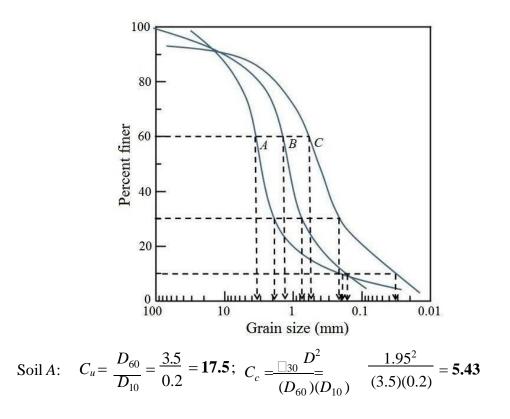
Solution Manual for Principles of Geotechnical Engineering 9th Edition Das Sobhan 1305970950 9781305970953 Full link download:

https://testbankpack.com/p/solution-manual-for-principles-of-geotechnicalengineering-si-9th-edition-das-sobhan-1305970950-9781305970953/

Chapter 2


2.1
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.48}{0.11} = 4.36; \quad C_u = \frac{D^2}{0.25^2} = 0.25^2$$

 $D_{10} = 0.11$ $C_u = \frac{D_{10}}{0.11} = 1.18$

Since $C_u > 4$ and C_c is between 1 and 3, the soil is well graded.

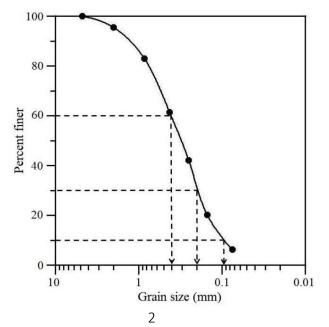
2.2
$$C_u = \frac{D_{60}}{D_{10}} = \frac{1.1}{0.18} = 6.11$$
; $C_c = \frac{30}{(D_{60})(D_{10})} = \frac{0.41^2}{(1.1)(0.18)} = 0.727 \approx 0.73$

Although $C_u > 6$, C_c is not between 1 and 3. The soil is **poorly graded**.

The D_{10} , D_{30} , and D_{60} for soils A, B, and C are obtained from the grain-size distribution curves.

Although $C_u > 6$, C_c is not between 1 and 3. The sand is **poorly graded**.

Soil B:
$$C_u^{=} = \begin{bmatrix} D_{60} & 1.5 \\ D_{10}^{=} & 0.17 \end{bmatrix} = 8.82; C_c = \begin{bmatrix} D^2 & 0.75^2 \\ 0.17 \end{bmatrix} = 2.2$$


 $C_u > 6$ and C_c is between 1 and 3. The sand is well graded.

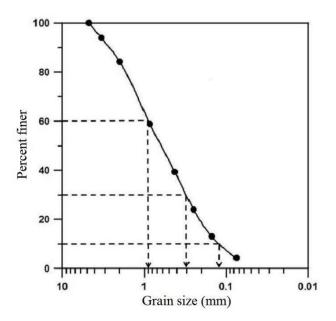
Soil C:
$$C_u = \frac{D_{\underline{60}}}{D_{10}} = \frac{0.55}{0.032} = 17.2; \quad C_c = \frac{D^2}{(D_{\underline{60}})(D_{10})} = 0.032 = 2.75$$

 $C_u > 6$, and C_c is between 1 and 3. The sand is well graded.

2.4 a.

Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0.0	0.0	100.0
4	0.0	0.0	100.0
10	18.5	4.4	95.6
20	53.2	12.6	83.0
40	90.5	21.5	61.5
60	81.8	19.4	42.1
100	92.2	21.9	20.2
200	58.5	13.9	6.3
Pan	26.5	6.3	0
	Σ421.2 g		

© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

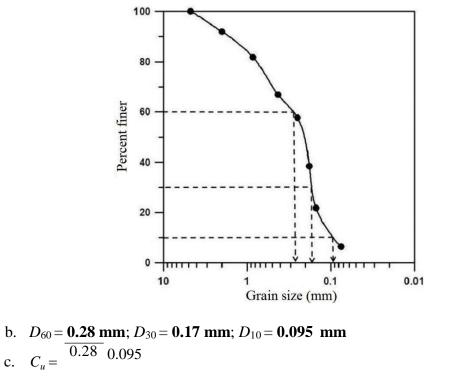

b. $D_{60} = 0.4$ mm; $D_{30} = 0.2$ mm; $D_{10} = 0.095$ mm

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.4}{0.095} = 4.21$$

d.
$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.2)^2}{(0.4)(0.095)} =$$

2.5

Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
110.	on each sieve (g)	on each sieve	IIICI
4	0	0.0	100
6	30	6.0	94.0
10	48.7	9.74	84.26
20	127.3	25.46	58.80
40	96.8	19.36	39.44
60	76.6	15.32	24.12
100	55.2	11.04	13.08
200	43.4	8.68	4.40
Pan	22	4.40	0
	Σ 500 g		

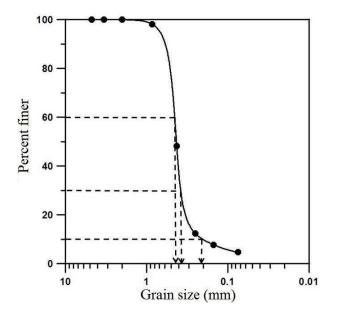

b. $D_{10} = 0.13$ mm; $D_{30} = 0.3$ mm; $D_{60} = 0.9$ mm

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.9}{0.13} = 6.923 \approx 6.92$$

d.
$$C_c = \frac{\Box^{30} D_{=}^2}{(D_{60})(D_{10})} - \frac{0.3^2}{(0.9)(0.13)} = 0.769 \approx 0.77$$

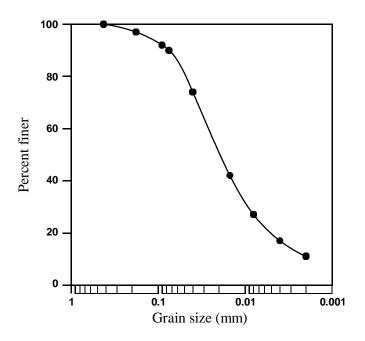
2.6	a.
-----	----

Sieve	Mass of soil retained	Percent retained	Percent
No.	on each sieve (g)	on each sieve	finer
4	0	0	100
10	44	7.99	92.01
20	56	10.16	81.85
40	82	14.88	66.97
60	51	9.26	57.71
80	106	19.24	38.47
100	92	16.70	21.77
200	85	15.43	6.34
Pan	35	5.34	0
	∑ 551 g		


© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

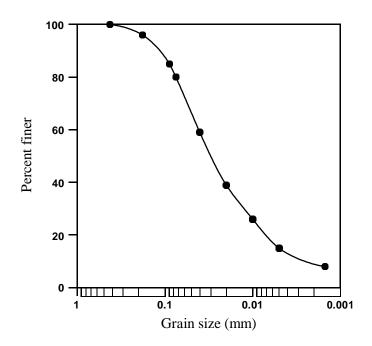
= 2.95

d.
$$C_c = \frac{(0.17)^2}{(0.095)(0.28)} = 1.09$$


Sieve No.	Mass of soil retained on each sieve (g)	Percent retained on each sieve	Percent finer
4	0	0.0	100
6	0	0.0	100
10	0	0.0	100
20	9.1	1.82	98.18
40	249.4	49.88	48.3
60	179.8	35.96	12.34
100	22.7	4.54	7.8
200	15.5	3.1	4.7
Pan	23.5	4.7	0
	Σ 500 g		

2.7 a.

b. $D_{10} = 0.21 \text{ mm}; D_{30} = 0.39 \text{ mm}; D_{60} = 0.45 \text{ mm}$


c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.45}{0.21} = 2.142 \approx 2.14$$

