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Chapter 2

2.1 a.  Spring constant, k: The change in the force per unit length change of the spring.
b.  Coefficient of subgrade reaction, k’:
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Spring constant divided by the foundation contact area,

C. Undamped natural circular frequency: o, =\/E rad/s

W
where m = mass =
g

d.  Undamped natural frequency: fnzl \/E (inHz)
2t \'m

Note: Circular frequency defines the rate of oscillation in term of radians per unit
time; 2z radians being equal to one complete cycle of rotation.

e.  Period, T: The time required for the motion to begin repeating itself.

f. Resonance: Resonance occurs when ©n =1
()
g.  Critical damping coefficient: ¢, =2 km
\/_
w

where k = spring constant; m = mass =

(=]

h.  Dampingratio: D = £_—¢

c. 2Jkm

where ¢ = viscous damping coefficient; c. = critical damping coefficient

i. Damped natural frequency:
0y =0,V1-D?

f,=v1-D?f,
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2.2 Weight of machine + foundation, W = 400 kN
Spring constant, k = 100,000 kN/m

Mass of the machine + foundation, m = w = — =40.77 —

Natural fre uency of undamped free vibration is [Eq. (2.19)]
\/i /100 000 — 788 Hz
40.77

FromEq. (2.18), T = 1. =0.127s

[

f, 788

2.3 Weight of machine + foundation, W = 400 kN
Spring constant, k = 100,000 kN/m

Static deflection of foundation is [Eq. (2.2)]
W 400

Z,=" =—__ _—=4x 10°m=4mm
k 100,000

2.4 External force to which the foundation is subjected, Q =35.6sinwt kN
f=13.33Hz
Weight of the machine + foundation, W = 178 kN
Spring constant, k = 70,000 kN/m

For this foundation, let timet=0,z=2,=0, 4=v,=0

a. Mass of the machine + foundation, m = w = 178 =18.145 kN
g 981 m/s?
0) =1/ k =,/—’—7O 000 =62.11 rad/s
n m 18.145
T:Z_ﬂ: =2n—=0.101$
o, 6211

n

b.  The frequency of loading, f=13.33 Hz

o=2rnf=2n(13.33) =83.75rad/s
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(Q k)

Force due to forced part, F =k 0—/ sinmt
et
(_35.670,000 )
=(70,000) sin(83.75t)

1-83.75%/62.11°
\ )
= 43.515in(83.75t) kN

See the plot below for F; vs. t
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-100.0 ~— | I | | | |- | & | )
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Time (s)
Force due to free part, F (Q kY o )
C. orce due to free part, =k 0° - sinm t

/
 otor | o, 7

( 35.670,000 )/ 83.75 \
=70,000 - sin(62.11t)

1 3757 62112 | 6211 |
L N )
= 58.67sin(62.11t) kN

See the plot above in Part b for F,vs. t.

d.  Total dynamic force on the subgrade:

F=F, +F, =-43.51sin(83.75t) +58.67(62.11t) kN
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The plot of variation of the dynamic force on the subgrade of the foundation due
to (a) forced part, (b) free part, and (c) total of the response for timet=0tot=2T
is shown in the figure above (Part b).
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2.5

2.6

2.7

The natural frequency of the undamped free vibration of the spring mass systemis given by

/k
f,= En ﬁ‘ where k,, = equivalent stiffness of the spring system

For springs attached in series, the equivalent stiffness is given by
11 1 1 _ kk,

kg K k' ke kytkg

The natural frequency of the given undamped free vibration spring mass system is

e 1 kK 1

" 2m Kk +k, m

The natural frequency of the undamped free vibration of the spring mass system is given by

; _1 Keq
m

"= where keq = equivalent stiffness of the spring system
s

For springs attached in parallel, the equivalent stiffness is given by
keq = kl + k2

The natural frequency of the given undamped free vibration spring mass system is

" 2z m

The natural frequency of the undamped free vibration of the spring mass systemis given by
1 k

