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CHAPTER 2 
 

 
 

Section 2.1 
 

1. 
 

 
a. 

 

 
S = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 

4231}. 

 
 

b. 
 

Event A contains the outcomes where 1 is first in the list: 

A = {1324, 1342, 1423, 1432}. 

 
 

c. 
 

Event B contains the outcomes where 2 is first or second: 
B = {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 

 
 

d. 
 

The event AB contains the outcomes in A or B or both: 

  AB = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 

  AB = , since 1 and 2 can’t both get into the championship game. 

  A = S – A = {2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}. 

 
2. 

 

 
a. 

 

 
A = {RRR, LLL, SSS}. 

 
 

b. 
 

B = {RLS, RSL, LRS, LSR, SRL, SLR}. 

 
 

c. 
 

C = {RRL, RRS, RLR, RSR, LRR, SRR}. 

 
 

d. 
 

D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, RSS, LSS} 

 
 

e. 
 

Event D contains outcomes where either all cars go the same direction or they all go different 
directions: 

  D = {RRR, LLL, SSS, RLS, RSL, LRS, LSR, SRL, SLR}. 

  Because event D totally encloses event C (see the lists above), the compound event CD is just event 
D: 

  CD = D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, 
RSS, LSS}. 

  Using similar reasoning, we see that the compound event CD is just event C: 

  CD = C = {RRL, RRS, RLR, RSR, LRR, SRR}. 

 

 
 
 
 
 
 
 
 
 
 

48



Chapter 2:  Probability 

49 

 

 

 
 

3. 
a.    A = {SSF, SFS, FSS}. 

 
b.   B = {SSS, SSF, SFS, FSS}. 

 
c. For event C to occur, the system must have component 1 working (S in the first position), then at least 

one of the other two components must work (at least one S in the second and third positions): C = 

{SSS, SSF, SFS}. 

 
d.   C = {SFF, FSS, FSF, FFS, FFF}. 

AC = {SSS, SSF, SFS, FSS}. 

AC = {SSF, SFS}. 

BC = {SSS, SSF, SFS, FSS}. Notice that B contains C, so BC = B. 

BC = {SSS SSF, SFS}. Since B contains C, BC = C. 
 

4. 

a.    The 2
4 

= 16 possible outcomes have been numbered here for later reference. 

 
 
Outcome 

Home Mortgage Number 

1          2          3          4 

1 F F F F 

2 F F F V 

3 F F V F 

4 F F V V 

5 F V F F 

6 F V F V 

7 F V V F 

8 F V V V 

9 V F F F 

10 V F F V 

11 V F V F 

12 V F V V 

13 V V F F 

14 V V F V 

15 V V V F 

16 V V V V 
 

b.   Outcome numbers 2, 3, 5, 9 above. 

 
c.    Outcome numbers 1, 16 above. 

 
d.   Outcome numbers 1, 2, 3, 5, 9 above. 

 
e. In words, the union of (c) and (d) is the event that either all of the mortgages are variable, or that at 

most one of them is variable-rate: outcomes 1, 2, 3, 5, 9, 16. The intersection of (c) and (d) is the event 

that all of the mortgages are fixed-rate: outcome 1. 

 
f. The union of (b) and (c) is the event that either exactly three are fixed, or that all four are the same: 

outcomes 1, 2, 3, 5, 9, 16. The intersection of (b) and (c) is the event that exactly three are fixed and 

all four are the same type. This cannot happen (the events have no outcomes in common), so the 

intersection of (b) and (c) is .
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5. 

a.    The 3
3 

= 27 possible outcomes are numbered below for later reference. 

 
Outcome 

Number 
 

Outcome 

Outcome 

Number 
 

Outcome 

1 111 15 223 

2 112 16 231 

3 113 17 232 

4 121 18 233 

5 122 19 311 

6 123 20 312 

7 131 21 313 

8 132 22 321 

9 133 23 322 

10 211 24 323 

11 212 25 331 

12 213 26 332 

13 221 27 333 

14 222   
 

 b. 

c. 

d. 

Outcome numbers 1, 14, 27 above. 

