CHAPTER 2. CHAPTER 2 Racing, Mathematically

Solution Manual for Physics of Sports 1st Edition Lisa ${ }^{23}$, 00735139709780073513973

Full link download:
Solution Manual:
https://testbankpack.com/p/ solution-manual-for-physics-of-sports-1st-edition-lisa-0073513970-

9780073513973/

1. Whatisthecontactimebetweenthepuckandthestickinexample? ??

$$
\begin{aligned}
& a_{x}=495 \mathrm{~m} / \mathrm{s}^{2} \quad V_{x 0}=\varnothing \quad V_{x}=24.6 \mathrm{~m} / \mathrm{s} \\
& a_{x}=\frac{\Delta v_{x}}{\Delta t} \rightarrow \Delta t=\frac{4 v_{x}}{a_{x}}=\frac{24.6 \mathrm{~m} / \mathrm{s}-\theta}{495 \mathrm{~m} / \mathrm{s}^{2}} \\
& =0.05 \mathrm{~s}=50 \mathrm{~ms}
\end{aligned}
$$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
2. In figure 2.1, a runner's position is plotted as a function of time.
(a) Graphically estimate her velocity at $\mathrm{t}=3$ seconds.
(b) Forthe whole run, what is her average speed, in m / s ?
(c) On two grids, roughly sketch herspeed as a function of time and heracceleration asa function oftime. Include numbers on theaxes.
(d) Is this run near Olympic standards?

a) slope $=V_{x}$

$$
\left.\begin{array}{l}
=\frac{v_{x}}{7 \mathrm{~m}-1 \mathrm{~s}} \\
=5 \mathrm{~m} / \mathrm{s}
\end{array}\right\} \Rightarrow
$$

Figure 2.1: Problem 2.
b) $\bar{V}_{x}=\frac{\Delta x}{\Delta t}=\frac{200 \mathrm{~m}}{25 \mathrm{~s}}=8 \mathrm{~m} / \mathrm{s}$

$c)$

$$
\text { slope } \sim 2 m / s^{r}
$$

$$
2-
$$

d) her time of $\sim 23 \mathrm{sec}$ is near Olympic standards

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
3. A baseball is thrown straight up with a velocity of $30 \mathrm{~m} / \mathrm{s}$. Indicating both the magnitude and direction of the velocity...
a) what is the ball's velocity two seconds after being thrown?
b) 4 seconds after being thrown?

$$
\begin{aligned}
& v_{0 y}=30 \mathrm{~m} / \mathrm{s} \quad a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { a) } v_{y}=v_{0 y}+a_{y} \Delta t=30 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s})=+10.4 \mathrm{~m} / \mathrm{s} \\
& \rightarrow 10.4 \mathrm{~m} / \mathrm{s} \quad \mathrm{up} \\
& \text { b) } v_{y}=v_{0 y}+9 y \Delta t=30 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(4 \mathrm{~s})=-9.2 \mathrm{~m} / \mathrm{s} \\
& \rightarrow 9.2 \mathrm{~m} / \mathrm{s} \text { down }
\end{aligned}
$$

4. Arunneris moving at $5 \mathrm{~m} / \mathrm{satt}=2 \mathrm{~s}$, andbyt $=5 \mathrm{~s}$, she moves at $11 \mathrm{~m} /$ sin the same direction. What is her average acceleration?

$$
\bar{a}_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{\| \mathrm{m} / \mathrm{s}-5 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}-2 \mathrm{~s}}=2 \mathrm{~m} / \mathrm{s}^{2}
$$