=" where k = equivalent stiffness of the spring system

€q

In the given spring-mass system, springs with stiffness ki and k are in series.
Hence, their equivalent stiffness is

" _ kk,  100x200 _ 20,000
«2 — k +k,~ 100 +200
L+ kK, + 300

=66.67N/mm

Similarly, springs with stiffness ks and ks are in series. Hence, their equivalent stiffness is
" _kyks  100x150

= = =60 N/mm
€% K, + ks 100 +150
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Now, the given spring system can be reduced to three springs in series.

v
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2.8

2.9

O=0,sinwt
—>

kegi2) = 66.67 N/mm
— A

k3 =150 N/mm
- AAMA—————_| m=mass
Kega,5) 60 N/mm

— A

A\ VI I O O

FHTTIT

The resulting system will be three springs in parallel. Their equivalent stiffness is given by

The natural frequency of the undamped free vibration of the spring mass system is given by

¢ 1 k1 (267671000
n =8.37 Hz
2t \ m 2 100

Time period T = (U/f,) =(1/8.37) =0.119s

Sinusoidal-varying force, Q =50sinot N; Q, =50N; @ = 47 rad/s
/k /
o, = Keq _ | 276.67x1000 526 rad/s
m 100

Amplitude of vibration = static deflection z; x magnification M
2.2 -0 51807 mm

S
kg 27667

From Eq. (2.34),

1 1
M= 1-(0/o,¥ 1-(47/526) %

Amplitude of vibration = 0.1807 x 4.96 = 0.896 mm

Weight of the body, W= 135N
Mass of the body, m =W /g =135/9.81 =13.76 kg

Spring constant, k = 2600 N/m
Dashpot resistance, ¢ =0.7/(60/1000) =11.67 N-s/m
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a. Damped natural frequency [Eqg. (2.67)]

f=J1-D?f,
c c 11.67
D=~ = = =0.031
N

Cc 2 km 2 2600x13.76
N S

1 [k 1 [2600
== [P == |20 =0 19H
h Zn\/; 21376 S

fg =v1-0.031% x (2.19) = 2.18 Hz

b. Damping ratio [Eq. (2.47b)],

D- c c 11.67

= I = =0.031

Cc 2 km 2 2600x13.76

C. Ratio of successive amplitudes of the body is given by [Eq. (2.70)],

Zn _ A0
Zn+l ¢
where § — In[ & |L27D_2 x0.831 =0.195
LZMJ J1-D?  1-0.0312
Z

n—¢® =e"%=1215

n+1

z

d. Attimet=0s, amplitude Z, =25 mm.
After n cycles of disturbance
1,2 _2m> 7, 21D

In-=\/_,| i

With n=5,
Z .

2o _2m5xD 2m6x0.031 o,
Zs  J1-D?2  1-0.031

9

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



25
0 _ 09749 A =9.44 mm
TS24 5 a9 7O

N IN

(&

After 5 cycles of disturbance, the amplitude of vibration = 9.44 mm
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2.10

211

2.12

Qo =6.7kN

@ = 3100 rad/min = 51.67 rad/s
Weight of machine + foundation, W = 290 kN
Spring constant, k = 875 MN/m = 875,000 kN/m

3
Natural angular frequency, o, = K = 875 0003X10 =172.04 rad/s
Vm ~\ 290x10%/9.81

From Eq. (2.43), Fypn =— 52— = 67 —9sgKN
1-(0/w,) 1-(51.67/172.04)

Maximum force on the subgrade = 290 + 9.58 = 299.58 kN
Minimum force on the subgrade = 290 — 9.58 = 280.42 kN

Qy =200 kN
o = 6000 rad/min = 100 rad/s
Weight of machine + foundation, W = 400 kN

Spring constant, k = 120,000 kN/m

Natural angular frequency, ®, = %’%37?1?3 =54.25 rad/s
X .
Dynamic force, Fy,., = Q200 53716k

1-o/o, 1-(100 54.25)