 
Outcome numbers 6, 8, 12, 16, 20, 22 above. 

Outcome numbers 1, 3, 7, 9, 19, 21, 25, 27 above. 

 
6. 

 

 
a. 

 

 
S = {123, 124, 125, 213, 214, 215, 13, 14, 15, 23, 24, 25, 3, 4, 5}. 

 
 

b. 
 

A = {3, 4, 5}. 

 
 

c. 
 

B = {125, 215, 15, 25, 5}. 

 
 

d. 
 

C = {23, 24, 25, 3, 4, 5}. 

 
7. 

 

 
a. 

 

 
S = {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA, 

  BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, 
ABBABAA, ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, 

ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, 

AAABBAB, AAABABB, AAAABBB}. 

 
 

b. 
 

AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB. 
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8. 
 

 
 
 
 
 
 
 
 
 
 

a.    A1  A2  A3 

 

 
 
 
 
 
 
 
 
 

b.   A1  A2  A3 

 
 
 
 
 
 
 
 
 
 

c.     A1  A2
  A3



 
 
 
 
 
 
 
 
 
 
 

d.    ( A1  A2
  A3

)  ( A1
  A2  A3

)  ( A1
  A2

  A3 ) 
 

 
 
 
 
 
 
 
 
 

e.    A1  (A2  A3)
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9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
10. 

 
a. In the diagram on the left, the shaded area is (AB). On the right, the shaded area is A, the striped 

area is B, and the intersection AB occurs where there is both shading and stripes.  These two 

diagrams display the same area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b.   In the diagram below, the shaded area represents (AB). Using the right-hand diagram from (a), the 

union of A and B is represented by the areas that have either shading or stripes (or both). Both of the 

diagrams display the same area. 
 

 
 

 
a. Many examples exist; e.g., A = {Chevy, Buick}, B = {Ford, Lincoln}, C = {Toyota} are three mutually 

exclusive events. 

 
b.   No. Let E = {Chevy, Buick}, F = {Buick, Ford}, G = {Toyota}. These events are not mutually 

exclusive (E and F have an outcome in common), yet there is no outcome common to all three events.
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Section 2.2 
 

11.  
a.    .07. 

 
b.   .15 + .10 + .05 = .30. 

 
c. Let A = the selected individual owns shares in a stock fund. Then P(A) = .18 + .25 = .43. The desired 

probability, that a selected customer does not shares in a stock fund, equals P(A′) = 1 – P(A) = 1 – .43 

= .57. This could also be calculated by adding the probabilities for all the funds that are not stocks.

12.  
a.    No, this is not possible. Since event A  B is contained within event B, it must be the case that 

P(A  B) ≤ P(B). However, .5 > .4. 

 
b.   By the addition rule, P(A  B) = .5 + .4 – .3 = .6. 

 
c.    P(neither A nor B) = P(A  B) = P((A  B)) = 1 – P(AB) = 1 – .6 = .4. 

 
d.   The event of interest is AB; from a Venn diagram, we see P(A  B) = P(A) – P(A  B) = .5 – .3 = 

.2. 

 
e.    From a Venn diagram, we see that the probability of interest is P(exactly one) = P(at least one) – 

P(both) = P(A  B) – P(A  B) = .6 – .3 = .3.
 

13.  
a.     A1  A2 = “awarded either #1 or #2 (or both)”: from the addition rule, 

P(A1  A2) = P(A1) + P(A2) – P(A1  A2) = .22 + .25 – .11 = .36. 

 

b.     A1
  A2

 = “awarded neither #1 or #2”: using the hint and part (a), 

P( A1
  A2

 )  P(( A1  A2 ))  1 P( A1  A2 ) = 1 – .36 = .64.