5. Alotofconfusion about"floating"comes from the fact thatabig jumper spends so much time near the very peak of his jump.
a) Ifabasketballplayerjumps 36 inches straightup, forhowlongis he in the air?
b) Forhow long is he within 9 inches of the top of his jump?
c) What fraction of the time is he in the top 9^{000} ?
a) hangtime: $h=36 \mathrm{in}=3 \mathrm{ft}$

$$
T_{\text {hang }}=2 \sqrt{\frac{2 h}{9}}=2 \sqrt{\frac{2(3 \mathrm{ft})}{32 \mathrm{ft} / \mathrm{s}^{2}}}=0.866 \mathrm{~s}
$$

b) easiest way: consider the time it takes to fall 9 inches, and double that. (it's also the same as T $_{\text {rang }}$ for 9 inches, but that's not always obvious to students)

$$
T_{f a l l}=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \cdot 0.75+t}{32+t / \mathrm{s}^{2}}}=0.2165 \mathrm{~s}
$$

$\Rightarrow \quad 0.433 \mathrm{~s}$ spent in top $9^{\prime \prime}$

c) fraction of entire jump time spent in top $9^{\prime \prime}$:

$$
\frac{0.433 \mathrm{~s}}{0.866 \mathrm{~s}}=50 \%
$$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
6. L.A. Dodgers centerfielder Matt Kemp is one of the fastest players in baseball today, near the top of stolen base lists. He's been clocked at 22 mph , not too far from Bolt's peak speed, shown in figure ??. Kemp rounds second and is racing towards third at 24 mph .
a) If he maintains a constant speed, how long does it take for him to cover the final 12 feet to third?
b) Ofcourse,coming into $3^{\text {rd }}$ base atfullspeed means thatthe runner will likely overrun the base. Therefore, the basecoachsignalsKemp to slide the final 12 feet.Hedoes so, decelerating at a constant rate, coming to rest precisely on the base. What is the magnitude of his acceleration? Howdoes this compare tothe acceleration due to gravity? c) By sliding, how much more time has Kemp taken to reach the bag?
I.e. how long does it take him to cover the final 12^{0} when sliding, and how does that compare with your answer to part (a)?
a) $V_{x}=22 \mathrm{mph} \cdot \frac{146.7 \mathrm{f} / \mathrm{s}}{100 \mathrm{mph}}=32.3 \mathrm{ft} / \mathrm{s}$

$$
\Delta t=\frac{\Delta x}{v_{x}}=\frac{12 \mathrm{ft}}{32.3 \mathrm{ft} / \mathrm{s}}=0.37 \mathrm{sec}
$$

b) $\quad V_{x}{ }^{2}=$

$$
\begin{aligned}
& V_{0 x}^{2}+2 a_{y} \cdot \Delta x \\
& a_{x}=\frac{v_{x}^{2}-v_{0 x}^{2}}{2} \Delta x=\frac{\theta-(32.3 \mathrm{ft} / \mathrm{s})^{2}}{2 \cdot(12 \mathrm{ft})}=-43.5 \mathrm{ft} / \mathrm{s}^{2} \\
& \frac{a_{a}}{g}=\frac{-43.5 \mathrm{f} / \mathrm{s}^{2}}{32 \mathrm{ft} / \mathrm{s}^{2}}=-1.36 \quad a_{x}=1.369
\end{aligned}
$$

c) $a_{x}=\frac{\Delta v_{x}}{\Delta t} \rightarrow \Delta t=\frac{\Delta v_{y}}{a_{x}}=\frac{-32.3 \mathrm{ft} / \mathrm{s}}{-43.5 \mathrm{ft} / \mathrm{s}^{2}}=0.74 \mathrm{~s}$
sliding doubles the time required to reach the bag.

