard for whether it is 

going up or down. The line from 2 to 3 s is flat. 0 to 1, 1 to 2, and 3 to 4s have gentle slopes. 5 to 6 s is steeper 

and 4 to 5 s is still closer to vertical. 
 

Discussion. The answer to this question is just like the answer to question 12, about slope as a signed number, 
except for the placement in the ranking of the one down-sloping section (4 to 5 s). Instead of being placed as the 
smallest actual slope, it is now placed with the biggest absolute value of slope. 

 

14.  Strategy and Solution Look at the slope or steepness of the line in each 1-s time interval. 5 to 6 s has the steepest 

upward slope. 0 to 1, 1 to 2, and 3 to 4 s have gentle upward slopes. 2 to 3 s has zero slope. 4 to 5 s has the 
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biggest (and only) downward slope.
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15. Strategy  Use the graph to answer the question. What color is George Washington's white horse? 

 
Solution  It starts at x = 0 at t = 0 and at t = 3 s is at x = 20 m, so it has moved   20 m    . 

 

16.  Strategy Set up ratios of speeds to distances. 

 
Solution Use v = x/t, write it as v/x = 1/t, apply it to each object, set the expression for the baseball equal 
to that for the softball, and find the speed of the baseball v.

v      65.0 mi/h 65.0 mi/h
           =    

60.5 ft43.0 ft43.0 ft 

,  so v =                     (60.5 ft) = 91.5 mi/h .

 

17.  Strategy Use vector subtraction to find the change in velocity. 
 

Solution Find the change in velocity of the scooter. 

v = v f − vi = 15 m s west − 12 m s east = 15 m s west − ( −12 m s west) =        27 m s west 
 

Discussion. Thinking about a vector change, or a change that is larger than the original value, is a mental step 
that a normal person puts some effort into understanding. 

 

18.  Strategy Determine the maximum time allowed to complete the run. 

 
Solution Massimo must take no more than t =x/v = 1000 m/(4.0 m s) = 250 s to complete the run. Since he 

ran the first 900 m is 250 s, he cannot pass the test because he would have to run the last 100 m in 0 s. 

19.  Strategy Use the area under the curve to find the displacement of the skateboard. 
 

Solution The displacement of the skateboard is given by the area under the v vs. t curve. Under the curve for t 
= 3.00 s to t = 8.00 s, there are 16.5 squares and each square represents (1.0 m/s)(1.0 s) = 1.0 m; so the board 
moves 16.5 m. Counting squares at 1-s intervals from 3 s to 8 s gives the motion diagram 

 

The motion diagram is shown beside 

the graph, with the same scale as the vertical position axis of the graph. It is to be read vertically upward. 
 

20.  Strategy Use the definition of average velocity. 
 

Solution Find the average velocities of the skater. 
 

 

(a)   v       =  x =  6.0 m − 0 =  1.5 m s 
av, x 

t         4.0 s 
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(b)   v       =  6.0 m − 0 =  1.2 m s 
av, x                          

5.0 s
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21.  Strategy The slope of the x vs. t curve is equal to vx . Use the definition of instantaneous velocity. 
 

Solution Compute the instantaneous velocity at t = 2.0 s as the slope of the straight segment going through this 
6.0 m − 4.0 m

point. vx =  

3.0 s −1.0 s 
= 1.0 m s

Discussion. We made a free choice of any two points along the line segment passing through (2 s, 5 m). 

22.  Strategy The slope of each segment (between changes in the slope) of the graph is equal to the speed during that 
time period. 

Solution Find the speed during each time period. 

Then, plot vx  as a function of time.

 

0  t  1 s: vx = 
4  m 

1   s = 4 m s

1  t  3 s: v  = 
6 m − 4 m 

= 1 m s 

x        3 s −1 s 

3  t  5 s: v  = 
6 m − 6 m 

= 0 m s 

x       5 s − 3 s 

5  t  6 s: v  = 
1 m − 6 m 

= −5 m s 

x       6 s − 5 s 

6  t  8 s: v  = 
0 m −1 m 

= −0.5 m s 

x       8 s − 6 s 
 

 
23.  (a) Strategy Let the positive direction be to the right. Draw a diagram. 

 
Solution Find the chipmunk’s total displacement. 

 

80 cm − 30 cm + 90 cm − 310 cm = −170 cm 

The total displacement is 170 cm to the left. 

 
(b)  Strategy The average speed is found by the dividing the total distance traveled by the elapsed time. 

 

Solution Find the total distance traveled.     80 cm + 30 cm + 90 cm + 310 cm = 510 cm 
 

Find the average speed. 
510 cm 

=  28 cm s 
18 s

 

(c)  Strategy The average velocity is found by dividing the displacement by the elapsed time. 
 

Solution Find the average velocity. 
 

r    170 cm to the left
vav = 

t  
=

 18 s 
=  9.4 cm s to the left
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24.  Strategy The average speed is found by dividing the total distance traveled by the elapsed time. 