 

c.     A1  A2  A3 = “awarded at least one of these three projects”: using the addition rule for 3 events,

P( A1  A2  A3 )  P( A1)  P( A2 )  P( A3 )  P( A1  A2 )  P( A1  A3 )  P( A2  A3 )  P( A1  A2   A3 ) =

.22 +.25 + .28 – .11 – .05 – .07 + .01 = .53. 
 

d.     A1
  A2

  A3
 = “awarded none of the three projects”: 

P( A1
  A2

  A3
) = 1 – P(awarded at least one) = 1 – .53 = .47.
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e.     A1
  A2

  A3 = “awarded #3 but neither #1 nor #2”: from a Venn diagram, 

P( A1
  A2

  A3 ) = P(A3) – P(A1  A3) – P(A2  A3) + P(A1  A2  A3) = 

.28 – .05 – .07 + .01 = .17. The last term addresses the “double counting” of the two subtractions. 
 
 
 
 
 
 
 

 
f.     ( A1

  A2
 )  A3 = “awarded neither of #1 and #2, or awarded #3”: from a Venn diagram, 

P(( A1
  A2

 )  A3 ) = P(none awarded) + P(A3) = .47 (from d) + .28 = 75. 

 
Alternatively, answers to a-f can be obtained from probabilities on the accompanying Venn diagram: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14.         Let A = an adult consumes coffee and B = an adult consumes carbonated soda. We’re told that P(A) = .55, 

P(B) = .45, and P(A  B) = .70. 

a.    The addition rule says P(AB) = P(A) + P(B) – P(AB), so .70 = .55 + .45 – P(AB) or P(AB) = .55 
+ .45 – .70 = .30. 

 

b.   There are two ways to read this question. We can read “does not (consume at least one),” which means 

the adult consumes neither beverage. The probability is then P(neither A nor B) = P( A  B) = 1 – 

P(A  B) = 1 – .70 = .30. 

 
The other reading, and this is presumably the intent, is “there is at least one beverage the adult does not

consume, i.e. A  B . The probability is P( A  B) = 1 – P(A  B) = 1 – .30 from a = .70.  (It’s just a

coincidence this equals P(A  B).) 

 

Both of these approaches use deMorgan’s laws, which say that P( A  B) = 1 – P(AB) and 

P( A  B) = 1 – P(AB).
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15.  
a. Let E be the event that at most one purchases an electric dryer. Then E is the event that at least two 

purchase electric dryers, and P(E) = 1 – P(E) = 1 – .428 = .572. 

 
b.   Let A be the event that all five purchase gas, and let B be the event that all five purchase electric. All 

other possible outcomes are those in which at least one of each type of clothes dryer is purchased. 

Thus, the desired probability is 1 – [P(A) – P(B)] = 

1 – [.116 + .005] = .879.
 

16.  
a.    There are six simple events, corresponding to the outcomes CDP, CPD, DCP, DPC, PCD, and PDC. 

Since the same cola is in every glass, these six outcomes are equally likely to occur, and the probability 

assigned to each is  1 . 

 
b.   P(C ranked first) = P({CPD, CDP}) =  1  1    2  = .333. 
 

 

c.    P(C ranked first and D last) = P({CPD}) =  1 .

17.  
a. The probabilities do not add to 1 because there are other software packages besides SPSS and SAS for 

which requests could be made. 

 
b.   P(A) = 1 – P(A) = 1 – .30 = .70. 

 
c.    Since A and B are mutually exclusive events, P(A  B) = P(A) + P(B) = .30 + .50 = .80. 

 
d.   By deMorgan’s law, P(A  B) = P((A  B)) = 1 – P(A  B) = 1 – .80 = .20. 

In this example, deMorgan’s law says the event “neither A nor B” is the complement of the event 

“either A or B.” (That’s true regardless of whether they’re mutually exclusive.)
 

 

18. The only reason we’d need at least two selections to find a $10 bill is if the first selection was not a $10 bill 

bulb. There are 4 + 6 = 10 non-$10 bills out of 5 + 4 + 6 = 15 bills in the wallet, so the probability of this 

event is simply 10/15, or 2/3. 
 

