Solution Manual for Prealgebra 5th Edition Lial Hestwood 03218450219780321845023
 Full link download
 Test Bank:
 https://testbankpack.com/p/test-bank-for-prealgebra-5th-edition-lial-hestwood-0321845021-9780321845023/

Solution Manual:
https://testbankpack.com/p/solution-manual-for-prealgebra-5th-edition-lial-hestwood-0321845021-9780321845023/

CHAPTER 2 UNDERSTANDING
 VARIABLES AND
 SOLVING
 EQUATIONS

2.1 Introduction to Variables

2.1 Margin Exercises

The expression is.
The variable is . It represents the class limit. The constant is .
(a) Evaluate the expressionwhen is

Replace c with 25.

Order books.
Evaluate the expressionwhen is .
Replace c with 60 .

Order books.
(a) Evaluate the expression when is feet.

Replace s with 3 feet.

- feet feet

The perimeter of the square table is feet.
Evaluate the expressionwhen is miles.
Replace s with 7 miles.

- miles miles

The perimeter of the square park is miles.
Evaluate the expressionwhen is .

- Replace a with 40.
- Divide.

Add.

The approximate systolic blood pressure is
(a) Evaluate the expression when isand
is
_ Replace with and with
(b)

Value of	Value of	Expression
		is

(a) Multiplying any number by gives a product of .

Any
number

Changing the grouping of addends, , does not change the sum.
7. (a) can be written as •• • •
is used as a factor times.

```
can be written as • . . -
can be written as• • • •
can be written as • . . . . .
(a)means
. . Replace y with 5.
    .. Multiply left to right.
    •
(b)means
    .. -Replace r with 6 and s with 3. .. Multiply left to right.
    . .
    -
        means
            Replace x with 4
            and y with 3.
• . . Multiply left to right.
    means
- . . Replace c with 2.
• - . . Multiply left to right.
. . .
Divide.
```

Your average score is

2.1 Section Exercises

is the variable; is the
constant.
is the variable; is the
constant.
is the variable; is the constant.
is the variable; is the constant.
5. is the variable;
is the coefficient.
6. is the variable;
is the coefficient.
7. is the variable; is the coefficient. is the constant.
8. is the variable; is the coefficient. is the constant.
9.
10. Both and are variables.
is the variable; is
the coefficient; is the constant.
12.
2. is the variable; is the coefficient; is the constant.

Expression (rule) for ordering robes:
Evaluate the expression when there are graduates.

Replace g with 654.
Follow the rule and add.
robes must be ordered.
Evaluate the expression when there are graduates.

Replace g with 208.
Follow the rule and add.
robes must be ordered.
Evaluate the expression when there are graduates.

Replace g with 95.

Follow the rule and add.
robes must be ordered.

Expression (rule) for degrees:
isdegrees.
isdegrees.
isdegrees.
Expression (rule) for finding perimeter of an equilateral triangle of side length :

Evaluate the expression when, the side length, is inches.

Replace s with 11.

- Follow the rule and multiply. inches is the perimeter.
Evaluate the expression when, the side length, is feet.

Replace s with 3.

- Follow the rule and multiply.
feet is the perimeter.
Expression (rule) for perimeter:
-meters ismeters.
- inches isinches.

Expression (rule) for ordering brushes:
Evaluate the expression when, the class size, is.

Replace c with 12.

- Multiply before subtracting.
brushes must be ordered.
Evaluate the expression when, the class size, is.

Replace c with 16.

- Multiply before subtracting.
brushes must be ordered.
Expression (rule) for ordering doughnuts:
-isdoughnuts must be ordered.
-isdoughnuts must be ordered.
Expression (rule) for average test score, where is the total points and is the number of tests:

Evaluate the expression when, the total points, is and, the number of tests, is .

- Replace p with 332 and t with 4.
- Follow the rule and divide.
points is the average test score.
2.1 Introduction to Variables

Multiplying a number by leaves the number unchanged. Let represent "a number."
. or .
28. Adding to any number leaves the number unchanged. Let represent "any number."
or
Any number divided by is undefined. Let represent "any number."

- is undefined oris undefined.

$\overline{\text { A }}$

ultiplication distributes over addition. Let , , and represent variables.
written without exponents is
written without exponents is
written without exponents is
written without exponents is
can be written as $\cdots \cdots$. The exponent applies only to the base .
can be written as \cdots. The exponent applies only to the base . can be written as
The exponent applies only to the base .
can be written as $\cdots \cdots$. The exponent applies only to the base .
can be written as $\cdots \cdots$. . The exponent applies only to the base .
can be written as $\cdots \cdots$. The exponent applies only to the base .
can be written as $\cdots \cdots$. The exponent applies only to the base. The exponent applies only to the base .
can be written as $\cdots \cdots \cdots$. The exponent applies only to the base . The exponent applies only to the base Evaluate when is.
means

A constant is a number that is added or subtracted in an expression. It does not vary. For example, is the constant in .