 
(a)  Solution Find the average speed for the first 10-km segment of the race. 

v  =
10.0  10

3 
m   1 h   = 

 10.0 10
3 

m 
=   4.88 m s 

1           
0.5689 h   3600 s          2048 s 

 

(b)  Solution Find the average speed for the entire race. 
 

v   =   42,195 m    1 h   = 42,195 m =   4.90 m s 
av              

2.3939 h 3600 s        8618 s 
 

25.  Strategy Use the definition of average velocity. Find the time spent by each runner in completing her portion of 
the race. 

 
Solution The times for each runner are given by t = r/v as 

300.0 m  7.30 m s = 41.1 s, 300.0 m  7.20 m s = 41.7 s, and 100.0 m  7.80 m s =12.8 s. The net 

displacement of the baton is 100.0 m to the north, so the average velocity of the baton for the entire race is 
 

vav = 
r 

= 
      100.0 m north       

=  1.05 m s to the north   . 
t     41.1 s + 41.7 s +12.8 s 

 

Discussion. Note the contrast in adding net displacement and total time. Time is not a vector. 
 

26.  Strategy. Use the definition of instantaneous speed as the magnitude of the slope of a tangent to a position- 
versus-time graph. 
Solution. Pick out by eye the steepest slope of the graph in Figure 2.8 as at about 46 s. A tangent line drawn here 
passes through about (34 s, 15 km) and (46 s, –10 m/s) and (56 s, –30 m/s). We can choose any pair of these 
points to find its slope. For best precision we choose the two farthest apart: 

v av  =  r = −30 km −15 km = 2.05  km = 2.05  km 60 min = 1.2    
2
 

 

km/h   .

t      56 min −34 min             min            min  1 h 
 

27.  Strategy Use v = at and solve for t. 

 
Solution 

 

t = 
v 

= 
 22 m s − 0 

=  13 s 

a       1.7 m s
2
 

 

28.  Strategy Use the definition of average acceleration. 
 

Solution 

aav = 
v 

= 
v 

f 
− v

 
t        t 

= 
0 − 28 m s in the direction of the car’s travel 

= 7.0 m s2    in the direction opposite the car’s velocity 
4.0 s 

 

 
 
 
 
 
 
 
 
 
 
 

194



Physics Chapter 2: Motion Along a Line Chapter 2: Motion Along a Line Physics 

195 
 

195 

 

 
 

 
 
 

av                  
s
 

av 

 

 
29.  Strategy Refer to the graph. The absolute value of the slope of a v versus t graph is equal to the magnitude of the 

acceleration. The steeper the slope up or down, the larger the magnitude. 
 

Solution We see directly the steepest slope for the time interval between 5 and 6 s, then between 0 and 1 s, then 
between 1 and 3 s, then between 6 and 8 s, and zero slope between 3 and 5 s. For the instants of time that this 
problem asks about, the ranking in order of the magnitude of the acceleration, from largest to smallest, is 

5.5 s, 0.5 s, 1.5 s = 2.5 s, 3.5 s = 4.5 s . 

 
Discussion. We can calculate the magnitude of the acceleration at each instant by computing the magnitude of 
the slope of the tangent there, which is the slope of the segment of the graph passing through the point. This is 
easy to do by counting boxes, because each box is 1 s by 1 m/s. 

 
 

t (s) 

 

0.5 

 

1.5 

 

2.5 

 

3.5 

 

4.5 

 

5.5 

 

|a| (m/s
2
) 

 
4 

 
1 

 
1 

 
0 

 
0 

 
|–5|=5 

Our ranking is confirmed. 
 

30.  Strategy The acceleration is equal to the value of the slope of the v versus t graph. 

Solution Between 8 and 10 s, for example, we have a = v/t = (0 – 2 m/s)/2 s = –1 m/s2. The sketch of the 
acceleration of the elevator is shown. 

 

 
 

31.  Strategy Use the definition of average acceleration. 
 

Solution Find the average acceleration of the airplane. 

a   =  v =  (35 m s − 0) = 4.4 m s
2 

; thus a 

t            8.0 s 

=  4.4 m  
2 

   

 

forward  .
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32.  Strategy Use the definitions of instantaneous acceleration, displacement, and average velocity. 

 

Solution 
 

(a)  We draw a line tangent to the point at (14.0 s, 55.0 m s). 

 
 

It looks as if the tangent line passes through the point (7.0 s, 45.0 m s). Its slope is then
 

a   = vx =  (55.0 m s − 45.0 m s) in the +x-direction  =   1.4 m s 
x 

 
in the +x-direction

t                              14.0 s − 7.0 s 
 

(b)  The area under the v x vs. t  curve from t = 12.0 s to t = 16.0 s represents the displacement of the body. Each 

grid square represents (10.0 m/s)(1.0 s) = 1.0 10
1 

m, and there are approximately 22 squares under the curve 

for t = 12.0 s to t = 16.0 s, so the car travels 220 m in the +x-direction. 
 
 

(c) v = r =  220 m in the +x-direction =   55 m s in the +x-direction 
av      

t                      4.0 s
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33.  Strategy Follow the directions and note the contrast between average and instantaneous. 