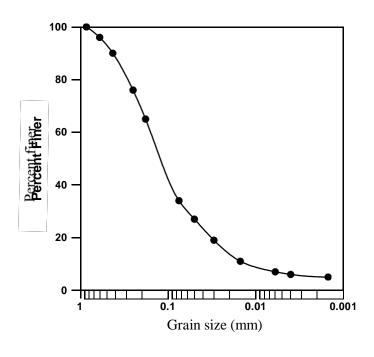
d. $C_c = \frac{D^2}{(D_{60})(D_{10})} = \frac{0.39^2}{(0.45)(0.21)} = 1.609 \approx 1.61$

b. Percent passing 2 mm = 100Percent passing 0.06 mm = 84Percent passing 0.002 mm = 11

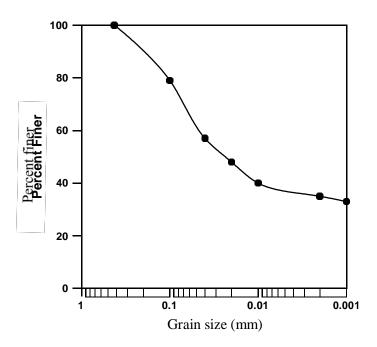
GRAVEL: 100 - 100 = **0%** SAND: 100 - 84 = **16%** SILT: 84 - 11 = **73%** CLAY: 11 - 0 = **11%**

- c. Percent passing 2 mm = 100Percent passing 0.05 mm = 80Percent passing 0.002 mm = 11
- d. Percent passing 2 mm = 100Percent passing 0.075 mm = 90Percent passing 0.002 mm = 11
- GRAVEL: 100 100 = **0%** SAND: 100 - 80 = **20%** SILT: 80 - 11 = **69%** CLAY: 11 - 0 = **11%**
- GRAVEL: 100 100 = **0%** SAND: 100 – 90 = **10%** SILT: 90 – 11 = **79%** CLAY: 11 – 0 = **11%**

b. Percent passing 2 mm = 100Percent passing 0.06 mm = 73Percent passing 0.002 mm = 9

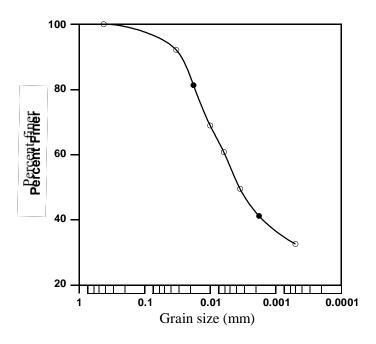

GRAVEL: 100 – 100 = **0%** SAND: 100 – 73 = **27%** SILT: 73 – 9 = **64%** CLAY: 9 – 0 = **9%**

GRAVEL: 100 - 100 = **0%**


SAND: 100 - 68 = **32%**

SILT: 68 – 9 = **59%**

- c. Percent passing 2 mm = 100Percent passing 0.05 mm = 68Percent passing 0.002 mm = 9
- cLAY: 9 0 = 9%
 d. Percent passing 2 mm = 100 Percent passing 0.075 mm = 80 Percent passing 0.002 mm = 9
 GRAVEL: 100 - 100 = 0% SAND: 100 - 80 = 20% SILT: 80 - 9 = 71%
 - CLAY: 9 0 = 9%


- b. Percent passing 2 mm = 100Percent passing 0.06 mm = 30Percent passing 0.002 mm = 5
- GRAVEL: 100 100 = **0%** SAND: 100 - 30 = **70%** SILT: 30 - 5 = **25%** CLAY: 5 - 0 = **5%**
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 28 Percent passing 0.002 mm = 5
- GRAVEL: 100 100 = **0%** SAND: 100 - 28 = **72%** SILT: 28 - 5 = **23%** CLAY: 5 - 0 = **5%**
- d. Percent passing 2 mm = 100GRAVEL:Percent passing 0.075 mm = 34SAND: 100Percent passing 0.002 mm = 5SILT: 34 5
- GRAVEL: 100 100 = **0%** SAND: 100 - 34 = **66%** SILT: 34 - 5 = **29%** CLAY: 5 - 0 = **5%**

b. Percent passing 2 mm = 100Percent passing 0.06 mm = 65Percent passing 0.002 mm = 35