Maximum force on the subgrade = 400 + 237.16 = 637.16 kN

Minimum force on the subgrade = 400 — 237.16 = 162.84 kN

Weight of the body, W =800 kN
Spring constant, k = 200,000 kN/m
Dashpot coefficient, ¢ = 2340 kN-s/m






2.13

a. C. = o /KM =2 200,000x800 9.81 =8077.1kN-s/m

J /
. . c 2340
. = 2
b.  Damping ratio, D . 80771 0.29

C

2tD _ 2mx029 _, 4

J1-D? J1-0292

d. fd — /1_ D2 fn; fn — L 200,000 x9.81 = 7.88 Hz
2r \ 800

fy =v1-0.29% x7.88 =7.54 Hz

C. 0=

Weight of the body, W = 800 kN
Spring constant, k = 200,000 kN/m
Dashpot coefficient, ¢ = 2340 kN-s/m
Qy =25kN

Operating frequency, o = 100 rad/s

a.  Natural circular frequency, o, = ,/ rlfq = ‘/ 200 0;(?0& =49.52 rad/s

From Problem 2.12, damping ratio, D = 0.29

From Eqg. (2.28), the amplitude of vertical vibration of the foundation is

,_ (Quk)
JI1-(@%/0})F +4D* (0*/0})

_ (25200,000)
\/[1— (1007 /49.52%))% + 4% 0.29%(1007 /49.52%)

=3.795x10"°m = 3.795x 102 mm

b.  From Eq. (2.90), the maximum dynamic force transmitted to the subgrade is

ZJk? + (co)? = (3.795x10°)/ 200,000 + ~11.68 kN
(2340%100)?
1
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2.1 Introduction

+ Satisfactory design of foundations for vibrating

equipment is mostly based on displacement
considerations.

+ Displacement due to vibratory loading can be classified
under two major divisions:

+ Cyclic displacement due to the elastic response of the soil-
foundation system to the vibrating loading

+ Permanent displacement due to compaction of soil below
the foundation

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.
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2.1 Introduction Cont’d

+* In order to estimate the cyclic displacement, it is
essential to know the nature of the unbalanced forces.

Figure 2.1 Six modes of vibration for foundation

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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2.1 Introduction Cont’'d

+ Note that a foundation can vibrate in any or all six
possible modes.

+ For ease of analysis, each mode is considered
separately and design is carried out by considering the
displacement due to each mode separately.

+ Approximate mathematical models for computing the
displacement of foundations under dynamic loads can
be developed by treating soil as a viscoelastic material.

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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2.2 Fundamentals of Vibration

* Following are some essential definitions for the
development of vibration theories:

Free Vibration: Vibration of a system under the action of forces
inherent in the system itself and in the absence of externally
applied forces. The response of a system is called free vibration
when it is disturbed and then left free to vibrate about some
mean position.

Forced Vibration: Vibration of a system caused by an external
force. Vibrations that result from regular (rotating or pulsating
machinery) and irregular (chemical process plant) exciting
agencies are also called as forced vibrations.

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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2.2 Fundamentals of Vibration Cont’d

Degree of Freedom: The number of independent coordinates
required to describe the solution of a vibrating system.

: 4 % N

Mass=m Mass =m,

T Mass =m,
)

(a) (b) (c)
Figure 2.3 Degree of freedom for vibrating system

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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System with Single Degree of Freedom

2.3 Free Vibration of a Spring-Mass
System

+ Figure 2.4 shows a foundation R
resting on a spring. Let the spring
represent the elastic properties of
the soil. The load W represents 5
the weight of the foundation plus ik
that which comes from the
machinery supported by the
foundation.

“#4 | Foundation weight = W

« If the area of the foundation is w £
equal to A, the intensity of load ‘
transmitted to the subgrade can TWH-:

be given by:

Figure 2.4 Free vibration of a mass-spring system

W
qA

Due to the load W, a static deflection z; will develop. By definition,

i w where k = spring constant for the elastic support.

et ]
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T o

"~ Spnring-Mass
System Cont’'d

+ If the foundation is disturbed from its static equilibrium position,
the system will vibrate.