Chapter 2 Understanding Variables and Solving Equations

44.

- Replace with

Evaluatewhen isand is .
means
-••Replace r with 3 and s with 2. . . Multiply left to right.

- .
-

46. Replace with and with .

Evaluatewhen isand is .
means

- \quad Replace r with 3 and s with 2.
-•Multiply left to right.

48. Replace with and with
49. Evaluate when is and is
means

			Replace s with 2
•	. .		and t with 4.
-	-	-	Multiply left to right.

$$
\text { Replace s with } 2
$$

$$
\text { and } t \text { with } 4 .
$$

Multiply left to right.
-•
50.• • • Replace with and with .
51. Evaluatewhen is, is, and is, using a calculator.

Replace r with 3 , s with 2 , and t with 4.

Use the y^{x} key.
52. Use a calculator. Replace with, with, and with .

Evaluate when is and is, using a calculator.

Replace r with 3
and s with 2.
Use the y^{x} key.
Multiply left to right.
54. Use a calculator. Replace with and with ,

Evaluate when is , is, and is .

Replace x with 4, y with 2 , and z with 6.

- • Multiply left to right within the abs. value bars.

56. .•

Replace with , with, and with.
57. Evaluate
when isand is.
Replace z with 6
and y with 2.
Follow the order of operations.
Numerator:
-
Denominator:

Undefined Division by 0 is undefined.
58. Evaluate when is and is.

. \quad| Replace x with 4 |
| :--- |
| and y with 2. |

$\ldots \quad$ Follow the order of operations.

Numerator:

UndefinedDivision by 0 is undefined.

Relating Concepts (Exercises 59-60)

59. (a) Evaluate - when isseconds.

- Replace s with 15 .
- Divide.
miles

Evaluate _when isseconds.

- Replace s with 10.
- Divide.
miles

Evaluate _ when is seconds.

- Replace s with 5.
- Divide.
mile
(a) Using part (c) of Exercise 59, the distance covered in seconds is half of the distance covered in seconds, or mile.

Using part (a) of Exercise 59, the time to cover miles is half the time to cover miles, or seconds. Or, using parts (b) and (c), find the number halfway between seconds and seconds

Using parts (a) and (b) of Exercise 59, find the number halfway between seconds and seconds; that is seconds.

2.2 Simplifying Expressions

2.2 Margin Exercises

(a)

The like terms are the constants, and There are no variable parts.

The like terms are and since the variable parts match; both are .
The coefficients are and

The like terms are and since the variable parts match; both are .
The coefficients are and
2. (a) These are like terms.

Add the coefficients.
The variable part, b,
stays the same.
(b)

These are like terms.
Rewrite y^{3} as $1 y^{3}$. Add the coefficients.

The variable part, y^{3}, stays the same.
(c)

These are like terms. Rewrite n as $1 n$.
Change to addition.
Add the coefficients.
The variable part, n, stays the same.
(d)

Change to addition.
Add the coefficients.
The variable part, c,
stays the same.
These are like terms.
Rewrite xy as lxy
Add the coefficients.
The variable part, $x y$, stays the same.

These are like terms.
Change to addition.
Add the coefficients.
The variable part, p^{2},

The like terms are and since the variable parts match; both are .
The coefficients areand .

These are like terms. Rewrite ab as lab
stays the same.

Copyright © 2014 Pearson Education, Inc.
3.(a)
${ }^{\prime} \mathbf{A}$ \square

10.
(e)

Distributive property

Rewrite y as 1 y.
Change to addition.
Add the coefficients of like terms.
o
r
11. These are like terms.

Rewrite p as $1 p$.
Change to addition. Add the coefficients.

The variable part, p,

2.2 Section Exercises

stays the same.
1.
only like terms in the expression. The variable parts match; both are . The coefficients are and .
2.
terms. The variable parts match; both are . The coefficients are and .
3.
are the like terms in the expression. The variable parts match; both are . The coefficients areand.
4. and
are like terms. The variable parts match;
both are. The coefficients areand.
5.
, , andare
like terms. There are no variable parts; constants are considered like terms.
6.
, , and are like terms. There are no variable parts; constants are considered like terms.
13. These are like terms.

Rewrite a^{3} as $1 a^{3}$. Change to addition. Any number minus itself is .
Add the coefficients.
The variable part, a^{3}, stays the same.
Any number minus itself is .

Copyright © 2014 Pearson Education, Inc.

These are like terms.
Rewrite xy as lxy.
Change to addition.
Add the coefficients.
The variable part,
xy, stays the same.
or
19.

These are like terms.
Change to addition.
Add the coefficients.
The variable part, t^{4}, stays the same.
21.