 

19. Let A be that the selected joint was found defective by inspector A, so P(A) =    724   .  Let B be analogous 

for inspector B, so P(B) =    751   . The event “at least one of the inspectors judged a joint to be defective is 

AB, so P(AB) =   1159  . 
 

a.    By deMorgan’s law, P(neither A nor B) = P( A  B) = 1 – P(AB) = 1 –    1159  
 

  8841   
10,000 

= .8841.

 
b.   The desired event is BA. From a Venn diagram, we see that P(BA) = P(B) – P(AB). From the 

addition rule, P(AB) = P(A) + P(B) – P(AB) gives P(AB) = .0724 + .0751 – .1159 = .0316. 

Finally, P(BA) = P(B) – P(AB) = .0751 – .0316 = .0435.
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15 

15 

 

20.  
a. Let S1, S2 and S3 represent day, swing, and night shifts, respectively. Let C1 and C2 represent unsafe 

conditions and unrelated to conditions, respectively. Then the simple events are S1C1, S1C2, S2C1, S2C2, 

S3C1, S3C2. 

 
b.   P(C1)= P({S1C1, S2C1, S3C1})= .10 + .08 + .05 = .23. 

 

c.    P( S1
 ) = 1 – P({S1C1, S1C2}) = 1 – ( .10 + .35) = .55.

 

 
21. In what follows, the first letter refers to the auto deductible and the second letter refers to the homeowner’s 

deductible. 

a.    P(MH) = .10. 

 
b.   P(low auto deductible) = P({LN, LL, LM, LH}) = .04 + .06 + .05 + .03 = .18. Following a similar 

pattern, P(low homeowner’s deductible) = .06 + .10 + .03 = .19. 

 
c.    P(same deductible for both) = P({LL, MM, HH}) = .06 + .20 + .15 = .41. 

 
d.   P(deductibles are different) = 1 – P(same deductible for both) = 1 – .41 = .59. 

 
e.    P(at least one low deductible) = P({LN, LL, LM, LH, ML, HL}) = .04 + .06 + .05 + .03 + .10 + .03 = 

.31. 

 
f.    P(neither deductible is low) = 1 – P(at least one low deductible) = 1 – .31 = .69. 

 

 
22.         Let A = motorist must stop at first signal and B = motorist must stop at second signal. We’re told that P(A) 

= .4, P(B) = .5, and P(A  B) = .6. 

a.    From the addition rule, P(A  B) = P(A) + P(B) – P(A  B), so .6 = .4 + .5 – P(A  B), from which 

P(A  B) = .4 + .5 – .6 = .3. 

 
b.   From a Venn diagram, P(A  B) = P(A) – P(A  B) = .4 – .3 = .1. 

 
c. From a Venn diagram, P(stop at exactly one signal) = P(A  B) – P(A  B) = .6 – .3 = .3. Or, P(stop at 

exactly one signal) = P([A  B] [A  B]) = P(A  B) + P(A  B) = [P(A) – P(A  B)] + [P(B) – 

P(A  B)] = [.4 – .3] + [.5 – .3] = .1 + .2 = .3. 
 

 
23.         Assume that the computers are numbered 1-6 as described and that computers 1 and 2 are the two laptops. 

There are 15 possible outcomes: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) 

(4,6) and (5,6). 

 
a.    P(both are laptops) = P({(1,2)}) =   1  =.067. 

 

 

b.   P(both are desktops) = P({(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)}) =   6  = .40. 
 

 
c.    P(at least one desktop) = 1 – P(no desktops) = 1 – P(both are laptops) = 1 – .067 = .933. 

 
d.   P(at least one of each type) = 1 – P(both are the same) = 1 – [P(both are laptops) +     P(both are 

desktops)] = 1 – [.067 + .40] = .533.
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24. Since A is contained in B, we may write B = A  (B  A), the union of two mutually exclusive events. (See 
diagram for these two events.) Apply the axioms: 

P(B) = P(A  (B  A)) = P(A) + P(B  A) by Axiom 3. Then, since P(B  A) ≥ 0 by Axiom 1, P(B) = 

P(A) + P(B  A) ≥ P(A) + 0 = P(A). This proves the statement. 
 