 

Solution 
 

 
 

(a) The average acceleration over the zero-to-eight-second time interval is
 

a      =  v =  0 − 24 m/s = −3.0 m/s
2  

so a 
avg      t         8 s − 0 

 

 
avg 

 

= 3.0 m/s
2 

away from the deer

 

(b) We draw by eye a tangent line at t = 2 s and find its slope from two well-separated points: 

v 
a =  t 

0 − 20 m/s 
   5 s − 0 = −4.0 m   

2
 so a  4.0 m  

2
 
 

away from the deer

 

Discussion One way to estimate the uncertainty is to do an operation a few or several times, using different 
methods if possible, and see how much scatter shows up; or just to apply critical thinking in general. This applies 
to laboratory measurements and to sketching a tangent line. Here, if (0, 20 m/s) and (5 s, 0) are on the straight 
tangent line, the vertical-axis coordinate at t = 2 s should be 20 – 4(2) = 12 m/s. This agrees with the data table, 
so we have some confidence that answer (b) is accurate to two digits.



Physics Chapter 2: Motion Along a Line Chapter 2: Motion Along a Line Physics 

198 
 

198 

 

 
 

 
 
 

 

 
34.  Strategy Consider (say) an 800-m race. For the motion diagram, the dots will be closer together at the beginning 

and at the end of the race than in the middle, to reflect the positive and negative accelerations—speeding up and 
slowing down. The dots can be evenly spaced for the middle of the race as the runner can be running with 
approximately constant speed. Use the definitions of displacement, velocity, and acceleration to sketch the 
graphs. (In a 100-m race, sprinters are taught to speed up all the way and to break the tape when they are moving 
faster than ever before, so there might be no constant-speed portion in the diagram or graphs.) 
Solution Sketch the motion diagram. 

 

 

 

 

 

Sketch the graph of x(t). 
 
 
 
 
 
 
 
 

 
Sketch the graph of vx(t). 

 
 
 
 
 
 
 

Sketch the graph of ax(t). 
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35.  Strategy Use the definitions of position, velocity, and acceleration. Solution 

 

Sketch graphs of x(t), vx(t), and ax(t). Describe the motion in words. 

 
(a)  Since the distance between the dots is increasing to the right, the motion of the object is to the right with 
increasing speed, and the acceleration is positive and to the right. 

 

 
 

(b)  Since the distance between the dots is decreasing to the right, the motion of the object is to the right with 

decreasing speed, and the acceleration is negative and to the left. 

 
 

(c)  Since the distance between the dots is the same and the motion is from right to left, the motion of the object 
is to the left with constant speed, and the acceleration is zero. 

 
 

(d)  The distance between the dots decreases from left to right; then increases from right to left. The object moves 
to the right with decreasing speed, turns around at point 4, and then moves to the left with increasing speed. Since 
the speed decreases when the object moves to the right and increases when it moves to the left, the acceleration is 
negative and to the left. 
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36.  Strategy The magnitude of the acceleration is the absolute value of the slope of the graph at t = 7.0 s. 

 
Solution We choose two well-separated points along the straight section of graph that passes through the t = 7 s 
point. 

vx        0 − 20.0 m s                   2
a x =    

t 
= 

12.0 s − 4.0 s =   2.5 m s

 

 
 

37.  (a) Strategy The acceleration ax is equal to the slope of the vx  versus t graph. Use the definition of average 

acceleration. 

Solution   a      = vx =  14 m s − 4 m s  =   2.0 m  
2 

av, x 

t            11 s − 6 s 

 
(b)  Strategy For constant acceleration, vav, x = (vf + vi )  2.

 

Solution  v 

 

= 14 m s + 4 m s  = 
av, x                                   

2 

 

9.0 m s

 

(c) Strategy  vav, x = x t and x   is the area under the graph in the figure. Find the area. 

Solution Each square represents (1.0 m s)(1.0 s) =1.0 m and there are 195 squares under the graph. So, 

v      =  195(1.0 m) =  9.8 m s   . 
av, x                      

20.0 s 
 

(d)  Strategy At t = 10 s, vx =12 m/s, and at t = 15 s, vx = 14 m/s. 

Solution  vx = 14 m s − 12 m s =   2.0 m s 

 
(e)  Strategy The area under the vx vs. t graph for t = 10 s to t = 15 s represents the displacement of the car. 

 
Solution Each square represents 1.0 m. There are 69 of these squares, so the car has traveled (1.0 m)(69) = 69 m. 