These are like terms.
Write in the understood coefficients
of 1 .
Add the coefficients.
The variable part, y^{2},
stays the same.
30.
31.
$+$
stays the same.
or
Write in the understood
coefficients of 1 . Change to addition. Rewrite using the commutative property. Add the coefficients of like terms.

These are like terms. Rewrite x as $1 x$ and x as $1 x$. Change to addition. Add the coefficients.

The variable part, x, stays the same.
or
29.
Write in the understood coefficients of 1 . Add the coefficients of like terms.
The variable part, $a b^{2}$, stays the same.

Add the coefficients of like terms.
The only like terms are constants.
Use the commutative property to put the constants at the end. -
to rewrite the expression so that
like terms are next to each other.
Add the coefficients of like terms.
The variable part, a,
stays the same.

Add the coefficients of
like terms.
35.
36.

There are no like terms.

The expression cannot be simplified.
There are no like terms. The expression cannot be simplified.

Write in the understood coefficients of 1 .
Change to addition.

Rewrite using the commutative property.

Add the coefficients of like terms.

By using the associative property, we can write as

By using the associative property, we can write as

By using the associative property, we can write as

So, simplifies to

By using the associative property, we can write as

So, simplifies to

Write in the understood coefficient of 1. Rewrite using the associative property.
-
-

Distributive property
-•

Distributive property

Distributive property

-
..

By using the associative property, we can write as

$$
\begin{array}{ll}
\text { as } \\
& \cdot \\
\text { So, } & \quad \text { simplifies to }
\end{array}
$$

Distributive property
..

Distributive property
-•
Change addition to subtraction of the opposite.

Chapter 2 Understanding Variables and Solving Equations

..

Distributive property
..
Change addition
to subtraction
of the opposite.
-•
or
Distributive property
..

Distributive property

Distributive property
-•
Combine like terms.

Distributive property
-•
Change to addition. Rewrite using the
commutative property.
Add the coefficients
of like terms.
Change addition to subtraction of the opposite.
-.
Rewrite using the commutative property.
Combine like terms.
-•
.
..
69.

Distributive property
or
69. ..

Rewrite using the commutative property.
Add the coefficients of like terms.

Zero times any number is 0 .
. .
or

Zero added to any number is the number
$\overline{\mathbf{A}}$$\overline{\mathbf{A}}$
$\overline{\text { A }}$ istributive property

Change to addition.
Combine like terms.
Any number plus its opposite is 0 .
73.

Distributive property

- \quad Rewrite n as In.

Change to addition.
Rewrite using the commutative property.
Add the coefficients of like terms.
or
-

- Rewrite p as $1 p$. Change to addition. Add the coefficients of like terms.

Change addition to subt. of the opposite.

Distributive property

Change to addition.

Group like terms and add the coefficients.
or
A simplified expression usually still has variables, but it is written in a simpler way. When evaluating an expression, the variables are all replaced by specific numbers and the final result is a numerical answer.
78.

The answers are equivalent because of the commutative property of addition.
Like terms have matching variable parts, that is, matching letters and exponents. The coefficients do not have to match. Examples will vary. Possible examples: In, the terms and are like terms. In , the terms and are like terms.

Distributive property

Change to addition.

Group like terms and add the coefficients.
Add the coefficients of like terms. If no coefficient is shown, it is assumed to be . Keep the variable part the same. Examples will vary.

Keep the variable part unchanged when combining like terms. As shown above, the correct answer is .
In the last step, do not change the sign of the first
term. The correct answer is .
83. Distributive prop. ...

tion to adding	Change subtrac-
the opposite.	
Group like terms	

and add the
coefficients.

Summary Exercises

Variables and Expressions
is the variable;
or 11 is the coefficient; is the constant.
2. and are the variables; is the coefficient.
3. is the variable;
is the coefficient; is the constant.

Expression (rule) for finding the
perimeter of an octagon of side length:
10. Replace withaed aluite the expression

If is multiplieg byany; qumber ${ }^{2}$ the ressult is
Thus, there is no need to make any calculations since the result is

- Follow the rule and
multiply.
yards is the perimeter.
Evaluate the expression
when, the side length, is inches.
Replace s with 15.
- Follow the rule and
multiply.
inches is the perimeter.
Expression (rule) for finding the total cost of a car with down payment, monthly payment, and number of payments:

Evaluate the expression when the down payment is $\$$, the monthly payment is $\$$, and the number of payments is .

Replace d with \$3000, m
with $\$ 280$, and t with 36.
\$ \$ • Multiply before adding.
\$ \$,
\$, is the total cost of the car.
Evaluate the expression when
the down payment is $\$$, the monthly
payment is $\$$, and the number of payments is .

> Replace d with \$1750, m
with $\$ 429$, and t
with 48.
\$ \$ • Multiply before
adding.
\$ \$,
\$, is the total cost of the car.
written without exponents is

- • • •
written without exponents is
-•••
written without exponents is

9. •• Replace with .

