Solution Manual for Principles of Geotechnical Engineering 8th Edition Das Sobhan 11331086609781133108665

Full link downwload
Solution Manual:
https://testbankpack.com/p/solution-manual-for-principles-of-geotechnical-engineering-8th-edition-das-sobhan-1133108660-9781133108665/

Chapter 2

$2.1 C_{u}=\frac{D_{60}}{}=\frac{0.42}{}=2.625 \approx \mathbf{2 . 6 3} ;{ }_{c}=\frac{D_{30}^{2}}{}=\frac{0.2{ }^{2}}{}=0.656 \approx \mathbf{0 . 6 6}$ C

$$
D_{10} \quad 0.16 \quad\left(D_{60}\right)\left(D_{10}\right) \quad(0.42)(0.16)
$$

$2.2 C_{u}=\frac{D_{60}}{}=\frac{0.81}{}=\mathbf{3 . 0} ; C_{c}=\frac{D_{30}^{2}}{}=\frac{0.4 \mathrm{P}^{2}}{}=0.768 \approx \mathbf{0 . 7 7}$

$$
D_{10} \quad 0.27 \quad\left(D_{60}\right)\left(D_{10}\right) \quad(0.81)(0.27)
$$

2.3 a.

Sieve no.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	28	4.54	$\mathbf{9 5 . 4 6}$
10	42	6.81	$\mathbf{8 8 . 6 5}$
20	48	7.78	$\mathbf{8 0 . 8 8}$
40	128	20.75	$\mathbf{6 0 . 1 3}$
60	221	35.82	$\mathbf{2 4 . 3 1}$
100	86	13.94	$\mathbf{1 0 . 3 7}$
200	40	6.48	$\mathbf{3 . 8 9}$
Pan	24	3.89	$\mathbf{0 . 0 0}$
	$\Sigma 617 \mathrm{~g}$		

b. $D_{10}=\mathbf{0 . 1 6} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 2 9} \mathbf{~ m m} ; D_{60}=\mathbf{0 . 4 5} \mathbf{~ m m}$
c. $C_{u}=\frac{D_{60}}{=}=\frac{0.45}{}=2.812 \approx \mathbf{2 . 8 1}$

$$
D_{10} \quad 0.16
$$

d. $\quad C_{c}=\frac{D_{30}^{2}}{0.29}=1.168 \approx 1.17$

$$
\left(D_{60}\right)\left(D_{10}\right) \quad(0.45)(0.16)
$$

2.4 a.

Sieve no.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent Finer
4	0	0.0	$\mathbf{1 0 0 . 0 0}$
6	30	6.0	$\mathbf{9 4 . 0}$
10	48.7	9.74	$\mathbf{8 4 . 2 6}$
20	127.3	25.46	$\mathbf{5 8 . 8 0}$
40	96.8	19.36	$\mathbf{3 9 . 4 4}$
60	76.6	15.32	$\mathbf{2 4 . 1 2}$
100	55.2	11.04	$\mathbf{1 3 . 0 8}$
200	43.4	8.68	$\mathbf{4 . 4 0}$
Pan	22	4.40	$\mathbf{0 . 0 0}$
	$\Sigma 500 \mathrm{~g}$		

b. $D_{10}=\mathbf{0 . 1 3} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 3} \mathbf{~ m m} ; D_{60}=\mathbf{0 . 9} \mathbf{~ m m}$
c. $C_{u}=\frac{D_{60}}{=}=\frac{0.9}{}=6.923 \approx \mathbf{6 . 9 2}$

$$
D_{10} \quad 0.13
$$

d. $\quad C_{c}=\frac{D_{30}^{2}}{}=\frac{0.3}{}=0.769 \approx \mathbf{0 . 7 7}$

$$
\left(D_{60}\right)\left(D_{10}\right) \quad(0.9)(0.13)
$$

2.5 a.

