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4. Cannons   The velocity  of a projectile  depends  upon 

many factors, in particular, the weight of the ammunition. 

(a)  Plot a scatter  diagram  of the data in the table below. 

Let  x be  the  weight  in kilograms  and  let y  be the 

velocity in meters  per second. 

 
 

 
Type 

 
Weight  (kg) 

Initial 

Velocity (m/ sec) 

MG17 10.2 905 

MG131 19.7 710 

MG 151 41.5 850 

MG 151/20 42.3 695 

MG/FF 35.7 575 

MK  103 145 860 

MK  108 58 520 

WGr21 111 315 

(Data and information taken from "Flugzeug-Handbuch, 

Ausgabe Dezember  1996: Guns and Cannons of the 

Jagdwaffe" at www.xs4all.nl/-rhorta/jgguns.htm)

http://www.xs4all.nl/-rhorta/jgguns.htm


(b) Determine which  type  of function would  fit  this 

data  the  best:  linear  or quadratic. Use  a graphing 

utility to find the function  of best fit. Are the results 

reasonable? 

(c)  Based on velocity, we can determine how high a pro• 

jectile will travel before it begins to come back down. 

If a cannon  is fired at an angle of 45° to the horizon• 

tal, then  the function  for the height  of the projectile 

is given by s(t)  = -l6t2+ VZ, v0t + s0,  where v is the 

velocity at which the shell leaves the cannon  (initial 

velocity), and s is the initial height of the nose of the 

cannon  (because  cannons  are not very long, we may 

assume  that  the nose  and the firing pin at the back 

are at the same height for simplicity). Graph the func• 

tions = s(t) for each  of the  guns  described in the 

table. Which gun would be the best for anti-aircraft if 

the gun were sitting on the ground? Which would be 

the best to have mounted  on a hilltop or on the top of 

a tall building? If the guns were on the turret of a ship, 

which would be the most effective?
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3.  Supposef(x)  = sinx. 
 

(a)   Build a table of values for f(x)  where x  =0.g.· 

7   n  2 3n    5n         7r    5n    4n   3n    5n    7m 

3'2'3'4'6"«'4'3'2'3'4' 
11 

.2n. Use exact values. 
 

 
(b)   Find the first differences for each consecutive pair of 

 

4f(x,) 
values in part (a).That is, evaluate g(x,)  =              = 

.AN, 

where     x,  =0,    x   g..., 
+1          x 

r =  27.  Use your calculator  to approximate each 

value rounded to three  decimal places. 
 

(c)   Plot the points  (x,, g(x)) for i  = 1,...,16 on a scat• 

ter diagram. What shape does the set of points give? 

What  function  does  this resemble? Fit a sine curve 

of best fit to the points. How does that relate  to your 

guess? 

 
(d)   Find the first differences  for each consecutive pair of 

Ag(x) 
values in part (b).That  is, evaluate h(x,)  =              = 
g(in)       g(x)                                     n      x 

where  x,  = 0,  x   gs·.,x%  =
r+1       X, 

I1 .           ns  1s  thee
  

set otf secondid diliflfrerences of ff(x))•

th 
 

Use your calculator to approximate each value 

rounded to  three decimal  places. Plot  the  points 

(x,,h(x,))  for  i= 1,...,15  on  a scatter  diagram. 

What shape does the set of points  give? What func• 



tion does this resemble?  Fit a sine curve of best fit to 

the points. How does that relate  to your guess?
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(e)   Find the first differences  for each consecutive pair of 

Ah(x,) 
values in part (d). That is,  evaluate  k(x,)  =     

4., 

;
,
m

1 ,    where x,  =  0,  x»       z··..,s

h(x,)  -h(x,)                                     r 

x 
 

is the  set of third differences of f(x). 

Use your calculator to approximate each value 

rounded to  three decimal  places. Plot  the  points 

(x,,k(x,))  for  i= 1,...,14  on  a  scatter  diagram. 

What shape does the set of points  give? What func• 

tion does this resemble?  Fit a sine curve of best fit to 

the points. How does that relate  to your guess? 

 
(f)   Find the first differences  for each consecutive pair of 

 

Ak() 
values in part  (e). That is, evaluate  m(x,)  = --• 

A.x, 
k(x)  -k(x,)                                         n 

,       where   x,=0,    x 
+1          x, 

 

,,  ="".Tis is the set of fourth differences of f(x). 
 

Use your calculator to approximate each value 

rounded to  three decimal  places. Plot  the  points 

(x,,m(x)) for  i= 1,...,13 on  a scatter diagram. 

What shape does the set of points  give? What func• 

tion does this resemble?  Fit a sine curve of best fit to 

the points. How does that relate  to your guess? 
 



(g)  What pattern  do you notice about the curves that you 

found? What happened in part (f)? Can you make a 

generalization about  what  happened as you  com• 

puted  the differences?  Explain  your answers.



7.  CBL Experiment   Locate  the motion  detector on a 

Calculator Based   Laboratory  (CBL)   or  a  Calculator 

Based Ranger  (CBR)  above a bouncing  ball. 

(a)  Plot the data collected in a scatter  diagram with time 

as the independent variable. 

(b) Find  the  quadratic function of best  fit for  the  sec• 

ond bounce. 

(c) Find  the  quadratic function  of best  fit for the  third 

bounce. 

(d) Find the quadratic function  of best fit for the fourth 

bounce. 

(e)  Compute  the maximum height for the second bounce. 

(f)  Compute  the maximum  height for the third bounce. 

(g) Compute  the maximum height for the fourth bounce. 

(h) Compute  the ratio of the maximum height of the third 

bounce to the maximum height of the second bounce. 

(i)  Compute the ratio of the maximum height of the fourth 

bounce to the maximum height of the third bounce. 

(j)  Compare  the results from parts  (h) and (i). What do 
you conclude? 