- ••Multiply left to right.

11. Replace withand with .
12. Replace with If is multiplied by any number, the result is Thus, there is no need to make any calculations since the result is left to right.
12: Replace with , with, and with
13. ... • Replace withand with. $\quad M$ - • $\quad \stackrel{u}{l} \quad$ Multiply left to right.
 l
14. • • • • . Replace with and with. Multiply left to right. - e
. . t

- r
i

17. Use a calculatbr. Replace with, with, and with .
t
18. • Replace with.
.. Multiply left to right.
(a) Simplifying the expression correctly:

The student forgot to multiply •
Simplifying the expression correctly:

Two negative factors give a positive product.
Simplifying the expression correctly:

Keep the variable part unchanged; that is, adding 's to 's gives an answer with 's, not 's.

In the last step, do not change the sign of the first term; keep as . The correct answer is

2.3 Solving Equations Using Addition

2.3 Margin Exercises

1. (a)

Given equation Replace c with 95. 110 is more than 80.
No, is not the solution.
? Replace c with 65 . Balances
Yes, is the solution.
(No need to checkand .)
(b)

Given equation
Replace c with 28.
No, is not the solution.
Replace c with 20.
No, is not the solution.
Replace c with 24.
No, is not the solution.
?
Replace c with 32.
Balances

Yes, is the solution.

56 Chapter 2 Understanding Variables and Solving Equations
(a) Solvefor .

To get by itself, add the opposite of, which is . To keep the balance, add to both sides.

Combine like terms.
To get r by itself, add 1 to both sides.
or
The solution is .
Check

The solution is .
Check Original equation
Replace y with 7.
Balances, so solution is .

Solvefor .

Balances

Change to addition.

To get by itself add the opposite of , which is , to both sides.
\qquad -

The solution is.
Check
Original equation
Replace b with 4.

Balances
3. (a) Rewrite both sides by changing subtraction to addition. Combine like terms.

Rewrite the left side by using the commutative property.

To get by itself add the opposite of , which is , to both sides.

2.3 Section Exercises

1. Replace with , , and .

Given equation
Replace n with 58.
?

Yes,is the solution.
(No need to check , , and .)
2.

Replace with , , and .

$?$?
$?$	$?$

? ?
$? \quad$?

The check forbalances, sois the solution.
is the solution. (No need to check
.)
5. (a)

Add to both sides because

| giveson the left side.
 (b) Addto both sides | $-\quad$ Add 8 to both sides. |
| :--- | :--- | :--- | :--- |
| (becausegiveson the right side. | |

6. (a)

Addto both sides Check becausegiveson the left side. Replace a with 9.
(b) Add to both sides because giveson the right side.

Balances

7.

Change to addition. Add the opposite of 6,
Change to addition. 6 , to both sides.
\qquad Add the opposite of $\quad-$
2, 2 , to both sides.
The solution is .

Check

Replace y with 6 .

Check

Replace r with 10.
Balances

Change to addition.

- Add 5 to both sides.

The solution is . Check
Check
Replace b with 8 .
Balances
11.

Add the opposite of
3, 3, to both sides.
The solution is.

Check

Replace n with 8.

Check

Replace r with 6.

Copyright © 2014 Pearson Education, Inc.

Check
 $$
\text { Replace } z \text { with } 7 .
$$

Balances
19.
Change to addition.
Add the opposite of
$-\quad 12,12$, to both sides.

The solution is .

Check

Replace x with 0 .
Change to addition.
Balances

Change to addition.
Add 3 to both sides.

The solution is .

Check

Replace m with 0 .
Balances
21.

$$
\begin{gathered}
\text { Add the opposite of } \\
2,2, \text { to both sides. }
\end{gathered}
$$

The solution is.

Check

$$
\begin{aligned}
\text { Replace } t \text { with } & 3 . \\
& \text { Balances }
\end{aligned}
$$

22.

$\ldots \quad$ Add 10 to both sides.

Check

Replace w with 9.
Balances
23.

The given solution is

The solution is .

Check

Replace z with 8. Change to addition. Balances
24.

Check

Replace x with 13. Balances
is the correct solution.
25.

Check

Replace x with 18 .
Balances
is the correct solution.
26.

Check
Replace k with 5.
Does not balance
Correct solution:

Add the opposite of
_ 2, 2, to both sides.

The correct solution is.
Check
Replace k with 9.
Balances
27.

Check

b with 10 Does not balance

Correct solution:

Check

Add the opposite of
10, 10, to both sides.
The solution is .
Copyright © 2014 Pearson Education, Inc.

Check

$$
\text { Replace } b \text { with } 0 .
$$

Balances Add 4 to both sides.
28.

The solution is .