GRAVEL: 100 - 100 = **0%** SAND: 100 - 65 = **35%** SILT: 65 - 35 = **30%** CLAY: 35 - 0 = **35%**

- c. Percent passing 2 mm = 100
Percent passing 0.05 mm = 62
Percent passing 0.002 mm = 35GRAVEL: 100 100 = 0%
SAND: 100 62 = 38%
SILT: 62 35 = 27%
 - SAND: 100 62 = 38%
 SILT: 62 35 = 27%
 CLAY: 35 0 = 35%
- **d.** Percent passing 2 mm = 100
Percent passing 0.075 mm = 70
Percent passing 0.002 mm = 35GRAVEL: 100 100 = 0%
SAND: 100 70 = 30%
SILT: 70 35 = 35%
CLAY: 35 0 = 35%

- **b.** Percent passing 2 mm = 100 Percent passing 0.06 mm = 96 Percent passing 0.002 mm = 42
- GRAVEL: 100 100 = **0%** SAND: 100 - 96 = **4%** SILT: 96 - 42 = **54%** CLAY: 42 - 0 = **42%**
- c. Percent passing 2 mm = 100Percent passing 0.05 mm = 95Percent passing 0.002 mm = 42
- GRAVEL: 100 100 = **0%** SAND: 100 - 95 = **5%** SILT: 95 - 42 = **53%** CLAY: 42 - 0 = **42%**
- **d.** Percent passing 2 mm = 100
Percent passing 0.075 mm = 97
Percent passing 0.002 mm = 42GRAVEL: 100 100 = 0%
SAND: 100 97 = 3%
SILT: 97 42 = 55%
CLAY: 42 0 = 42%

a. The grain-size distribution curve is shown below.

- **b.** Percent passing 2 mm = 100Percent passing 0.06 mm = 84Percent passing 0.002 mm = 28
- SAND: 100 84 = 16% SILT: 84 – 28 = 56% CLAY: 28 - 0 = 28%
- **c.** Percent passing 2 mm = 100Percent passing 0.05 mm = 83Percent passing 0.002 mm = 28
- GRAVEL: 100 100 = **0%** SAND: 100 - 83 = 17%
- **d.** Percent passing 2 mm = 100Percent passing 0.075 mm = 90Percent passing 0.002 mm = 28
- SILT: 83 28 = **55%** CLAY: 28 - 0 = 28%
- GRAVEL: 100 100 = **0%** SAND: 100 - 90 = 10% SILT: 90 - 28 = **62%** CLAY: 28 - 0 = 28%

 $G_s = 2.65$; temperature = 26° ; time = 45 min.; L = 10.4 cm.

Eq. (2.6):
$$D \text{ (mm)} = K \frac{L(\text{cm})}{t \text{ (min)}}$$

From Table 2.9 for $G_s = 2.65$ and temperature = 26°, K = 0.01272 $D = 0.01272 \sqrt{\frac{10.4}{45}} = 0.006 \text{ mm}$

$$G_s = 2.75$$
; temperature = 21°C; time = 88 min.; $L = 11.7$ cm
Eq. (2.6): $D \text{ (mm)} = K \sqrt{\frac{L(\text{cm})}{t \text{ (min)}}}$

From Table 2.6 for $G_s = 2.75$ and temperature = 21°, K = 0.01309 $D = 0.01309 \sqrt{\frac{11.7}{88}} = 0.0047 \,\text{mm}$

CRITICAL THINKING PROBLEMS

a. Soil A:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{11}{0.6} = 18.33; \quad C_c = \frac{D_{30}}{(D_{60})(D_{10})} = \frac{5^2}{(11)(0.6)} = 3.78$$