 
Discussion For the section of motion from 6 to 11 s, the graph of v versus t is a single straight line, so a is 

constant, so a constant-acceleration equation like vav, x = (vf + vi ) 2. is true. In part (e), for the section of motion 

from 10 to 15 s, the acceleration does not have a single constant value, so we cannot compute the correct value 

for x from x = ( vf + vi ) t 2. [Try it and see how the answer is tempting but wrong. That is also the reason 
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that the calculation in part (b) does not give the answer to part (c).] On the other hand, we do not really have to 
count squares here. We can take the 10-to-15 s section of motion apart into two constant-a sections: from 10 s 

to 11 s with x = ( vf + vi ) t 2. = (13 m/s)(1 s) = 13 m and from 11 to 15 s with x = vx t = (14 m/s)(4 s) = 

56 m. Then the net displacement is 56 + 13 m = 69 m.
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38.  Strategy The acceleration ax is equal to the slope of the vx versus t  graph. 

Solution Sketch a graph of ax(t) for the car. The constant slope of the curve from t = 6 s to t = 11 s is 

2
a       =  vx  = 14 m s  − 4 m s 

av, x 
=  2.0 m s         .

t           11 s − 6 s 
 

 
           
          

          
          

           
          
          

 

39.  Strategy The acceleration ax is equal to the slope of the vx versus t graph. The displacement is equal to the area 

under the curve. 
 

Solution 
 

(a)   ax is the slope of the graph at t = 11 s. 
 

a   = vx =  10.0 m s − 30.0 m s  =   −10 m s 
x 

t           12.0 s −10.0 s 
 

(b) Since vx is staying constant, ax =       0  at t = 3 s. 
 

(c)  Sketch the acceleration using the vx  versus t graph. 
 

 
 

(d)  The area under the v x vs. t  curve from t = 12 s to t = 14 s represents the displacement of the body. Each 

square represents (10.0 m/s)(1.0 s) = 1.0 10
1 

m, and there is 1 2 square under the curve for t 
= 12 s to t = 14 s, so the car travels 5.0 m. 

 

40.  Strategy Use the idea of instantaneous acceleration as the slope of a tangent to a v-versus-t curve. Use the idea 
of displacement as area on a v-versus-t curve. 

 

Solution. (a) The tangent line drawn at t = 2 s in Figure 2.15 appears to go through (0.5 s, –5 m/s) and
 

 
(3.5 s, –2m/s). Its slope is then a = 

 

−2 − (−5) m/s 
=  +1.0 m/s

2 
3.5 − 0.5  s

 

(b) Method one: Think about cutting the shape bounded by the graph line and the axes out of plywood, turning it 
so that the velocity axis is horizontal, and homing in on a point on the v axis where the shape could be balanced, 
with as much weight of higher speeds on one side as of lower speeds on the other side. We estimate in this way 
that the average velocity is about –2 m/s. 

 

Method two: There are about –9.7 rectangles of area between the graph line and the t axis and between t = 0 and 
t = 10 s. Each rectangle is (2 s)(1 m/s) = 2 m, so the stopping distance is about (–9.7)(2 m) = –19 m. Then the 
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average velocity in the process is vavg = x/t = –19 m/10 s = –1.9 m/s, We think of this estimate as more 

precise than that from method one, so we say the average speed is 1.9 m/s.
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41.  Strategy Since the time intervals are the same, a greater change in distance between each successive pairs of dots 

indicates a greater magnitude acceleration. If there is no change in distance between dots, the acceleration is zero. 
 

Solution The distance between dots in (b) and (c) is constant; therefore, the accelerations are zero. The distance 
between dots in (a) and (d) is increasing, indicating a positive acceleration. The increase is greater for (a) than for 
(d); therefore, (a) represents a greater magnitude acceleration than (d). Ranking the motion diagrams in order of 
the magnitude of the acceleration, from greatest to lest, we have (a), (d), (b) = (c). 

 
Discussion. Start believing that a lot of information is packed into a motion diagram. Use a ruler to demonstrate 
what we state about the changes in distance between the dots. 

 

42.  (a) Strategy Plot the data on a v versus t graph. Draw a best-fit line. 
 

Solution 

 
 

(b)  Strategy The slope of the graph gives the acceleration. 

 
Solution The points appear to lie quite close to the single straight line drawn for comparison, so yes, it is 
plausible that the acceleration is constant. Compute the magnitude of the acceleration.

v   7.2 m s − 0 
a =      =    = 2.4 m s2

t       3.0 s − 0 

2The acceleration is   2.4 m s in the direction of motion  .

 

43.  Strategy Use equations for motion with constant acceleration. 
 

Solution (a) With vix = 200 m/s, vfx =700 m/s, ax = 9.0g = 882. m/s
2 

we want t. We choose vfx – vix = axt to 

v  − v 

find t = 
   fx      ix  

= 
 700 m/s − 200 m/s 

= 5.7 s 

a                        2 
x                  88.2 m/s 

(b) With the same data we can find x from vfx
2 

– vix
2 

= 2axx thus: 

v fx 
2 

− vix 2      (700 m/s)
2 

− (200 m/s)
2      

 
x =                                      =                                                                       =    2.6 km 

2ax                 2(88.2 m/s
2 

)
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s 

=                                      =  86.4 m 

 

 

44.  (a) Strategy The graph will be a line with a slope of 1.20 m
 2 

. 
 

Solution  v x = 0 when t = 0. The graph is shown. 