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

CHAPTER 2. CHAPTER 2 Racing, Mathematically
7. A distance runner completes one mile in 5 minutes. What is his average velocity, in m / s ?

$$
V_{x}=\frac{\Delta_{x}}{\Delta t}=\frac{1 \mathrm{mi}}{5 \text { min }} \cdot \frac{1609 \mathrm{~m}}{1 \mathrm{mi}} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=5.3 \mathrm{r} / \mathrm{s}
$$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
8. A Ferrari Scaglietti has an acceleration of $5.9 \mathrm{~m} / \mathrm{s}^{2}$, whichwe assume constant. How far down the track has it gone, 5 seconds after it's jumped o the starting line?

$$
\begin{aligned}
\Delta_{x} & =v_{0 x} \Delta t+\frac{1}{2} a_{r} \Delta t^{2}=\theta+\frac{1}{2}\left(5.9 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})^{2} \\
& =73.75 \mathrm{~m}
\end{aligned}
$$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
9. When an object accelerates at $9.8 \mathrm{~m} / \mathrm{s}^{2}\left(\right.$ or $\left.32 \mathrm{ft} / \mathrm{s}^{2}\right)$, we say it acceler- ate with one "gee" (g).Thisistrue whethertheobjectisfallingunder gravity, or due to something else. Using the constant-acceleration ap- proximation we've discussed in this chapter, how many "gee's" describe the following situations?
(a) Cedar Point's TopThrill Dragster (an awesome ride, by the way): According to the park, it goes $0-120 \mathrm{mph}$ in 3.8 seconds on the hori- zontal track, before turning up vertically.
(b) A football kick : The ball is initially at rest on the tee. After be- ing in contact withthekicker'sfootforonly 8 ms , itleavesthekicker's foot at $85 \mathrm{ft} / \mathrm{sec}$.

$$
\text { a) Top Thrill: } \begin{aligned}
a=\frac{\Delta v}{\Delta t} & =\frac{120 \mathrm{mph}}{3.8 \mathrm{~s}} \cdot \frac{44.7 \mathrm{~m} / \mathrm{s}}{100 \mathrm{mph}}=14.1 \mathrm{~m} / \mathrm{s}^{2} \\
\frac{9}{g} & =\frac{14.1 \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=1.44 \rightarrow 0.4 .44 \mathrm{~g}
\end{aligned}
$$

b) Kick off : $a=\frac{85 \mathrm{ft} / \mathrm{s}}{0.008 \mathrm{~s}}=10625 \mathrm{ft} / \mathrm{s}^{2}$

$$
\frac{a}{g}=\frac{10625 \mathrm{ft} / \mathrm{s}^{2}}{32 \mathrm{ft} / \mathrm{s}^{2}}=332 \rightarrow a=332 \mathrm{~g}
$$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
10. On the left in figure 2.2 are four sketched graphs of position versus time.
(a) Which velocity-versus-time graph (on the right) corresponds with each position-versus-time graph?
(b) Which of the velocity-versus-time plots) could correspond to mo-tion under a constant, non-zero acceleration?

a)

d)

2)

b)

e)

3)

c)

f)

4)

Figure 2.2: Problem 10.

$$
\text { b) const } a: b, e, f
$$

11. Unaware that you have taken a physics class, a major league pitcher claims that he can throw a baseball from the ground, straight up as high as the Empire State Building, which is 1250 feet tall.
(a) At what speed would he have to throw the ball, to accomplish this?
(b) Approximately how fast can a major league pitcher throw a ball?
(c) Using your answer from part (b), how high would the ball go, if thrown straight up?

$$
\text { a) } \begin{aligned}
h=\frac{v_{1 y}^{2}}{29} \longrightarrow v_{0 y}=\sqrt{29 h} & =\sqrt{2 \cdot\left(32 \mathrm{ft} / \mathrm{s}^{2}\right)(1250 \mathrm{ft})}=283 \mathrm{ft} / \mathrm{s} \\
& =283 \mathrm{ft} / \mathrm{s} \times \frac{100 \mathrm{mph}}{146.7 \mathrm{ft} / \mathrm{s}}=193 \mathrm{mph}
\end{aligned}
$$

b) The best can hit about $100 \mathrm{mph}=146.7 \mathrm{ft} / \mathrm{s}$
c) $h=\frac{V_{0}^{2}}{29}=\frac{(146.7 \mathrm{ft} / \mathrm{s})^{2}}{2\left(32 \mathrm{ft} / \mathrm{s}^{2}\right)}=336 \mathrm{ft}$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
12. Therearemany legendsofbasketballplayers with 2 -second hangtimes. This would mean 1 second on the way up, and one second coming back down.
a) Howhigh would hisfeetbe above the floor, at the peak of the jump?
b) Atwhatspeedwouldtheplayercomecrashingbackdownontothe hard floor?
c) Is such a jump plausible?