> Th

Check
e given solution is

Check

Balances
Replace a with 0.

Change to addition.
Does not balance

Add.
\qquad Add 10.

Correct solution:
Check

The solution is.

Add the opposite of
 - 14, 14, to both sides.

The correct solution is
Replace a with 14.
Balances
Replace b with 30.
Balances

Simplify the right side.
Change to addition. \qquad
Add 4 to both sides.

The solution is . The solution is.

Check
 Replace c with 6.
 Balances

30.

\qquad

The solution is .

Check

Replace b with 12.
Balances
31.

Simplify the left side.
Change to addition.
\qquad
\qquad Add 2 to both sides.

The solution is .
Check
Replace y with 5.
Change to addition.
Balances

Check

Replace w with 17.
Balances
35.

Change to addition.
Simplify the right side. Add 2 to both sides.

The solution is .

Check

Replace t with 0 .
Change to addition.
Balances
36.
__ Add 8 to both sides.
The solution is .
Check
Replace p with 0 .
Balances

Copyright © 2014 Pearson Education, Inc.

Chapter 2 Understanding Variables and Solving Equations
$1 x$ is the same as x.
The solution is.
Change to addition.
Combine like terms.
$1 z$ is
the
same as
z. The solutio n is .

Check

.-Replace zwith 7.

> Change to add.
> Balances
38.

Check

- Replace r with 5.

Balances
Rearrange and
39.
\qquad
\qquad Add 2 to both sides.

The solution is .

Check

.- Replace w with 3.
Balances

Add 4 to
both sides.

The solution is.

Check

$$
\text { Let } t=5 \text {. }
$$

Balances
41.

Change to addition.
Combine like terms.

The solution is. Add 2.

Change to addition.
Add 200 to both sides.

43.

The solution is 1		Change to addition. Combine like terms.
44.	Rear	The solution is
	47. combine like terms.	
	Add 3 to	Change to addition.
	lutio	The solution is .

Change to addition.
Conaldddellike terms.
$\square \quad$ Add 5 to both sides.

The solution is.
_ Add 91 to both sides.
The solution is.

Change to addition.
_ Add 28 to both sides.

The solution is .

Combine like terms.
$\ldots \quad$ Add 5 to both sides.
58.
_ Add 6 to both sides.
The solution is.
No, the solution is , the number used to replace in the original equation.

Che correct solution is
61. h $\begin{array}{llll}\mathbf{e} & & & \text { Add the opposite of } \\ \mathbf{c} & 10 & 10 & 10\end{array}$

D
o
e
s
n
o
t
b
a
1
a
n
c
e
T
o
c
o
r
r
e
c
t
t
h
e
e
r
r
o
r
s
,
c
h
a
n
g
e
There were graduates this year.
62.

T^{10}	10	Add the opposite of T e

st year.
\qquad

When the temperature is degrees, a field cricket ${ }_{h}$ chirps times (in seconds).
e
r Add 37 to both sides.
w When the temperature is degrees, a field cricket
chirps times (in seconds).
e
¢Change to addition.
$\mathrm{r}_{\mathrm{r}} \quad$ Add 65 to both sides.
d
u
a
t
e
S
s average $\$$ per month in winter.
66.

Change to addition. Add 56 to both sides.

E
r
n
e
S
Aimee's parking fees average \$ per month in owinter.
s
p
a
r
k
i
n
g
f
e
e
Copyright © 2014 Pearson Education, Inc.

The solution is .
Add the opposite of 5, 5, to both
$\underline{\square}$

The solution is .
69.

Change subtraction within absolute value to
addition and rearrange the terms.
The solution is

Simplify inside absolute value bars. Collect like terms.

Evaluate absolute values. Change to addition.

The solution is

Relating Concepts (Exercises 71-72)

71. (a) Equations will vary. Some possibilities are:

Change to addition.
Add 1 to both sides.

The solution is.

Change to addition.

(c) $\$$
\$
Add the opposite
\$
\$ of $\$ 250, \quad \$ 250$, to both sides.

The solution is \$

Equations will vary. Some possibilities are:
\$ \$ The solution is \$.
\$
\$ The solution is \$

2.4 Solving Equations Using Division

2.4 Margin Exercises

1. (a) Solve.

Use division to undo multiplication. Divide both sides by the coefficient of the variable, which is .

The solution is .
Copyright © 2014 Pearson Education, Inc.

The solution is.

Check

Replace p with 3. Balances
$-\quad-\quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 5\end{aligned}$
The solution is .

Check

the solution is
Check
-Replace twith 10.
Balances
(a)

Combine like terms.
Divide both sides by 4 . The solution is.
(a)

Write in the understood
1 as the coefficient of k. Divide both
sides by 1 .
The solution is

Check

-

Balances

Write tas 1 t.
Divide both
$\overline{\text { sides by } 1 .}$
The solution is
Check
-Replace t with 7.
Balances

Write $\quad m$ as $1 m$. Divide both sides by 1 .
The solution is .