* The equation of motion of the foundation when it has been
disturbed through a distance z can be written from Newton’s
second law of motion as:

5+(£)z=0

m

where g = acceleration due to gravity
Z =d*z/dr?
! =time

m=mass=W/g

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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~ Spnring-Mass
System Cont’'d

+ In order to solve the equation;
z=A cosm,t + A sinw,t

where A,and 4, = constants
®, = undamped natural circular frequency
k
®, = ,[—
m

The unit of @, 1s in radians per second (rad/s). Hence,
| /k . [k
z=A, cos( —t}+ A, smL —t)
m m
Displacement z = z,

Velocity = % =

b

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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~ Soring-Mass

System Cont’'d

Uy
i i i . z=Zcos(w,t — o o=tan!| ———
+ Substitutions yield: (@i-a)]  where oy =
Displacement z,
velocity Z, and
(+) 4 acceleration =
[«————— Onecycle ~}< One cycle |
A B C
g 4
Velocityw,_\ Peak-to-peak
amplitude
+7Z i /
G W 4
2 L

N

Displacement

Acceleration

=)y

Figure 2.5 Plot of displacement, velocity, and acceleration for the free
vibration of a mass-spring system
(Note: Velocity leads displacement by n/2 rad: acceleration leads velocity by n/2 rad.)
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2.4 Forced Vibration 6fF-aSSpinggMdaass
System

+ Figure on the right shows a foundation that has
been idealized to a simple spring-mass system.
Weight W is equal to the weight of the
foundation itself and that supported by it; the 0=Gusin (@1 +4)
spring constant is k. s T

« This foundation is being subijected to an vl

alternating force: <o sin(@+p5)

+ This type of problem is generally encountered
with foundations supporting reciprocating
engines, and so on.

+ The equation of motion for this problem can be  Figure 2.6 Forced vibration of mass-spring system title
given by: x4 kr = Qo sin(wt + [3)

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.
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2.4 Forced Vibration 6fF-aSSpinggMdaass
System Cont’'d

Maximum Force on Foundation Subgrade

The maximum and minimum force on the foundation subgrade will occur at

the time when the amplitude is maximum, i.e., when velocity is equal to
Zero.

(+) 4
5 /
4
5 2 £
e / 3
% — e
= [a)
g
3 / )y
=3
(b)
-4
5 Figure 2.7 Forced vibration of a mass-spring system: (a) variation of
9 &3 : s 2 magnification factor with @/w,; (b) vibration of displacement with time at
— resonance (0 =®,,)

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.
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2.4 Forced Vibration 6fF-aSSpinggMdaass
System Cont’'d

+ For maximum deflection; z=0,or ® coswt—® cosw,t=0

+ Since w is not equal to zero,

(o, -0\ . (0, +®
coswt—cosa),,t=251n( "2 )tsm( "2 )t=0

+ In order to determine the maximum dynamic force, the maximum value of

Z max iS reCIuiredI (QO/k)
<max(max) _TU/(’)"
x Hence: § k(QO/k) ET

Fynammax) = K[ Zmaxman ] = N
ynam(max) max(max 1—m/ ®, l—m/m "

+ The total force on the subgrade will vary between the limits

w——2  anaw+—2
|—wlow, l—w/o,
© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.
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2.5 Free Vibration with™ ViscotisdOBkagrng

+ In the case of undamped
free vibration, vibration
would continue once the
system has been set in
motion. However, in
practical cases, all
vibrations undergo a
gradual decrease of
amplitude with time. This
characteristic of vibration is
called damping.

>

D>1
Overdamped system

Displacement, z

(a) Time, ¢

Displacement, z

Displacement, =

A

D=1
Critically damped system

>

\-/ Time, ¢

(b)

D<1
Underdamped system

()

Figure 2.8 Free vibration of a mass-spring-dashpot system: (a) overdamped
case; (b) critically damped case; (c) underdamped case

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.