 
(b) Strategy Use Eq. (2-12). 

 
Solution Find the distance the train traveled.

 

x = vix t + 
1
2 a x (t )

2 
= (0)t + 

1
2 a x (t )

2 
= 

1
2 a x (t)

2

 

1 
(1.20 m s

2 
)(12.0 s)

2 
2 

 

(c)  Strategy Use Eq. (2-13). 
 

Solution   Find the final speed of the train. 

v   − v   = v   − 0 = a t , so v     = a t = (1.20 m s
2 

)(12.0 s) = 14.4 m s   . 
fx            ix              fx                          x                         fx                   x 

 

(d)  Strategy Refer to Figure 2.17, which shows various motion diagrams. 
 

Solution The motion diagram is shown. 

 
 

45.  Strategy Relate the acceleration, speed, and distance using Eq. (2-13). Let southwest be the positive direction. 
 

Solution Find the constant acceleration required to stop the airplane. The acceleration must be opposite to the 

direction of motion of the airplane, so the direction of the acceleration is (− southwest) = northeast. Use the 

acceleration for the slope of the vx(t) curve. 

v  
2 

− v   2        0 − (55 m s)
2

v    2 
− v         

2 
= 2a 

fx         ix 
x , so a 

x 
=    fx                                    ix                   =                                      = −1.5 m s

2 
. 

x                                                   3

2x         2(1.0 10  m) 

2
Thus, the acceleration is  1.5 m s northeast   . The slope is –1.5 m/s

2
. The vx-intercept is 55 m/s. Sketch the

 
 
 
 
 
 
 
 

graph. 
 

Discussion. Do a check: find the area under the curve as the area of a triangle and see if it comes out 
convincingly close to 1000 m. Note the terminology: A graph line is called a curve whether it is curved or 
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straight or has corners. The “shape” of a graph is not a shape like a square or triangle. Instead, the shape of a 
graph can be described as flat, as straight and sloping up or down, as curved and starting from a positive or 
negative value with a positive or negative slope and concave up or concave down, or as a line with corners 
and sections that can individually be described.
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46.  (a) Strategy Between 0 to 2 s the velocity is – 24.0 m s, and between 11 and 12 s the velocity is – 6.0 m s. 

Since the acceleration is constant between 2 and 11 s, draw a straight line between the two horizontal lines 
of constant speed. 

 

Solution Draw the graph. 

 
 

(b)  Strategy Let north be the +x-direction. Use Eq. (2-9) to find the acceleration of the train between 2 and 11 s. 
Before 2 s and after 11 s the acceleration is zero. 

 

Solution 
2 

vfx − vix = a x t , so a x = ( vfx − vix ) t = ( −6.00 m s − [ −24.0 m s]) (9.00 s) = + 2.00 m s   . 

2
The acceleration is  2.00 m s north   .

 

(c)  Strategy We can use Eq. (2-12). 
 

Solution Find the displacement of the train. 

1                                           1               2             2
x = vix t + 2 a x (t )

2 
= ( −24.0 m s)(9.00 s) + 2 (+2.00 m  s )(9.00 s) = −135 m , meaning 135 m south

 
47.  (a) Strategy For motion in a straight line, the magnitude of a constant acceleration is equal to the change in 

speed divided by the time elapsed. 
 

Solution Find how long the airplane accelerated. 
 

a = 
 v 

, so t = 
 v 

= 
 46.0 m s − 0 

=  9.20 s  . 

t                 a        5.00 m s
2
 

(b)  Strategy Use Eq. (2-13). 
 

Solution Find the distance the plane traveled along the runway.

v 
2 

− v 
2 

= v 
2 

− 0 
fx              i x               fx 

 

= 2a 

 

x 
x , so 

2   
x =  vf  x   = 

 (46.0 m s)     
=   212 m  . 

2ax     2(5.00 m s
2 

)

48.  Strategy Use Eq. (2-9) for (a) and Eq. (2-11) for (b). Let the “initial” point be at clock reading 10 s and the 
“final” point be at 12 s. 

 

Solution 
 

(a)  Find the speed at 12.0 s.

v   − v   = a t , so v   = a  t + v   = (2.0 m  
2
 

fx            ix               x                         fx                x                   ix 
)(12.0 s − 10.0 s) + 1.0 m s = 4.0 m s + 1.0 m s =                    5.0 m s   .
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(b)  Find the distance traveled between t = 10.0 s and t = 12.0 s. 
 

x = 1 (v   + v   )t =  1 (5.0 m s + 1.0 m s)(12.0 s − 10.0 s) =     6.0 m 

2   
fx             ix                     

2
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49.  Strategy Find the time it takes for the car to collide with the tractor (assuming it does) by setting the distance 

the car travels equal to that of the tractor plus the distance between them and solving for t. Use Eq. (2-12). Then, 
use the standard relationships for constant acceleration to answer the remaining questions. 