Check

- Replace m with 20. Balances

Check

2.4 Section Exercises

Replace n with 7.
Balances

Change to addition. Rewrite p as $1 p$.
2.

Check

B

The solution is
The solution is.

- Divide both
sides by 12. $\quad \begin{gathered}\text { Divide both } \\ \text { The solution is . }\end{gathered}$ Check -

Replace r with 4.
Balances

Check

Check

Replace b with 5 . Balances
The solution is.
The solution is

Check

- Replace k with 10. Balances

8.

Check

Balances

The solution is
.
Divide both
sides by 9.

The solution is

Check

Check

Change to addition. Rewrite p as 1 p. Combine like terms.
Divide both sides by 4.
The solution is
-

- Replace p with 3.

Change to addition.
Balances

- Replace r with 6 .

Balances
10. Check

Divide both
sides by 10 .
The solution is

Check

- Replace z with	
Change to addition. Balances	Original equation Change to addition

Combine like terms.

- - \quad| Divide both |
| :--- |
| sides by 5. |

The solution is.
Original equation
Combine like terms.

- - Divide both
sides by 8 .
The solution is.
Original equation
Change to addition.
Rewrite x as $1 x$.
Combine like
terms. Divide both
sides by 8.
The solution is

Original equation

Change to addition.
Rewrite cas $1 c$.
Combine like terms.
Divide both
sides by 3.
The solution is.
Original equation
Change to addition.
Combine like terms.
lt is the same as t.
The solution is .
21.
22.

Original equation
Change to addition.
Rewrite was $1 w$. Combine like terms.
$1 w$ is the same as w.
The solution is .

$$
\begin{aligned}
& \text { Original equation } \\
& \text { Change to addition. } \\
& \text { Combine like terms. } \\
& \text { It is the same as } t . \\
& \text { The solution is . }
\end{aligned}
$$

Combine. Divide both sides by 7. The solu-tion is .

Original equation
Change to addition.
Combine like terms.
Divide both
sides by 4.
The solution is

Original equation
Change to addition.
Combine like terms.
Divide both
sides by 6.
The solution is .
28.

Original eq
31.

Original equation
Change to addition.
Combine like terms.
Divide both
sides by 12 .
The solution is

Original equation Divide both $\overline{\text { sides by } 9 .}$

The solution is .
Original equation
27.

Divide both sides by 10 .
The solution is.

Original equation
Change to addition.
Combine like terms. Divide both
sides by 12 .
The solution is

Original equation
Change to addition.
Combine like terms.
Divide both
sides by 11.
The solution is

$-\quad$| Original equation |
| :--- |
| Change to addition. |
| Combine like terms. |
| Divide both |
| sides by 12. |
| The solution is |.

Original equation

To multiply on the left, use the associative property.

Divide both
sides by 6.
The solution is

Copyright © 2014 Pearson Education, Inc.

The solution is
Divide by the coefficient of, which is, not by the opposite of .

— -

The correct solution is Assoc. prop. Simplify within the absolute values.

You can divide both sides of an equation by the same nonzero number and keep the equation balanced.

The solution is

The length of one side is feet.

$$
\begin{aligned}
& \text { 52. } \\
& \text { - } \quad \begin{array}{l}
\text { Divide both } \\
\text { sides by } 3 .
\end{array}
\end{aligned}
$$

Simplify the absolute values. Combine like terms. Divide both

$$
\text { sides by } 70 .
$$

- - $\begin{aligned} & \text { Divide both } \\ & \text { sides by } 3\end{aligned}$ sides by 3.

$$
-\quad-\quad \begin{aligned}
& \text { Divide both } \\
& \text { sides by } 5 .
\end{aligned}
$$

58.

Simplify within the absolute value.
The length of one side is inches.

The length of one side is meters. The solution is

2.5 Solving Equations with Several Steps

- $\quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 5 .\end{aligned}$

2.5 Margin Exercises

The length of one side is yards

1.(a)	
To get $2 r$ by itself,	
-	$-\quad$ to both sides.

....
$\left.\begin{array}{lll}\text { Associative property } & & \begin{array}{l}\text { To solve for } r, \\ \text { divide both sides by }\end{array} \\ \text { the coefficient, } 2 .\end{array}\right\}$
\qquad
sides by $1 . \quad$ Replace r with 3.

Copyright © 2014 Pearson Education, Inc.

Change to addition. Add 9 to both sides.

Divide both
sides by 10 .
The solution is
Rewrite p as $1 p$.
Add 6.

Add $3 p$.

7. To get $3 m$ by itself, Solve, keeping the variable on the left side. add 1 to both sides.
\qquad

Check

Replace x with 4.
Balances
10. \qquad

The solution is

The solution is .