> a) $T_{\text {hang }}=2 \sqrt{\frac{2 h}{g}} \rightarrow h=\frac{T_{\text {hang }}^{2} g}{8}=\frac{(2 \mathrm{~s})^{2}\left(32 \mathrm{ft} / \mathrm{s}^{2}\right)}{8}=16 \mathrm{ft}$
> b) $v=\frac{g T_{\text {hang }}}{2}=\frac{\left(32 \mathrm{ft} / \mathrm{s}^{2}\right)(2 \mathrm{~s})}{2}=32 \mathrm{ft} / \mathrm{s} \times \frac{100 \mathrm{mph}}{146.7 \mathrm{ft} / \mathrm{s}}=22 \mathrm{mph}$
c) no .

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
13. Hockey players have to react fast in a face-ot . If the ref throws down the puck from waist-level at 18 feet/sec, how long does it take to hit the ice? How does this compare to human reaction time?
$\Delta_{y} \simeq-3 \mathrm{ft}$ (\sim waist level)

$$
\begin{aligned}
& v_{y}{ }^{2}=V_{0 y}{ }^{2}-29 \Delta y=(-18 \mathrm{ft} / \mathrm{s})^{2}-2\left(32 \mathrm{ft} / \mathrm{s}^{2}\right)(-3 \mathrm{ft})=516 \mathrm{ft} / \mathrm{s}^{2} \\
& v_{y}=-22.7 \mathrm{ft} / \mathrm{s} \\
& a_{y}=-g=\frac{\Delta v_{y}}{\Delta t} \rightarrow \Delta t=\frac{\Delta v_{y}}{-9}=\frac{-22 \cdot 7 \mathrm{ft} / \mathrm{s}-(-18 \mathrm{ft} / \mathrm{s})}{-32 \mathrm{ft} / \mathrm{s}^{2}} \\
& =0.147 \mathrm{~s}
\end{aligned}
$$

\sim the same or a little
larger than human reaction time $(100-150 \mathrm{~ms})$
2.2
14. Denard Robinson has one of the fastest 40 -yd times, with an average speed of 18.94 mph . As we said in section ??, though, 40 -yd times
are often "hand-measured," and do not include human reaction time as track and field events do. If an additional 150 ms were added to Robinson's time, to account for reaction time, what would his average speed be, in mph?

including reaction time: $\Delta t=4.31 \mathrm{Rs}+0.150 \mathrm{~s}=4.669 \mathrm{~s}$

$$
\Longrightarrow \bar{V}_{x}=\frac{120 \mathrm{ft}}{4.669 \mathrm{~s}}=25.70 \frac{\mathrm{ft}}{3} \times \frac{100 \mathrm{mph}}{146.7 \mathrm{ft} / \mathrm{s}}=17.5 \mathrm{mph}
$$

15. In Olympic diving, the time one spends in the airdetermines the numb- ber of somersaults andtwists the athlete canattempt. On the 3-meter springboard, thediver'sc.m.firstrises by 1 m , then falls to the water. On the $10-\mathrm{m}$ platform dive, the diver more or less falls vertically, with very little initial rise.
a) According to your impression, which diver spends more time in the air?
b) How long is the $10-\mathrm{m}$ platform diver in the air?
c) How long is the $3-\mathrm{m}$ springboard diver in their?
a) MY impression: springboard spends more time in the air
b) $T_{\text {foll }}=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2.10 \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=1.42 \mathrm{~s}$
c) Take it in 2 parts
i) rise:

$$
T_{\text {rise }}=\sqrt{\frac{2 \mathrm{~h}}{9}}=\sqrt{\frac{2 \cdot 1 \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}}=0.45 \mathrm{~s}
$$

ii) fall

$$
\begin{aligned}
T_{\text {fall }} & =\sqrt{\frac{2 h}{9}}=\sqrt{\frac{2 \cdot(4 \mathrm{~m})}{9}}=0.903 \mathrm{~s} \\
\rightarrow \text { total }: \Delta t & =0.45 \mathrm{~s}+0.903 \mathrm{~s}=1.353 \mathrm{~s}
\end{aligned}
$$

\rightarrow slightly longer on $10-\mathrm{m}$
initial impression that Δt is larger on springboard driven by fact that much of the motion there is at much lower speeds

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
16. Referring to table ?? and figure ??, what Was Michael Phelps's average speed on the backstroke portion of his 2008 400-m medley? What was his average velocity on that portion?

$$
\begin{aligned}
\text { Speed } & =\frac{\text { distance }}{\Delta t}=\frac{100 \mathrm{~m}}{61.57 \mathrm{~s}}=1.62 \mathrm{~m} / \mathrm{s} \\
\bar{U}_{x} & =\frac{\Delta x}{\Delta t}=\theta\left(X_{\text {begin }}=X_{\text {end }}\right)
\end{aligned}
$$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
17. Baseball players report that pitches are faster in Denver due to the lower air density there. But can drag really be a noticeable er ect for such a short flight? In chapter ??, we will be discussing the et acts of air, but let's get a feel for these ed acts right now. Consider 95 mph fastball thrown the $60^{\circ} 6^{00}$ from mound to plate. Don't worry about the vertical motion of the ball-we just care about horizontal.
a) Ifittravels atconstant velocity, how long doesittake to reach the plate?
b) Air drag tends to "decelerate" the ball at about $32 \underline{\underline{\mathrm{ft}}}$ (or 9.8 m) $_{8} \quad \mathrm{~s} 2$ which is (rather coincidentally) one gee. If we account for drag how long does the ball's journey take?
c) To get a feeling of whether air drag really matters, compare the dit erence between your answers to (a) and (b), with the time bat takes to cross the plate. Is the di \downarrow erence between your answers to (a) and (b)muchlargerthanthistime, much smaller than this time, about the same? Toanswerthis question, youneed toknow that the bat is typically moving atabout 70 mphas it crosses the plate and that the plate is about 1^{0} long.
a) $v=95 \mathrm{mph} \cdot \frac{146.7 \mathrm{ft} / \mathrm{s}}{100 \mathrm{mph}}=139.4 \mathrm{ft} / \mathrm{s}$

$$
\Delta t=\frac{\Delta x}{v_{x}}=\frac{60.5 \mathrm{ft}}{139.4 \mathrm{ft} / \mathrm{s}^{2}}=0.43 \mathrm{~s}
$$

b) $v_{x}^{2}=v_{x 0}^{2}+2 a_{x} \Delta x=(139.4 \mathrm{ft} / \mathrm{s})^{2}+2\left(-32 \mathrm{ft} / \mathrm{s}^{2}\right)(60.5 \mathrm{ft})=15,560 \mathrm{ft} / \mathrm{s}^{2}$

$$
v_{x}=124.7 \mathrm{ft} / \mathrm{s}
$$

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t} \rightarrow \Delta t=\frac{\Delta v_{x}}{a_{x}}=\frac{124.7 \mathrm{ft} / \mathrm{s}-139.4 \mathrm{ft} / \mathrm{s}}{-32 \mathrm{ft} / \mathrm{s}^{2}}=0.459 \mathrm{~s}
$$