 
B 

 
 

A                                                                     shaded area = B  A
 
 
 
 
 

 

For general events A and B (i.e., not necessarily those in the diagram), it’s always the case that AB is 

contained in A as well as in B, while A and B are both contained in AB. Therefore, P(AB)  P(A)  

P(AB) and P(AB)  P(B)  P(AB). 
 

 
25. By rearranging the addition rule, P(A  B) = P(A) + P(B) – P(AB) = .40 + .55 – .63 = .32. By the same 

method, P(A  C) = .40 + .70 – .77 = .33 and P(B  C) = .55 + .70 – .80 = .45. Finally, rearranging the 

addition rule for 3 events gives 

P(A  B  C) = P(A  B  C) – P(A) – P(B) – P(C) + P(A  B) + P(A  C) + P(B  C) = .85 – .40 – .55 
– .70 + .32 + .33 + .45 = .30. 

 
These probabilities are reflected in the Venn diagram below. 

 
 

A                                                          B

.05           
.02

 
 

.08

 

 
.03 

.30  
.15

 
 
 

.22                    .15 
C 

 

 

a.    P(A  B  C) = .85, as given. 

 
b.   P(none selected) = 1 – P(at least one selected) = 1 – P(A  B  C) = 1 – .85 = .15. 

 
c.    From the Venn diagram, P(only automatic transmission selected) = .22. 

 
d.   From the Venn diagram, P(exactly one of the three) = .05 + .08 + .22 = .35.
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10 

7 

10 

 
 

26.         These questions can be solved algebraically, or with the Venn diagram below. 




a.     P( A
1 

)  1 P( A
1
) = 1 – .12 = .88. 

 

b.   The addition rule says P( A  B)  P( A)  P(B)  P( A  B) . Solving for the intersection (“and”) 

probability, you get P( A1  A2 )  P( A1)  P( A2 )  P( A1  A2 ) = .12 + .07 – .13 = .06. 

c.    A Venn diagram shows that P( A  B)  P( A)  P( A  B) . Applying that here with 

= A3, you get P([ A1  A2 ] A3
)  P( A1  A2 )  P( A1  A2  A3 ) =     .06 – .01 = .05. 

A  A1  A2  and B

 

d.   The event “at most two defects” is the complement of “all three defects,” so the answer is just 1 – 

P( A1  A2  A3 ) = 1 – .01 = .99. 

 
 

 
A1                                                                                          A2

.04           
.05

 
 

.00

 

 
.02 

.01  
.01

 
 
 

.01                    .86 
A3 

 
 
 
 

27.         There are 10 equally likely outcomes: {A, B} {A, Co} {A, Cr} {A,F} {B, Co} {B, Cr} {B, F} {Co, Cr} 

{Co, F} and {Cr, F}.

a.    P({A, B}) =   1 
 = .1.

 
b.   P(at least one C) = P({A, Co} or {A, Cr} or {B, Co} or {B, Cr} or {Co, Cr} or {Co, F} or {Cr, F}) = 

10  
= .7. 

 
c.    Replacing each person with his/her years of experience, P(at least 15 years) = P({3, 14} or {6, 10} or 

{6, 14} or {7, 10} or {7, 14} or {10, 14}) =    6  = .6. 
 

28.         Recall there are 27 equally likely outcomes. 

a.    P(all the same station) = P((1,1,1) or (2,2,2) or (3,3,3)) = 

 
  3     1  . 27        9

 

b.   P(at most 2 are assigned to the same station) = 1 – P(all 3 are the same) = 1 – 1 = 8 . 9       9 

 

c.    P(all different stations) = P((1,2,3) or (1,3,2) or (2,1,3) or (2,3,1) or (3,1,2) or (3,2,1)) 
  6    2 .

 
=  

27        9
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     

   

 
 

 

Section 2.3 
 

29.  
a. There are 26 letters, so allowing repeats there are (26)(26) = (26)

2 
= 676 possible 2-letter domain 

names. Add in the 10 digits, and there are 36 characters available, so allowing repeats there are 
(36)(36) = (36)

2 
= 1296 possible 2-character domain names. 