Solve, keeping the variable on the left side.

Change to addition.
Add $2 k$ to
both sides.

- -

Check

simplifies to .

The solution is

Check

Balances
16.
simplifies to
Add 10 to
both sides.
Divide both
sides by 8.
The solution is

Replace k with 2.

Balances

| Add 10 to |
| :--- | :--- | :--- |
| both sides. |$\quad-\quad$| Divide both |
| :--- |
| sides by 5. |

14. Left side: Right side: Neither side can be simplified, so solve the
equation.
The solution is
Check
Balances

Neither side can be simplified, so solve the equation.

$$
\begin{aligned}
& \text {-_ } \quad \begin{array}{l}
\text { Add 9z to } \\
\text { both sides. }
\end{array} \\
& -\quad \begin{array}{l}
\text { Divide both } \\
\text { sides by } 24 . \\
\text { The solution is }
\end{array} .
\end{aligned}
$$

Check
Replace z with 0.
Balances
simplifies to.

Add 2 to
\qquad
\qquad both sides.

-_ \quad - \quad| Divide both |
| :--- |
| sides by 2. |

The solution is .

Check

Balances
 - Divide both sides by 5.
 The solution is

27.
28. $=-\quad \begin{aligned} & \begin{array}{l}\text { Distribute. } \\ \text { Change to addition }\end{array} \\ & --\quad-\quad \begin{array}{l}\text { Divide both } \\ \text { sides by } 7 . \\ \text { The solution is }\end{array}\end{aligned}$

Distribute.
Change to addition.

30.
Distribute.

$-\quad$| Change to addition. |
| :--- |
| Add |
| 3 | | to both sides. |
| :--- |

$-\quad$| Divide both |
| :--- |
| sides by 11. |
| The solution is. |

Distribute.
Change to addition.
$=\quad$ Add 4 to both sides.

- ——— $\begin{aligned} & \text { Divide both } \\ & \text { sides by } 2 . \\ & \text { The solution is }\end{aligned}$

32.

Distribute.
34.

Change to addition. Add 40 to both sides.

- \quad - $\begin{aligned} & \text { Divide both } \\ & \text { sides by } 8 .\end{aligned}$ The solution is . -__ $\begin{aligned} & \text { Divide both } \\ & \text { sides by } 9 . \\ & \text { The solution is. }\end{aligned}$

33. _ Add 18 to both sides. - -. $\begin{aligned} & \text { Divide both } \\ & \text { sides by } 6 .\end{aligned}$

The solution is.

Change to addition. Add 12 to both sides.

39.

Change to addition.
Add $2 a$.

Add 7 to both sides.
Divide both
sides by 6.
The solution is .
40.

41.

_ Add 28 to both sides.

- $\begin{aligned} & \text { Divide both } \\ & \text { sides by } 7 .\end{aligned}$

The solution is.
42.

43.

Change to addition.

- | Divide both |
| :--- |
| sides by 5. |
| The solution is . |

44.

Change to addition. Combine like terms.

45.

Distribute.
Change to add.
Group terms.
Combine terms. Add c.

Add 56.

_ _ Divide both
sides by 9.

The solution is
46.

The solution is
47.

Distribute. Add the

Group like

Combine
like terms. Add $13 y$.

Combine like terms.
\qquad Add $2 k$.
\qquad

The solution is

The solution is .
51.

The correct solution is

Relating Concepts (Exercises 61-64)

(a) It must be negative, because the sum of two positive numbers is always positive.
. . Replacen with 3.
(c)means
.. •

(d)means

Combine like terms.
or
6.

> Rewrite x as $1 x$.
> Change to addition.
> Combine like terms.
12.Distribute.
or
Expressions will vary. One possibility is

The solution is.

Check

Replace n with
11.

Balances
15.

The solution is .

Check

\qquad

Associative property
-•
.
9. Distribute.

Associative property

- •
-

..
10.

..	Distribute.
or	

or
..
11.

Distribute.

Combine like terms.
Divide both
sides by 4. The solution is

Divide both
sides by 1 .
The solution is

28. [2.5] \begin{tabular}{l}

Add 6y to
both sides.

Divide both
sides by 4.
The solution is .

Add the
opposites.
Combine
like terms.
Divide both
sides by 5.

\end{tabular}

-. Distribute.

24.

The number of employees is
25. [2.5]

The solution is
29. [2.5]

$$
=\quad \begin{aligned}
& \text { Add } 7 \text { to } \\
& \text { both sides. } \\
& -\quad-\quad \quad \begin{array}{l}
\text { Divide both } \\
\text { sides by } 3 . \\
\text { The solution is }
\end{array}
\end{aligned}
$$

30. [2.5]
Add $3 b$ to
both sides.

31. [2.3]

Add 3 to both sides.