c) Difference due to air: $\Delta t_{\text {with }}^{\text {air }}-\Delta t_{\substack{\text { withal } \\ \text { intr }}}=0.459 \mathrm{~s}-0.430 \mathrm{~s}=0.029 \mathrm{~s}$ Bat @ 70 mph crossing 1 ft plate. $\Delta t=\frac{1 \mathrm{mp}-\frac{146.77 / \mathrm{s}}{100 \mathrm{mph}}}{70}=0.01 \mathrm{~s}$ $\underset{\text { copyright } 0 \text { 2016 McGraw-Hill }}{\longrightarrow}$ yes timing due to air is significant relative to this scale Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without
18. Wewillstudyaerodynamic forces in chapter??, butyoualready know that air drag will slow a table tennis ball speeding through the air. Professionals like J orgen Persson and fellow Swede Jan-Ove Waldner have had some epic matches. In one, Persson smashedaball at 47 mph athisedge of the table. By thetimeithadcrossedtothe other side of the 9° table, it had slowed to 40 mph .
a) In g's, what was the acceleration of the ball due to drag?
b) How long did the ball take, to cross the table?
c) How does your answer in (b) compare to typical human reaction time?
d) How much time was added due to the air drag? That is, how much more quickly wouldtheballhavecrossedthetable,ifithadcontinued at 47 mph on its entire trip?
e) In order to have enough time to react, Walden was not standing at the edge of the table, but 15 feet behind it. Assuming the same acceleration as youfound in (a), how longdoesittaketheballtoreach him, once Persson hit it?
f) Make motion graphs: sketch the velocity and position of the ball as a function of time.

$$
\begin{aligned}
& \text { a) } \begin{aligned}
v_{0 x}= & 47 \mathrm{mph} \cdot \frac{146.7 \mathrm{ft} / \mathrm{s}}{100 \mathrm{mph}}
\end{aligned}=68.95 \mathrm{ft} / \mathrm{s} \\
& v_{x}
\end{aligned}=40 \mathrm{mph} \frac{146.7 \mathrm{ft} / \mathrm{s}}{100 \mathrm{mph}}=58.7 \mathrm{ft} / \mathrm{s} .
$$

Problem 18, cont'd
d) with no drag : $\Delta t=\frac{\Delta x}{v_{x}}=\frac{9 \mathrm{ft}}{68.95+t / \mathrm{s}}=0.13 \mathrm{~s}$
$\rightarrow 0.01 \mathrm{~s}=10 \mathrm{~ms}$ was able due to drag
e)

$$
\begin{aligned}
& \Delta x=9 \mathrm{ft}+15 \mathrm{ft}=24 \mathrm{ft} \\
& v_{x}^{2}=v_{0 x}^{2}+2 a_{x} \Delta x \\
& \longrightarrow v_{x}
\end{aligned}=\sqrt{(68.95 \mathrm{f} / \mathrm{s})^{2}+2\left(-72.7 \mathrm{ft} / \mathrm{s}^{2}\right)(24 \mathrm{ft})} .
$$

f)

19. In November 2011, Miami Dolphins running back Reggie Bush was fined $\$ 7500$ for "excessive celebration" after a touchdown when he par- posely slid 7 yd in the wet endzone, coming torest right in front of a TV camera. He was moving at $25 \mathrm{ft} / \mathrm{s}(8.3$ yd / s) when he began his slide.
a) What was his average acceleration?
b) How long (in seconds) did his slide last?
$\Delta x=7 y d=21 \mathrm{ft}$
$v_{0 x}=25 \mathrm{ft} / \mathrm{s}$
$v_{x}=\varnothing \quad$ (stopped at end)
a) $v_{x}^{2}=v_{0 x}^{2}+2 a_{x} \Delta x \rightarrow a_{x}=\frac{v_{x}^{2}-v_{0 x}^{2}}{2 \Delta x}=\frac{\theta^{2}-(25 \mathrm{ft} / \mathrm{s})^{2}}{2 \cdot(21 \mathrm{ft})}=-14.9 \mathrm{ft} \mathrm{s}^{2}$
b) $\Delta t=\frac{\Delta v_{x}}{a_{x}}=\frac{-25 \mathrm{ft} / \mathrm{s}}{-14.9 \mathrm{ft} / \mathrm{s}^{2}}=1.68 \mathrm{~s}$
20. As clearly as you can, draw $\boldsymbol{x} t$ and $\nleftarrow t$ graphs for a basketball player running the full length of the court-from one basket to another-at 19 mph for a break-awaylay-up, then, over the course of 1 second, turning around and finally moving back to play defense under the hoop at 16 mph . You need to put numbers on all axes.