 

b.   By the same logic as part a, the answers are (26)
3 

= 17,576 and (36)
3 

= 46,656. 
 

c.    Continuing, (26)
4 

= 456,976; (36)
4 

= 1,679,616. 

 
d.   P(4-character sequence is already owned) = 1 – P(4-character sequence still available) = 1 – 

97,786/(36)4 = .942.

30.  
a.    Because order is important, we’ll use P3,8 = (8)(7)(6) = 336. 

 

b.   Order doesn’t matter here, so we use 
30  

= 593,775. 

 6 

 

c.    The number of ways to choose 2 zinfandels from the 8 available is 
8  

. Similarly, the number of ways 

 2

10 12

to choose the merlots and cabernets are      and      , respectively. Hence, the total number of
 2   2   

81012
options (using the Fundamental Counting Principle) equals               = (28)(45)(66) = 83,160. 

 2 2  2 

d.   The numerator comes from part c and the denominator from part b:  
 83,160  

= .140. 
593,775 

 
 
 

8
e.    We use the same denominator as in part d. The number of ways to choose all zinfandel is     , with 

6

similar answers for all merlot and all cabernet. Since these are disjoint events, P(all same) = P(all zin) +

8 10 12

           

 

P(all merlot) + P(all cab) = 
6  6  6  

 
  1162    

 .002 .

30 
     

6
 

593,775

     
 

31.  
a.    Use the Fundamental Counting Principle: (9)(5) = 45. 

 
b.   By the same reasoning, there are (9)(5)(32) = 1440 such sequences, so such a policy could be carried 

out for 1440 successive nights, or almost 4 years, without repeating exactly the same program.
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     

   

 
 

32.  
a. Since there are 5 receivers, 4 CD players, 3 speakers, and 4 turntables, the total number of possible 

selections is (5)(4)(3)(4) = 240. 

 
b.   We now only have 1 choice for the receiver and CD player: (1)(1)(3)(4) = 12. 

 
c. Eliminating Sony leaves 4, 3, 3, and 3 choices for the four pieces of equipment, respectively: 

(4)(3)(3)(3) = 108. 

 
d.   From a, there are 240 possible configurations. From c, 108 of them involve zero Sony products. So, 

the number of configurations with at least one Sony product is 240 – 108 = 132.

 

e.    Assuming all 240 arrangements are equally likely, P(at least one Sony) = 
132 

240 

 

= .55.

 

Next, P(exactly one component Sony) = P(only the receiver is Sony) + P(only the CD player is Sony) 

+ P(only the turntable is Sony). Counting from the available options gives 

P(exactly one component Sony) = 
 (1)(3)(3)(3) (4)(1)(3)(3) (4)(3)(3)(1) 

 
 99  

 .413 . 
240                               240 

 

33.  
a. Since there are 15 players and 9 positions, and order matters in a line-up (catcher, pitcher, shortstop, 

etc. are different positions), the number of possibilities is P9,15 = (15)(14)…(7) or 15!/(15–9)! = 
1,816,214,440. 

 
b.   For each of the starting line-ups in part (a), there are 9! possible batting orders. So, multiply the answer 

from (a) by 9! to get (1,816,214,440)(362,880) = 659,067,881,472,000. 

 
c.    Order still matters: There are P3,5 = 60 ways to choose three left-handers for the outfield and P6,10 = 

151,200 ways to choose six right-handers for the other positions. The total number of possibilities is = 
(60)(151,200) = 9,072,000.

 

34. 
a. Since order doesn’t matter, the number of ways to randomly select 5 keyboards from the 25 available 

is 
 25 

= 53,130. 
 5 

 

b.   Sample in two stages. First, there are 6 keyboards with an electrical defect, so the number of ways to 

select exactly 2 of them is 
 6 

. Next, the remaining 5 – 2 = 3 keyboards in the sample must have 

 2

19
mechanical defects; as there are 19 such keyboards, the number of ways to randomly select 3 is      . 

 3 

So, the number of ways to achieve both of these in the sample of 5 is the product of these two counting 

 6 19
numbers:          = (15)(969) = 14,535. 