The solution is.
[2.5]
[2.5]
Distribute.

Add 42 to both sides.

Divide both
\qquad
\qquad
sides by 21. The solution is .
[2.5]

Chapter 2 Test

In the expression, is the coefficient, is the variable, and is the constant term.

Evaluate the expressionwhen isand is

Buy hot dogs.
3. means • • • • • •
4. means •••••
5. means
-••
-.. $\quad \begin{aligned} & \text { Replaces with } 5 \\ & \text { and } t \text { with } 4 .\end{aligned}$
-
7.
by 4.
Add 13 to
both sides.

Divide

The solution is .
35. [2.5]
8.
or

Add $12 b$ to both sides.
\qquad
\qquad
\qquad Divide by 18 .
9.

There are no like terms.
The expression cannot be simplified.
10.

Associative property
of multiplication

The solution is.

Associative property
The solution is of multiplication

Distributive property
14.

Distributive property
Combine like terms.
or

Combine
like terms.
16.

Add 9 to both sides.

The A solution is .
Check
$6 \quad$ Replace a with 3.
t
t
o
20.

Check

Replace x with 5 .
Balances

- - $\quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 7 .\end{aligned}$

The solution is.

Check

$\cdot($

Cumulative Review Exercises (chlda2 tors 1-2)

-, , in words isthree hmendred six billion, four thousand, two hundred ten.
Eight hundred million, sixty-six thousand:
The solution is
(a) lies to the right of on the number line, so .

Distribute.

The solution is
Addition property of equality: Start with a possible solution, for example, . Now add an abitrary number, say, to both sides, to give us the equation.
Division property of equality: Start with a possible solution, for example, . Now multiply both sides by an abitrary number, say, to give us the equation.
Thus, equations will vary. Two possibilities are
and
Solving:
tive
proplerty of addition: Changing the order of the diddends does not change the sum.
(b) $\cdot{ }^{\mathrm{e}}$ Multiplication property of zero:

Multiplying any number by gives a product of

- t
(c) $\cdot \odot$ Distributive property: Multiplication distributes over addition.
(a) t

Underline the hundreds place:
The mext digit is or less, so leave as . Change and to e $\stackrel{f}{i}$
Underline the thousands place: ,
The pext digit is or more, so add to , write the and add to the ten-thousands place. Change
and to .
n
Change to addition.
t
e $\quad 6$ is 6 units from 0 .
n $\quad 4$ is 4 units from 0 .
u
m
b
e
Såme sign, positive product

- 1
i
Same sign, positive product
e

10.

Sqme sign, positive quotient
o
Addition of a number
4 and its opposite is zero.
12.

(.		Exponent
a		Multiply left to right.

C	is undefined. Division by is undefined.
o	in
m	
m	Different signs, negative product
u	
t	
a	

shares rounds to . \$
Change to addition.

Different signs, negative quotient
19.
Numerator:

\[\)| Multiply. |
| :--- |
| Change to addition. |
| Add left to right. |

\]

Denominator:

- Exponents

Last step is division:
days rounds to .
miles roundekinge to addition.
Average distance "per" day implies
division. Estimate:-days miles miles per
miles
day Exact: days miles per day

The average distance the tiger traveled each
day was miles.
degrees rounds to . "Rise" of
degrees rounds to .
A start temperature of degrees followed by a rise of degrees implies addition.

Estimate:degrees
Exact:degrees
The daytime temperature wasdegrees.
-
rounds to \$.
\$ stays \$ (it's a single digit number).
Each stock dropped in value by \$ and Doug owned shares. Multiply to find out how much money he lost. Then, subtract this amount from the original total value.

Estimate: \$•\$
Exact: \$•\$
His shares are now worth \$.
\$ rounds to \$. \$
rounds to \$.
months (in one year) rounds to .
Estimate:\$\$
\$\$
Exact: \$ \$ \$
She will spend $\$$ for rent and parking in one year.
means••••••
means

.... Replace x with 5 and y with 2. Multiply left to right.

29.

- Associative property
- . Distribute.

35. Add $2 m$ to both sides.
\qquad
\qquad Add 6 to both sides. - - $\quad \begin{aligned} & \text { Divide both } \\ & \text { sides by } 3 .\end{aligned}$

The solution is
or
32.

The solution is.
Check
Replace x with 4.

Balances

Add 2 to both sides.

Divide both

sides by 14 .
The solution is

- - | Divide both
 sides by 7.$\quad-\quad$Divide both
 sides by 1.
 The solution is. |
| :--- |

The solution is.
Check
Replace y with 6.

Balances | Add 1 b to |
| :--- |
| _____ both sides. |

The solution is .
Check
Replace k with 7.
The solution is

Balances
Copyright © 2014 Pearson Education, Inc.

The solution is
Copyright © 2014 Pearson Education, Inc.