Sieve no.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0	0.0	$\mathbf{1 0 0 . 0 0}$
10	40	5.49	$\mathbf{9 4 . 5 1}$
20	60	8.23	$\mathbf{8 6 . 2 8}$
40	89	12.21	$\mathbf{7 4 . 0 7}$
60	140	19.20	$\mathbf{5 4 . 8 7}$
80	122	16.74	$\mathbf{3 8 . 1 3}$
100	210	28.81	$\mathbf{9 . 3 3}$
200	56	7.68	$\mathbf{1 . 6 5}$
Pan	12	1.65	$\mathbf{0 . 0 0}$
	$\Sigma 729 \mathrm{~g}$		

b. $D_{10}=\mathbf{0 . 1 7} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 1 8} \mathbf{~ m m} ; D_{60}=\mathbf{0 . 2 8} \mathbf{~ m m}$
c. $C_{u}=\frac{D_{60}}{}=\frac{0.28}{}=1.647 \approx \mathbf{1 . 6 5}$

$$
D_{10} \quad 0.17
$$

d. $\quad C_{c}=\frac{D_{30}^{2}}{0.18^{2}}=\mathbf{0 . 6 8}$

$$
\left(D_{60}\right)\left(D_{10}\right) \quad(0.28)(0.17)
$$

2.6 a.

Sieve no.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0	0.0	$\mathbf{1 0 0 . 0 0}$
6	0	0.0	$\mathbf{1 0 0 . 0 0}$
10	0	0.0	$\mathbf{1 0 0 . 0 0}$
20	9.1	1.82	$\mathbf{9 8 . 1 8}$
40	249.4	49.88	$\mathbf{4 8 . 3}$
60	179.8	35.96	$\mathbf{1 2 . 3 4}$
100	22.7	4.54	$\mathbf{7 . 8}$
200	15.5	3.1	$\mathbf{4 . 7}$
Pan	23.5	4.7	$\mathbf{0 . 0 0}$
	$\Sigma 500 \mathrm{~g}$		

b. $D_{10}=\mathbf{0 . 2 1} \mathbf{~ m m} ; D_{30}=\mathbf{0 . 3 9} \mathbf{~ m m} ; D_{60}=\mathbf{0 . 4 5} \mathbf{~ m m}$
c. $C_{u}=\frac{D_{60}}{=}=\frac{0.45}{}=2.142 \approx 2.14$

$$
D_{10} \quad 0.21
$$

d. $\quad C_{c}=\frac{D_{30}}{0.39}=1.609 \approx \mathbf{1 . 6 1}$

$$
\left(D_{60}\right)\left(D_{10}\right) \quad(0.45)(0.21)
$$

2.7 a.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=73$
Percent passing $0.002 \mathrm{~mm}=9$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=68$
Percent passing $0.002 \mathrm{~mm}=9$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=80$
Percent passing $0.002 \mathrm{~mm}=9$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-73=\mathbf{2 7 \%}$
SILT: $73-9=\mathbf{6 4 \%}$
CLAY: $9-0=\mathbf{9 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-68=\mathbf{3 2 \%}$
SILT: $68-9=\mathbf{5 9 \%}$
CLAY: $9-0=\mathbf{9 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-80=\mathbf{2 0 \%}$
SILT: $80-9=\mathbf{7 1 \%}$
CLAY: $9-0=\mathbf{9 \%}$
2.8 a.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=30$
Percent passing $0.002 \mathrm{~mm}=5$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=28$
Percent passing $0.002 \mathrm{~mm}=5$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=34$
Percent passing $0.002 \mathrm{~mm}=5$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-30=\mathbf{7 0 \%}$
SILT: $70-5=\mathbf{6 5 \%}$
CLAY: $5-0=\mathbf{5 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-28=\mathbf{7 2 \%}$
SILT: $72-5=\mathbf{6 7 \%}$
CLAY: $5-0=\mathbf{5 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-34=\mathbf{6 6 \%}$
SILT: $66-5=\mathbf{6 1 \%}$
CLAY: $5-0=\mathbf{5 \%}$
2.9 a.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=84$
Percent passing $0.002 \mathrm{~mm}=28$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=83$
Percent passing $0.002 \mathrm{~mm}=28$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=90$
Percent passing $0.002 \mathrm{~mm}=28$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-84=\mathbf{1 6 \%}$
SILT: $84-28=\mathbf{5 6 \%}$
CLAY: $28-0=\mathbf{2 8 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-83=\mathbf{1 7 \%}$
SILT: $83-28=\mathbf{5 5 \%}$
CLAY: $28-0=\mathbf{2 8 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-90=\mathbf{1 0 \%}$
SILT: $90-28=\mathbf{6 2 \%}$
CLAY: $28-0=\mathbf{2 8 \%}$
2.10 a.

b. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.06 \mathrm{~mm}=65$
Percent passing $0.002 \mathrm{~mm}=35$
c. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.05 \mathrm{~mm}=62$
Percent passing $0.002 \mathrm{~mm}=35$
d. Percent passing $2 \mathrm{~mm}=100$

