Solution Manual for Principles of Geotechnical Engineering 8th Edition Das Sobhan 1133108660 9781133108665

Full link downwload

Solution Manual:

https://testbankpack.com/p/solution-manual-for-principles-of-geotechnical-engineering-8th-edition-das-sobhan-1133108660-9781133108665/

Chapter 2

2.1
$$C_u = \frac{D_{60}}{C} = \frac{0.42}{} = 2.625 \approx 2.63; \quad C_u = \frac{D_{30}^2}{} = \frac{0.2 \text{ f}}{} = 0.656 \approx 0.66$$

$$D_{10} = 0.16 \qquad (D_{60})(D_{10}) \quad (0.42)(0.16)$$

2.3 a.

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	finer
4	28	4.54	95.46
10	42	6.81	88.65
20	48	7.78	80.88
40	128	20.75	60.13
60	221	35.82	24.31
100	86	13.94	10.37
200	40	6.48	3.89
Pan	24	3.89	0.00

 $\Sigma 617 g$

b.
$$D_{10} =$$
0.16 mm; $D_{30} =$ **0.29 mm**; $D_{60} =$ **0.45 mm**

c.
$$C_u = \frac{D_{60}}{0.16} = \frac{0.45}{0.16} = 2.812 \approx 2.81$$

d.
$$C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.29^6}{(0.45)(0.16)} = 1.168 \approx 1.17$$

2.4 a.

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	Finer
4	0	0.0	100.00
6	30	6.0	94.0
10	48.7	9.74	84.26
20	127.3	25.46	58.80
40	96.8	19.36	39.44
60	76.6	15.32	24.12
100	55.2	11.04	13.08
200	43.4	8.68	4.40
Pan	22	4.40	0.00

Σ 500 g

b. $D_{10} =$ **0.13 mm**; $D_{30} =$ **0.3 mm**; $D_{60} =$ **0.9 mm**

c.
$$C_u = \frac{D_{60}}{10} = \frac{0.9}{10} = 6.923 \approx 6.92$$

d.
$$C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.3}{(0.9)(0.13)} = 0.769 \approx 0.77$$

2.5 a.

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	finer
4	0	0.0	100.00
10	40	5.49	94.51
20	60	8.23	86.28
40	89	12.21	74.07
60	140	19.20	54.87
80	122	16.74	38.13
100	210	28.81	9.33
200	56	7.68	1.65
Pan	12	1.65	0.00

Σ729 g

- b. $D_{10} =$ **0.17 mm**; $D_{30} =$ **0.18 mm**; $D_{60} =$ **0.28 mm** c. $C_u = \frac{D_{60}}{1000} = \frac{0.28}{1000} = 1.647 \approx$ **1.65**

$$D_{10} = 0.17$$

d.
$$C_c = \frac{D_{30}^2}{(D_{60})(D_{10})} = \frac{0.18^2}{(0.28)(0.17)} = 0.68$$

2.6 a.

Sieve	Mass of soil retained	Percent retained	Percent
no.	on each sieve (g)	on each sieve	finer
4	0	0.0	100.00
6	0	0.0	100.00
10	0	0.0	100.00
20	9.1	1.82	98.18
40	249.4	49.88	48.3
60	179.8	35.96	12.34
100	22.7	4.54	7.8
200	15.5	3.1	4.7
Pan	23.5	4.7	0.00

Σ 500 g

b.
$$D_{10} =$$
0.21 mm; $D_{30} =$ **0.39 mm**; $D_{60} =$ **0.45 mm**

c.
$$C_u = \frac{D_{60}}{100} = \frac{0.45}{100} = 2.142 \approx 2.14$$

$$D_{10}$$
 0.21

d.
$$C_c = \frac{D_{30}}{(D_{60})(D_{10})} = \frac{0.39}{(0.45)(0.21)} = 1.609 \approx 1.61$$

2.7 a.

- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 73 Percent passing 0.002 mm = 9
 - rcent passing 0.002 mm = 9 SILT: 73 9 = 64% CLAY: 9 0 = 9%
- c. Percent passing 2 mm = 100
 Percent passing 0.05 mm = 68
 Percent passing 0.002 mm = 9
- GRAVEL: 100 100 = 0%SAND: 100 - 68 = 32%SILT: 68 - 9 = 59%CLAY: 9 - 0 = 9%

GRAVEL: 100 - 100 = 0%

SAND: 100 - 73 = 27%

- d. Percent passing 2 mm = 100
 Percent passing 0.075 mm = 80
 Percent passing 0.002 mm = 9
- GRAVEL: 100 100 = 0%SAND: 100 - 80 = 20%SILT: 80 - 9 = 71%CLAY: 9 - 0 = 9%

2.8 a.

- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 30 Percent passing 0.002 mm = 5
- c. Percent passing 2 mm = 100
 Percent passing 0.05 mm = 28
 Percent passing 0.002 mm = 5
- d. Percent passing 2 mm = 100
 Percent passing 0.075 mm = 34
 Percent passing 0.002 mm = 5

- GRAVEL: 100 100 = 0%SAND: 100 - 30 = 70%SILT: 70 - 5 = 65%CLAY: 5 - 0 = 5%
- GRAVEL: 100 100 = 0%SAND: 100 - 28 = 72%SILT: 72 - 5 = 67%CLAY: 5 - 0 = 5%
- GRAVEL: 100 100 = 0%SAND: 100 - 34 = 66%SILT: 66 - 5 = 61%CLAY: 5 - 0 = 5%

2.9 a.

- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 84 Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = 0%SAND: 100 - 84 = 16%SILT: 84 - 28 = 56%CLAY: 28 - 0 = 28%
- c. Percent passing 2 mm = 100
 Percent passing 0.05 mm = 83
 Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = 0%SAND: 100 - 83 = 17%SILT: 83 - 28 = 55%CLAY: 28 - 0 = 28%
- d. Percent passing 2 mm = 100 Percent passing 0.075 mm = 90 Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = 0%SAND: 100 - 90 = 10%SILT: 90 - 28 = 62%CLAY: 28 - 0 = 28%

2.10 a.

- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 65 Percent passing 0.002 mm = 35
- GRAVEL: 100 100 = 0%SAND: 100 - 65 = 35%SILT: 65 - 35 = 30%CLAY: 35 - 0 = 35%
- c. Percent passing 2 mm = 100
 Percent passing 0.05 mm = 62
 Percent passing 0.002 mm = 35
- GRAVEL: 100 100 = 0%SAND: 100 - 62 = 38%SILT: 62 - 35 = 27%CLAY: 35 - 0 = 35%
- d. Percent passing 2 mm = 100
 Percent passing 0.075 mm = 70
 Percent passing 0.002 mm = 35
- GRAVEL: 100 100 = 0%SAND: 100 - 70 = 30%SILT: 70 - 35 = 35%CLAY: 35 - 0 = 35%
- 2.11 $G_s = 2.7$; temperature = 24°; time = 60 min; L = 9.2 cm

Eq. (2.5):
$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}}$$

From Table 2.6 for $G_s = 2.7$ and temperature = 24°, K = 0.01282

$$D = 0.01282 \sqrt{\frac{9.2}{60}} = 0.005 \,\mathrm{mm}$$

2.12
$$G_s = 2.75$$
; temperature = 23°C; time = 100 min; $L = 12.8$ cm

Eq. (2.5):
$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}}$$

From Table 2.6 for $G_s = 2.75$ and temperature = 23°, K = 0.01279

$$D = 0.01279 \sqrt{\frac{12.8}{100}} = 0.0046 \,\mathrm{mm}$$

CRITICAL THINKING PROBLEM

2.C.1 a. Soil A:
$$C_u = \frac{D_{60}}{10} = \frac{11}{10} = 18.33$$
; $C_c = \frac{D_{30}^2}{100} = \frac{1}{100} = 10.6$ $(D_{60})(D_{10})$ (11)(0.6)

Soil B:
$$C_u = \frac{D_{60}}{} = \frac{7}{} = 35$$
; $C_c = \frac{D_{30}^2}{} = \frac{2.\text{ f}}{} = 3.15$
 $D_{10} = 0.2$ $(D_{60})(D_{10}) = (7)(0.2)$

Soil C:
$$C_u = \frac{D_{60}}{C} = \frac{4.5}{} = 30$$
; $_c = \frac{D_{30}^2}{} = \frac{f}{} = 1.48$
 C

$$D_{10} = 0.15 \qquad (D_{60})(D_{10}) \quad (4.5)(0.15)$$

b. Soil A is coarser than Soil C. A higher percentage of soil C is finer than any given size compared to Soil A. For example, about 15% is finer than 1 mm for Soil A, whereas almost 30% is finer than 1 mm in case of soil C.

c. Particle segregation may take place in aggregate stockpiles such that there is a separation of coarser and finer particles. This makes representative sampling difficult. Therefore Soils A, B, and C demonstrate quite different particle size distribution.

d. Soil A:

Percent passing 4.75 mm = 29 GRAVEL: 100 - 29 = 71%

Percent passing 0.075 mm = 1 SAND: 29 - 1 = 28%

FINES: 1 - 0 = 1%

Soil B:

Percent passing 4.75 mm = 45 GRAVEL: 100 - 45 = 55%

Percent passing 0.075 mm = 2 SAND: 45 - 2 = 43%

FINES: 2 - 0 = 2%

Soil C:

Percent passing 4.75 mm = 53 GRAVEL: 100 - 53 = 47%

Percent passing 0.075 mm = 3 SAND: 47 - 3 = 44%

FINES: 3 - 0 = 3%