 2  3 
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        

        

5 

 

 

c.    Following the analogy from b, the number of samples with exactly 4 mechanical defects is 
196 

, 

 4 1

and the number with exactly 5 mechanical defects is 
196 

. So, the number of samples with at least 

 5 0

196 196

4 mechanical defects is         +         , and the probability of this event is
 
 

19 6    19 6 
                

 4 1  5 0

4 1  5 0  = 
34, 884 

= .657. (The denominator comes from a.)
 25 
      
     

53,130

35.  
10

a.    There are      = 252 ways to select 5 workers from the day shift. In other words, of all the ways to 
 5 

select 5 workers from among the 24 available, 252 such selections result in 5 day-shift workers. Since 

 24
the grand total number of possible selections is        = 42504, the probability of randomly selecting 5 

 5 

day-shift workers (and, hence, no swing or graveyard workers) is 252/42504 = .00593.
 

8  6

b.   Similar to a, there are    = 56 ways to select 5 swing-shift workers and     
 = 6 ways to select 5

5  5

graveyard-shift workers. So, there are 252 + 56 + 6 = 314 ways to pick 5 workers from the same shift. 

The probability of this randomly occurring is 314/42504 = .00739. 

 
c.    P(at least two shifts represented) = 1 – P(all from same shift) = 1 – .00739 = .99261. 

 

 
d.   There are several ways to approach this question. For example, let A1 = “day shift is unrepresented,” 

A2 = “swing shift is unrepresented,” and A3 = “graveyard shift is unrepresented.” Then we want 

P(A1  A2  A3). 

8  6
N(A1) = N(day shift unrepresented) = N(all from swing/graveyard) =          = 2002, 

   5  

since there are 8 + 6 = 14 total employees in the swing and graveyard shifts. Similarly,

10  6 10  8

N(A2) =            = 4368 and N(A3) =           = 8568. Next, N(A1  A2) = N(all from graveyard) = 6
    5         5   

from b. Similarly, N(A1  A3) = 56 and N(A2  A3) = 252. Finally, N(A1  A2  A3) = 0, since at least 
one shift must be represented. Now, apply the addition rule for 3 events:

 

P(A1  A2  A3) = 
2002  4368  8568  6  56  252  0 

42504 
 

14624  
= .3441. 

42504
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5
36.         There are    = 10 possible ways to select the positions for B’s votes: BBAAA, BABAA, BAABA, BAAAB,

2

ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB. Only the last two have A ahead of B throughout 

the vote count. Since the outcomes are equally likely, the desired probability is 2/10 = .20.
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1         5                 5 

5 

 
 
 

37.  
a.    By the Fundamental Counting Principle, with n1 = 3, n2 = 4, and n3 = 5, there are (3)(4)(5) = 60 runs. 

 
b.   With n1 = 1 (just one temperature), n2 = 2, and n3 = 5, there are (1)(2)(5) = 10 such runs. 

 
c. For each of the 5 specific catalysts, there are (3)(4) = 12 pairings of temperature and pressure. Imagine 

we separate the 60 possible runs into those 5 sets of 12. The number of ways to select exactly one run 
5

12


60
from each of these 5 sets of 12 is      

 = 12
5
. Since there are    ways to select the 5 runs overall,

 

 

12
the desired probability is

 

 1 

 60            60
/          125 /         = .0456.

 

 5 

                             
                             

38. 
 

 
a. A sonnet has 14 lines, each of which may come from any of the 10 pages. Order matters, and we’re 

sampling with replacement, so the number of possibilities is 10 × 10 × … × 10 = 10
14

. 
 

 
b.   Similarly, the number of sonnets you could create avoiding the first and last pages (so, only using lines 

from the middle 8 sonnets) is 8
14

. Thus, the probability that a randomly-created sonnet would not use 

any lines from the first or last page is 8
14

/10
14 

= .8
14 

= .044.
 

 

5  6  4    15
39.         In a-c, the size of the sample space is N =                


 = 455.

     3       3 

a.    There are four 23W bulbs available and 5+6 = 11 non-23W bulbs available. The number of ways to 

 411
select exactly two of the former (and, thus, exactly one of the latter) is        = 6(11) = 66. Hence, 

 2 1 

the probability is 66/455 = .145. 