 

Solution Solve for the time in  x for car = x for tractor + 25 m 

(27.0 m s)t +  1 (−7.00 m s
2 

)(t )
2 

= (10.0 m s)t + 25.0 m, so 0 = (3.50 m s
2 

)(t )
2  

− (17.0 m s)t + 25.0 m 

2 
and solving for t we get an imaginary value for the time. Therefore, you won’t hit the tractor. 
Find the distance the car requires to stop.

x  = (v 
2 

− v 
2 

) (2a) = [0 − (27.0 m s 
2
 

c               fc            ic 

] [2(−7.00 m   
2
 )] =          52.1 m  . Since the acceleration of the car is

 

constant, the average speed of the car as it attempts to stop is vc, av = (vfc + vic ) 2 = (0 + 27.0 m s) 2 =13.5 m s. 

Thus, the time required for the car to stop is t = xc vc, av = (52.1 m) (13.5 m s) = 3.86 s. The distance the 

tractor travels in this time is  xt = vt t = (10.0 m s)(3.86 s) = 38.6 m. Now, 38.6 m + 25.0 m = 63.6 m, which is 

63.6 m − 52.1 m =  11.5 m  beyond the stopping point of the car. 

 
Discussion. You might give a convincing solution by assuming the car does not hit the tractor, finding the time 
interval and distance required to stop, and finding where the tractor is when the car comes to rest. Our method is 
good for variety and works even though the tractor is moving faster than the car during the last bit of the car’s 
motion. The 11.5 m is not the minimum distance between the two, which occurs slightly earlier. Note that the 
same equation 2-12 describes the car with one set of numbers. The same equation containing an acceleration term 
describes the tractor with another set of numbers, even though the tractor is moving at constant speed. The set of 
equations for constant acceleration are all you need to describe constant-velocity motion, by substituting a = 0. 

 

50.  (a) Strategy Use Eq. (2-13) to find the constant acceleration of the sneeze. 
 

Solution Find the acceleration of the sneeze as it moves the initial 0.25 cm. 
 

2         2                              2 
2         2                                                 vf  x − vi  x        (44 m s)  − 0                  5      2

vf  x − vi  x  = 2a x x, so ax = 
2x 

=  
2(0.0025 m) 

=  3.9 10  m s     .

 

(b)  Strategy Use Eq. (2-11) to find the time to travel the initial 0.25 cm; then use Eq. (2-12) to find the time to 
travel the remaining 1.75 cm. 

 
Solution Find the time to travel the initial 0.25 cm. 

x =  1 (v   + v  )t , so t =    2x   =  2(0.0025 cm) = 1.1 10
−4 

s = 0.11 10
−3 

s = 0.11 ms.

2   fx       ix                           v
 + v 

ix              44 m s    0

Find the time to travel the remaining 1.75 cm. 

x = v  t + 0, so t = x =  0.0175 cm = 4.0 10
−4 

s = 0.40 ms. 
ix                               v

 
ix             44 m s 

The time the sneeze takes to travel the 2.0-cm distance in the nose is 0.11 ms + 0.40 ms = 0.51 ms. 
 

(c)  Strategy Use the information in parts (a) and (b) to graph vx(t). 
 

Solution Sketch the graph. 
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x = 
  

 

v 
fx 

2 
 − vix 

  
 2  

=
 0 − (26. 

  2ax   2(−1.52 

 

2 

 

 
51.  Strategy Use Eq. (2-13). 

 

Solution Find the distance the train travels in stopping. 

2
8 m s) 

m s
2 

) 

 

= 236 m

236 m > 184 m, so the answer is no; it takes 236 m for the train to stop. 

52.  (a) Strategy Use Eq. (2-13) and Newton’s second law. 
 

Solution Find the final speed of the electrons.

v 
2 

− v 
2 

= v 
2 

− 0 = 2a 
fx         ix          fx 

x = 2x, so 
x

v    =  
fx 

2a 
x 
x  =   2(7.03 10

13 
m/s

2 
)(0.020 m) =          1.7 10

6 
m s      . (Speed is always positive.)

(b)  Strategy Use Eq. (2-12). 
 

Solution  Find the time it takes the electrons to travel the length of the tube.

x = 0 to 2.0 cm:  x   = v t + 1 a  (t )
2 

= 0 +  1 a  (t )
2 

, so (t )
2 

= 

 

2x1 
 

or t = +    2x1 .

1       ix   1      2    x         1               2  x           1                     1          a x              1            ax

x = 2.0 cm to 47 cm:    x  = v  t 
2       fx 

Find the total time. 

, so t 
2                    2 

=  x2 . 
v 

fx

 

t = t   + t    = 
1
 

 

2x1 +x2 =        2(0.020 m)   
v                                 2

 

 

+         0.45 m       =   290 ns 

6

a x         fx            7.0310
13 

m/s 1.677 10 m s

53.  Strategy Refer to the figure. Analyze graphically and algebraically. Each square represents (10 m/s)(1 s) = 10 m. 
Count squares to determine the distance traveled at each time. 

 

Solution Sketch the motion diagram and describe the motion in words. 
 