14



m
2.5 Free Vibration with™ ViscotisdOBkagrng

+ For free vibration of the foundation, the differential equation of motion

can be given by:
mi+cz+kz=0 r2+(i)r+£=0
m m

c S
+

2m \Ndm* m

+ There are three general conditions that may be developed from these

equations: 1. Ife¢/2m > JkIm,bothroots of Eq.(2.45) are real and negative. This is referred

to as an overdamped case.
2. If ¢/2m=[klm,r=—c/2m. This is called the critical damping case.

Thus, for this case,

¢c=c.=2Jkm
3. If ¢/2m <. /k/m, the roots of Eq. (2.45) are complex:
¢ k ¢?
P=
2m m  4m’

This is referred to as a case of underdamping.
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2.6 Steady-State Forced Viriagaviassth
Viscous Damping

+ In the case of a foundation resting on a soil that can be approximated to
an equivalent spring and dashpot, the foundation is being subjected to a
sinusoidally varying force. The differential equation of motion for this
system can be given as:

mz + kz + ¢z = Qy sin ot

*+ The transient part of the vibration is damped out quickly. Considering the
particular solution for the steady-state motion, let
z= A,;sin Ot + A, cos wt

where A; and A, are constants.

x Therefore:

A, = OO, and; z=Zcos(wt + )

(k —mw? )2 +¢20>

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.
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2.6 Steady-State Forced Yiriagaviassth
Viscous Damping Cont’d

5

\ * The amplitude of vibration at
\\ resonance can be obtained by:

. | 1

“ N AJ[I_ 0] a0 (120
| ;@R\\\ A 2D./1—

0

0 0.5 1.0 L.5 2.0

Figure 2.9 Plot of Z/(Q,/k) against w/w,
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2.6 Steady-State Forced Yiriagaviassth
Viscous Damping Cont’d

Maximum Dynamic Force Transmitted to the Subgrade
For vibrating foundations, it is sometimes necessary to determine the

dynamic force transmitted to the foundation. This can be given by summing
the spring force and the dampina force caused by relative motion between

mass and dashpot; that is: Fowan—kz+tez

If we let; kZ=Acos¢ and cwZ= Asing,

Then;
Fiynam = A cos(@t +¢ + o)

A=\/(A cos¢ Asmq) Z\/I\ (cw)
' Hence, the

magnitude of maximum dynamic force will be: Z\k? +(co).

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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2.7 Rotating-Mass-Typ&dmaddiens

+ In many cases of foundation equipment, vertical vibration of foundation
is produced by counter-rotating masses. Since horizontal forces on the
foundation at any instant cancel, the net vibrating force on the
foundation can be determined to be equal to Zm_ew?sinwt (where m, =
mass of each counter-rotating element, e = eccentricity, and w =
angular frequency of the masses).

+ In such cases, the equation of motion with viscous damping can be
modified to the form:

mz + kz + ¢z = Q,sinwt
Oy =2m.e®* =Uw?

U=2m.,e

+ The solution for displacement is: |z=Zcos(wt+ @)

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
website, in whole or in part.
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2.7 Rotating-Mass-Typé Ex&itatigrMasnt’d

m, = rotating mass 2m. w2 sin ot
e = eccentricity N

‘ . - “ | \\\M

(a)

+ The angular resonant frequency for i /“\\\
rotating-mass-type excitation can be 2 TN
obtained as: ///\\\

S 1 / e o |
fm =damped resonant frequency \/m B

Figure 2.10 (a) Rotating mass-type excitation: (b) plot of Z/(U/m) against
wlow,
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2.8 Determination of B&npimg-Matio

+* The damping ratio D can be determined from free and forced vibration
tests on a system. In a free vibration test, the system is displaced from
its equilibrium position, after which the amplitudes of displacement are

6=1n[ 7 ]_ 21D

n+l 1 \’1_D2

recorded with time:

5=ln[ Zn ]=2nD

n+l»

« If D is small, then

+ Where Z, = the peak amplitude of the nth cycle. Thus,

D= Lm Zo
27 Z,

© 2017 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible
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2.9 Vibration-Measufindg-bngtod et

+ Based on the theories of vibration presented in the preceding sections, it

is now possible to study the principles of a vibration-measuring
instrument, as shown below.