Percent passing $0.075 \mathrm{~mm}=70$
Percent passing $0.002 \mathrm{~mm}=35$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-65=\mathbf{3 5 \%}$
SILT: $65-35=\mathbf{3 0 \%}$
CLAY: $35-0=\mathbf{3 5 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-62=\mathbf{3 8 \%}$
SILT: $62-35=\mathbf{2 7 \%}$
CLAY: $35-0=\mathbf{3 5 \%}$

GRAVEL: $100-100=\mathbf{0 \%}$
SAND: $100-70=\mathbf{3 0 \%}$
SILT: $70-35=\mathbf{3 5 \%}$
CLAY: $35-0=\mathbf{3 5 \%}$
$2.11 G_{s}=2.7$; temperature $=24^{\circ} ;$ time $=60 \mathrm{~min} ; L=9.2 \mathrm{~cm}$
Eq. (2.5): $D(\mathrm{~mm})=K \sqrt{\frac{L(\mathrm{~cm})}{t(\mathrm{~min})}}$

From Table 2.6 for $G_{s}=2.7$ and temperature $=24^{\circ}, K=0.01282$

$$
D=0.01282 \sqrt{\frac{9.2}{60}}=\mathbf{0 . 0 0 5} \mathrm{mm}
$$

2.12 $G_{s}=2.75$; temperature $=23^{\circ} \mathrm{C}$; time $=100 \mathrm{~min} ; L=12.8 \mathrm{~cm}$

Eq. (2.5): $D(\mathrm{~mm})=K \sqrt{\frac{L(\mathrm{~cm})}{t(\mathrm{~min})}}$

From Table 2.6 for $G_{s}=2.75$ and temperature $=23^{\circ}, K=0.01279$
$D=0.01279 \sqrt{\frac{12.8}{100}}=\mathbf{0 . 0 0 4 6} \mathbf{~ m m}$

CRITICAL THINKING PROBLEM

2.C. 1
a. Soil A: $C_{u}=\underline{D_{60}}=\frac{11}{18.33 ;} C_{c}=\frac{D_{30}^{2}}{=}=\frac{5}{5}=\mathbf{8 8}$

$$
D_{10} \quad 0.6 \quad\left(D_{60}\right)\left(D_{10}\right) \quad(11)(0.6)
$$

Soil B: $\quad C_{u}=\underline{D_{60}}=\frac{7}{}=\mathbf{3 5} ; C_{c}=\frac{D_{30}^{2}}{}=\frac{2.1^{2}}{}=\mathbf{3 . 1 5}$

$$
D_{10} \quad 0.2 \quad\left(D_{60}\right)\left(D_{10}\right) \quad(7)(0.2)
$$

Soil C: $\quad C_{u}=\frac{D_{60}}{}=\frac{4.5}{}=\mathbf{3 0} ;{ }_{c}=\frac{D_{30}^{2}}{}=\frac{\mathrm{r}^{2}}{}=\mathbf{1 . 4 8}$ C

$$
\begin{equation*}
D_{10} \quad 0.15 \tag{4.5}
\end{equation*}
$$

$$
\left(D_{60}\right)\left(D_{10}\right)
$$

b. Soil A is coarser than Soil C. A higher percentage of soil C is finer than any given size compared to Soil A. For example, about 15% is finer than 1 mm for Soil A, whereas almost 30% is finer than 1 mm in case of soil C.
c. Particle segregation may take place in aggregate stockpiles such that there is a separation of coarser and finer particles. This makes representative sampling difficult. Therefore Soils A, B, and C demonstrate quite different particle size distribution.
d. Soil A:

Percent passing $4.75 \mathrm{~mm}=29$
Percent passing $0.075 \mathrm{~mm}=1$

GRAVEL: $100-29=\mathbf{7 1 \%}$
SAND: $29-1=\mathbf{2 8 \%}$
FINES: $1-0=\mathbf{1 \%}$

GRAVEL: $100-45=\mathbf{5 5 \%}$
SAND: $45-2=\mathbf{4 3 \%}$
FINES: $2-0=\mathbf{2 \%}$

GRAVEL: $100-53=\mathbf{4 7 \%}$
SAND: $47-3=\mathbf{4 4 \%}$
FINES: $3-0=\mathbf{3 \%}$