 
 

The x-coordinates are determined by choosing x = 0 at t = 0. At t = 9.0 s and x = 220 m, the object has its 

maximum speed of 40 m/s. From t = 9.0 s to t = 13.0 s, the speed of the object decreases at a constant rate until it 

reaches zero at x = 300 m. 
 

Graphical analysis: 
 

The displacement of the object is given by the area under the vx vs. t curve between t = 9.0 s and 

t = 13.0 s. The area is a triangle, A = 
1

2 bh. 

x =  1 (13.0 s − 9.0 s)(40 m s) = 80 m 
2 

Algebraic solution: 
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Use the definition of average velocity. 
v  + v 

x = v     t =   ix       fx  t =  40 m s + 0 (13.0 s − 9.0 s) = 80 m 
av, x                   2                      2 

The object goes   80 m . 
 

Discussion The graph shows that the object has different accelerations over the intervals from 0 to 5 s, from 5 to 
9 s, and from 9 to 13 s. If the problem had asked about displacement over a time interval from 3 to 12 s, for the 
algebraic solution we would have been required to figure out the answer in steps, adding distances for three 
different parts of this motion, because the acceleration does not have a single value between 3 s and 12 s.
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54.  Strategy Refer to the figure. Each square represents (10 m/s)(1 s) = 10 m. Count squares to determine the 

distance traveled at each time. 
 

Solution Sketch the motion diagram and describe the motion in words. 
 
 
 
 

 
The x-coordinates are determined by choosing x = 0 at t = 0. At t = 5.0 s and x = 100 m, the object’s speed is 

20 m/s. From t = 5.0 s to t = 9.0 s, the speed of the object increases at a constant rate until it reaches 40 m/s 

at x = 220 m. 
 

Find the slope of the graph to find the acceleration. 

a     = 
40 m s − 20 m s 

= 5.0 m s2 

av, x                             9.0 s − 5.0 s

The acceleration is  5.0 m   
2 

 

in the +x-direction   .

 

55.  (a) Strategy The graph will be a line with a slope of −1.40 m
 2 

. 

 
Solution v x = 22 m s when t = 0. 

 
 

(b)  Strategy Since the train slows down, the acceleration is negative. Use Eq. (2-9). 
 

Solution v   − v   = a t , so v    = v   + a t = 22 m s + ( −1.4 m s
2 

)(8.0 s) =             11 m s   . 
fx             ix              x                           fx              ix              x 

 
(c)  Strategy Use Eq. (2-12) to find the distance the train traveled up the incline. 

 

Solution  x 

 

= x  + v  t +  1 a (t )
2 

= 0 + (22 m s)(8.0 s) +  1 (−1.4 m s
2 

)(8.0 s)
2
 

 

=  130 m

f                  i              ix                        

2  
x                                                                                                                          

2 
 

(d)  Strategy Refer to Figure 2.17, which shows various motion diagrams. 
 

Solution The motion diagram is shown. 
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56.  Strategy Use Eq. (2-12). 

 

Solution Solve for t using the quadratic formula. 

y = v  t +  1 a  (t )
2 

, so  1 a    (t )
2 

+ v t − y = 0.
iy           2     y                2   y                       iy

− vi y   vi  y  + 2a y y      −3.00 m s   (3.00 m s)
2 

+ 2(−9.80 m s )(−78.4 m)

t =                                  =                                                                                          = −3.71 s or 4.32 s 
ay                                                 −9.80 m s 

Since t  0, the brick lands on the ground   4.32 s   after it is thrown from the roof. 

 
57.  Strategy Use Eq. (2-13). 

 

Solution Find the final speed of the penny. 

2
vfy 

2 
− viy 

2 
= vfy 

2 
− 0 = −2 g y , so vfy =   −2 g y = −   −2(9.80 m s )(0 m − 369 m) m s.

 

= −85.0 Therefore, v = 85.0 m s down . 
 

Discussion This is much less than the speed of a rifle bullet. If it hits a person on the head, I do not think it would 
necessarily cause serious harm. If you learned in a different physics course that the free-fall acceleration is 9.81 

m/s
2
, you used the value for the coast of Normandy (at sea level, 45° latitude). But g is 9.80 m/s

2 
in New York, 

across most of the lower forty-eight United States, in southern Europe and China, and in great tracts of southern 
South America, Africa, and Australia. 

 
58.  Strategy If we ignore air resistance, the golf ball is in free fall. Use Eq. (2-12). 

 
Solution 

 
(a)  Find the time it takes the golf ball to fall 12.0 m.

 

v  = 0, so y = − 
iy 

1 g(t )
2 

and t = 

 

−  2y  = 

 

−2(0 −12.0  m) =    1.56 s .

2                                   g            9.80 m s
2

 

 

(b) Find how far the golf ball would fall in 2   
 −2(0 −12.0 m)   

= 3.13 s. 

9.80 m s
2

 
y = − 

1                 
2 g (t )   = − 

1
2 (9.80 m   

2
 

 

)(3.13 s)
2
 
 
= −48.0 m, so the golf ball would fall through 48.0 m.