. + The instrument consists of a spring-mass-
l dashpot system. It is mounted on a
vibrating base. The relative motion of the

mass m with respect to the vibrating base
is monitored.

m

k k
EE - %3 + Neglecting the transients let the absolute
motion of the mass be given as:

Bas z"=Z"sin wt
daSe
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2.9 Vibration-Measufindgsbngtgu et
Cont'd

+ S0, the equation of motion for the mass can be written as:

mz" + k(2" = 2') + e(2" = ') =0

b (0o, )2

4 \/[l —(o/o, )2]2 +4D3(a)/w,,)2

+ If the natural frequency of the instrument w, is small and w/w, is large,
then for practically all values of D, the magnitude of Z/Z’ is about 1.
Hence the instrument works as a velocity pickup.

+ If D = 0.69 and w/w, is varied from zero to 0.4, then:

Z ]
— ~ — = const Thus; Z <w?Z'
w-Z' o;
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System with Two Degrees, oﬁF _ qc
2.10 Vibration of a Mass—SBﬁriﬂr?g glyastem

* A mass-spring with two degrees of
freedom is shown on the right.

Spring
constant = k

+ If the masses m,; and m, are displaced

from their static equilibrium positions, oo
the system will start to vibrate. The : T b
equations of motion of the two masses b T
can be given as: %smng Mass = m;
constant = k»
l"lfl + k1:| = kg(_Zl =2 ) = 0

lkz(:l - )

Mass = m,
T Tkz(:l—_-z)

where m; and m, are the masses of the % Z

171353 + k322 + kg(zl o7 Zl)z O

two bodies, k;, k,, and k; are the spring
constants, and z; and z, are the .
displacements of masses m; and m.,. ‘ -

—— Free body diagram

Spring Mass = n1,
constant = ky
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2.10 Vibration of a MaSs-Spring-$estem
Cont’d

z, = Asin(wt + )

x Let

z, = Bsin(wt + )

*+ These equations yield to
(ki +k, —mw?*)A—k;B=0

—kgA = (k2 + k3 = 7713(02 )B =,
+ The general equation of motion of the two masses can now be written as

21 = Aysin (@t + o) + Ay sin (@21 + 03

z, = By sin (@ + &) + B, sin (0, + o)
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2.11 Coupled Translation &undiRgtbtasn of
a Mass-Spring System (Free Vibration)

+ The figure below shows a mass-spring system that will undergo
translation and rotation. The equations of motion of the mass m can be

'nf+k|(2 _119)+k'_r(: +[39) =0

given as

mrzé o llkl(Z == I|6) + Izkg(f + 139) =

s S

i
!
]

where:

@ = angle of rotation of the mass m
d’6
dr?

r = radius of gyration of the body about the center of gravity
(Note: mr? = J = mass moment of inertia about the cen-
ter of gravity)

k,, k, = spring constants

z = distance of translation of the center of gravity of the

body

6=
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2.11 Coupled Translation &undiRgtbtasn of
a Mass-Spring System (Free Vibration)
Cont’d

+ The general equations of motion can be given as:

z=2Z,co8®, 1+ Z,cosm,,t

and;

0=0,cos®m,t+0O,cosm, 1

+ The amplitude ratios can also be obtained:

é_ _ Eg . —(_Eg/r2 —(0,2,‘)

@| E, —COS(U,Z,] E‘gll'2
and;

Zg sur Eg s —‘(E‘:;/I’2 —(0,";2)

O, E, —cosm;, E,/r?
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