Soil B:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{7}{0.2} = 35; \quad C_c = \frac{\Box_{30}}{(D_{60})(D_{10})} = \frac{2.1^2}{(7)(0.2)} = 3.15$$

Soil C:
$$C_u = \frac{D_{60}}{D_{10}} = \frac{4.5}{0.15} = 30; \quad C_c = \frac{\Box_{30}}{(D_{60})(D_{10})} = \frac{1}{(4.5)(0.15)} = 1.48$$

- b. Soil *A* is coarser than Soil *C*. A higher percentage of soil *C* is finer than any given size compared to Soil *A*. For example, about 15% is finer than 1 mm for Soil *A*, whereas almost 30% is finer than 1 mm in case of Soil *C*.
- c. Particle segregation may take place in aggregate stockpiles such that there is a separation of coarser and finer particles. This makes representative sampling difficult. Therefore, Soils *A*, *B*, and *C* demonstrate quite different particle size distribution.

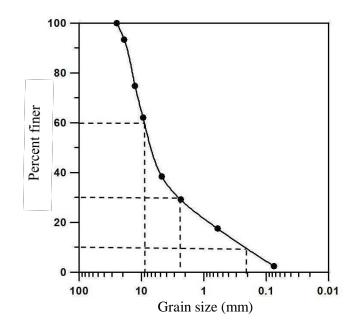
d. <u>Soil A</u>

Percent passing 4.75 mm = 29 Percent passing 0.075 mm = 1	GRAVEL: 100 - 29 = 71% SAND: 29 - 1 = 28% FINES: 1-0 = 1%
Soil <i>B</i>	GRAVEL: 100 – 45 = 55%
Percent passing 4.75 mm = 45	SAND: 45 – 2 = 43%
Percent passing 0.075 mm = 2	FINES: 2 – 0 = 2%
Soil C	GRAVEL: 100 – 53 = 47%
Percent passing 4.75 mm = 53	SAND: 53 – 3 = 50%
Percent passing 0.075 mm = 3	FINES: 3 – 0 = 3%

a. Total mass in the ternary mix = $8000 \times 3 = 24,000$ kg

Percent of each soil in the mix = $\frac{8,000}{24,000} \times 100 = 33.33\%$

Mass of each soil used in the sieve analysis, $\sum m_A = \sum m_B = \sum m_C = 500$ g


If a sieve analysis is conducted on the ternary mix using the same set of sieves, the percent of mass retained on each sieve, m_M (%), can be computed as follows:

$$m (\%) = 0.333 \begin{pmatrix} m_A \\ \times 100 \end{pmatrix} + 0.333 \begin{pmatrix} m_B \\ \infty \\ 500 \end{pmatrix} \times 100 + 0.333 \begin{pmatrix} m_C \\ \times 100 \end{pmatrix}$$

The calculated values are shown in the following table.

Sieve		Mass reta	ined	_	Percent
size	m_A	m_{B}	m_{c}	m_M	passing for
(mm)	(g)	(g)	(g)	(%)	the mixture
25.0	0.0	0	0	0.0	100
19.0	60	10	30	6.66	93.34
12.7	130	75	75	18.65	74.69
9.5	65	80	45	12.65	62.04
4.75	100	165	90	23.64	38.4
2.36	50	25	65	9.32	29.08
0.6	40	60	75	11.65	17.43
0.075	50	70	105	14.98	2.45
Pan	5	15	15	2.33	pprox 0

b. The grain-size distribution curve for the mixture is drawn below.

From the curve, $D_{10} = 0.21$; $D_{30} = 2.5$; $D_{60} = 9.0$

$$\overset{D}{\underset{10}{D}} C_{u} = \frac{9.0}{0.21} = = 42.85; \overset{D}{\underset{0}{C}} \overset{D}{\underset{0}{D}} \overset{D}{\underset{0}{=}} \underbrace{\overset{2.5^{2}}{\underset{0}{=}3.31}}_{(9.0)(0.21)}$$