 

59.  Strategy The final speed is zero for the upward part of his free-fall flight. Use Eq. (2-13). 
 

Solution  Find the initial speed.

v   
2 

− v   
2 

= 0 − v     
2 

= −2 g y , so v        = 
fy                   iy                                iy                                                           iy 

 

2g y =  2(9.80 m s
2 

)(1.3 m − 0) = 5.0 m s      .
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60.  Strategy The acceleration of the camera is given by v y1 / t1, where vy1 = 3.3 m s and t1 = 2.0 s. Use Eq. 

(2-12). 
 

Solution  After 4.0 s, the camera has fallen 

1                        1  vy1               3.3 m s 
y =           a    (t )

2            
=                    (t )

2               
=                          (4.0 s)

2                   
=     13 m       . 

2   y                                 2    t                   2(2.0 s) 

    1 
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2 
− v 

2 
= 0 − v 

2 
= −2 g y = −2 g ( y 

v
iy y   = y +   

 2  (19.6 m s)2   
0 m + 

y                iy iy f             i f              i  

2g 2(9.80 m s
2 

) 

 

) 

) 

 b  

g (t )         (9.80 m s   )(3.0 s) 

2 

 

 
61.  Strategy Use Eq. (2-12) to find the time it takes for the coin to reach the water. Then, find the time it takes the 

sound to reach Glenda’s ear. Add these two times. Let h = 7.00 m. 
 

Solution Find the time elapsed between the release of the coin and the hearing of the splash.

h = v  t +  1 a   (t  
2 = 0 +  1 g (t  

2 
 

, so t =    2h .    Then  h = v t  , so t   =  h  .

iy          2  y                        2          1               1          g                           s     2                    2        v 
s

Therefore, the time elapsed is t = t + t    = 
1 

2h +  h  =  2(7.00 m)  +  7.00 m =  1.22 s  .

g     vs          9.80 m s
2      

343 m s 

Discussion Note the contrast: Sound is a wave, not an object with mass. So sound can behave as if it had infinite 
acceleration, immediately traveling off from its source at full speed. If you knew the time for a somewhat deeper 
well, could you find the depth? Suppose the time is 2.20 s and try it. Figure out how to get 22.3 m. 

 

62.  (a) Strategy The stone is instantaneously at rest at its maximum height. Use Eq. (2-13). 
 

Solution Find the maximum height of the stone. 

v                                                              − y ), so 
f 

= 1.5 =  21.1 m .

 
(b)  Strategy The stone is instantaneously at rest at its maximum height of 21.1 m. Use Eq. (2-12). 

 

Solution Method one: Going up 21.1 m − 1.50 m =19.6 m (to rest) takes the same time as falling down 19.6 m 

2
(from rest), so y   =    1 g (t )

2 
, or t =  2(19.6 m)  (9.80 m s ) = 2.00 s. Falling 21.1 m from rest takes

up     2          up                 up 
2

t        = 
down 

2(21.1 m) (9.80 m s ) = 2.08 s. The total time elapsed is 2.00 s + 2.08 s = 4.08 s    .

 

Method two: The velocity clearly reverses sign between the upward part of the flight and the downward part, but 
the acceleration is the same: 9.80 m/s

2 
down. So we can describe the whole flight with one constant-acceleration 

equation. We use y = vyit – (1/2)gt
2
, or –1.50 m = 19.6 m/s t – 4.9 m/s

2 
t
2 

. With the requirement t > 0 we 
transpose all the terms to the right-hand side and solve with the quadratic formula:

            b 
2 

− 4ac 
t = − ( −19.6 m/s) + (−19.6 m/s)

2 
− 4(+4.90 m/s

2 
)(−1.50 m) 

=                                                                                              = 4.08 s

2a                                                     +9.80 m/s
2
 

63.  Strategy Use Eqs. (2-12), (2-13), and (2-9). Let the +y-direction be down. 
 

 

1         2     1                   2           2 
Solution (a) Without air resistance, the lead ball falls  y = 

2            
=  

2                                           
=  44 m  .

 
 

(b)  The lead ball is initially at rest. Find the speed of the ball after it has fallen 2.5 m. 

v  2 
− 0 = 2g y , so v                   =    2g y  =  2(9.80 m s

2 
)(2.5 m) =                              7.0 m s     . 

fy                                                                   fy 

 

(c) After 3.0 s, the lead ball is falling at a speed of  v y = 0 + g t = (9.80 m s
2 

)(3.0 s) = 29 m s  .
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(d)  Find the change in height of the ball when t = 2.42 s.

  1 
y = viy t + 

    1 
2 g (t )   = (4.80 m s)(2.42 s) + 

 

2 (9.80 m   
2
 

 

)(2.42 s)
2
 

 
=17.1 m

The ball will be 17.1 m below the top of the tower. 
 

Discussion Do it yourself with the choice of the y direction pointing up. Prove that the physical meaning of all 
your answers is the same. Remember that a square root can be either positive or negative. The mass of the ball 
and the height of the tower are unnecessary for the solution. 