* ${ }^{*}$

Length of NBA court: 94 ft (google)
Running to one end: $v=19 \mathrm{mph} \times \frac{147.6 \mathrm{ft} / \mathrm{s}}{100 \mathrm{mph}}=27.9 \mathrm{ft} / \mathrm{s}$

$$
\rightarrow \Delta t=\frac{94 \mathrm{ft}}{27.9+t / s}=3.37 \mathrm{sec}
$$

Running back: $v=16 \mathrm{mph} \times \frac{146.7 \mathrm{ft} / \mathrm{s}}{100 \mathrm{mph}}=23.5 \mathrm{ft} / \mathrm{s}$

$$
\rightarrow \Delta t=\frac{94 \mathrm{ft}}{23.5 \mathrm{ft} / \mathrm{s}}=4 \mathrm{~s}
$$

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
21. In hisrecord-settingsprintinBerlin,UsainBolt'ssplittimeatthe20- m mark was 2.88
s.
a) Accountingforthefactthathedidn'tstartmovinguntilt $=0.146 \mathrm{~s}$, duetoreaction time, what was his average acceleration in this interval?
Give youranswerin ${ }^{\underline{m}} \quad{ }_{5}$ 2 2 and gee's.
b) HowdoesthiscomparewithaFordMustang,whichgoesfrom0to 60 mph in 5 s ?

$$
\begin{aligned}
& \begin{aligned}
& \Delta t_{\text {while }}=2.88 \mathrm{~s}-0.146 \mathrm{~s}=2.734 \mathrm{~s} \\
& \text { running }
\end{aligned} \\
& \text { a) } \begin{aligned}
\Delta x & =\gamma_{\text {ox }} \Delta t+\frac{1}{2} \overline{a_{x}} \Delta t^{2} \\
& \\
& \bar{a}_{x}
\end{aligned}=\frac{2 \Delta x}{\Delta t^{2}}=\frac{2 \cdot(20 \mathrm{~m})}{(2.734 \mathrm{~s})^{2}}=5.35 \mathrm{~m} / \mathrm{s}^{2} \\
& \frac{\overline{a_{x}}}{9}=\frac{5.35 \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=0.546 \rightarrow \bar{a}_{x}=0.546 \mathrm{~g}
\end{aligned}
$$

b) Ford $0-60 \mathrm{mph}$ in $\Delta t=5 \mathrm{~s}$

$$
\begin{aligned}
& \Delta v_{x}=60 \mathrm{mph} \cdot \frac{44.7 \mathrm{~m} / \mathrm{s}}{100 \mathrm{mph}}=26.82 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \bar{a}_{x}=\frac{4 v_{x}}{\Delta t}=\frac{26.82 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=5.36 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

identical accelerations!

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
22. If a race is begun with a starting pistol like the one in figure ??, the runner nearest the gun might in principle have an advantage over his peers, since the sound reaches his ears before it reaches theirs. Topre- vent even this small unfairness, modern meets use a system of speakers behind the starting block of each competitor that sound simultaneously to start the race. But does it really matter? Let's see.
a) A track lane is 4^{0} wide. If the starter with the pistol stands on the inside of the track (next to lane 1), then how much sooner does the runner in lane 1 hear the report of a gun, as compared to the runner in lane 9 ?
b) How does this time dit erence compare with, say, the amount by which world records are broken?

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