5  6

b.   The number of ways to select three 13W bulbs is    = 10. Similarly, there are     
 = 20 ways to

 
 4

3  3

select three 18W bulbs and    = 4 ways to select three 23W bulbs. Put together, there are 10 + 20 + 4 
 3

= 34 ways to select three bulbs of the same wattage, and so the probability is 34/455 = .075. 
 

 
5 6 4

c.    The number of ways to obtain one of each type is        = (5)(6)(4) = 120, and so the probability 
11  1 

is 120/455 = .264. 

 
d.   Rather than consider many different options (choose 1, choose 2, etc.), re-frame the problem this way: 

at least 6 draws are required to get a 23W bulb iff a random sample of five bulbs fails to produce a 
23W bulb. Since there are 11 non-23W bulbs, the chance of getting no 23W bulbs in a sample of size 5 

11   15
is      /      = 462/3003 = .154. 
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 5    5 
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        

        

        

 
 

40.  
a. If the A’s were distinguishable from one another, and similarly for the B’s, C’s and D’s, then there 

would be 12! possible chain molecules. Six of these are: 

A1A2A3B2C3C1D3C2D1D2B3B1               A1A3A2B2C3C1D3C2D1D2B3B1 

A2A1A3B2C3C1D3C2D1D2B3B1               A2A3A1B2C3C1D3C2D1D2B3B1 

A3A1A2B2C3C1D3C2D1D2B3B1               A3A2A1B2C3C1D3C2D1D2B3B1 

These 6 (=3!) differ only with respect to ordering of the 3 A’s. In general, groups of 6 chain molecules 
can be created such that within each group only the ordering of the A’s is different. When the A 

subscripts are suppressed, each group of 6 “collapses” into a single molecule (B’s, C’s and D’s are still 

distinguishable). 

At this point there are (12!/3!) different molecules. Now suppressing subscripts on the B’s, C’s, and 

12!
D’s in turn gives  369,600 chain molecules. 

(3!)
4

 

b.   Think of the group of 3 A’s as a single entity, and similarly for the B’s, C’s, and D’s. Then there are 4! 

= 24 ways to order these triplets, and thus 24 molecules in which the A’s are contiguous, the B’s, C’s, 

and D’s also. The desired probability is 
    24      

 .00006494 . 
369,600 

41.  

a.    (10)(10)(10)(10) = 10
4 

= 10,000. These are the strings 0000 through 9999. 

 
b.   Count the number of prohibited sequences. There are (i) 10 with all digits identical (0000, 1111, …, 

9999); (ii) 14 with sequential digits (0123, 1234, 2345, 3456, 4567, 5678, 6789, and 7890, plus these 
same seven descending); (iii) 100 beginning with 19 (1900 through 1999). That’s a total of 10 + 14 + 
100 = 124 impermissible sequences, so there are a total of 10,000 – 124 = 9876 permissible sequences. 

The chance of randomly selecting one is just 
 9876  

= .9876. 
10,000

 

c. All PINs of the form 8xx1 are legitimate, so there are (10)(10) = 100 such PINs. With someone 

randomly selecting 3 such PINs, the chance of guessing the correct sequence is 3/100 = .03. 

 
d.   Of all the PINs of the form 1xx1, eleven is prohibited: 1111, and the ten of the form 19x1. That leaves 

89 possibilities, so the chances of correctly guessing the PIN in 3 tries is 3/89 = .0337. 

42. 
 

 

a.    If Player X sits out, the number of possible teams is 
3 4 4 

= 108. If Player X plays guard, we 

1 2 2

need one more guard, and the number of possible teams is 
3 4 4 

= 72. Finally, if Player X plays 

11  2

forward, we need one more forward, and the number of possible teams is 
3 4 4 

= 72. So, the 

1 21 

total possible number of teams from this group of 12 players is 108 + 72 + 72 = 252. 

b.   Using the idea in a, consider all possible scenarios. If Players X and Y both sit out, the number of 

possible teams is 
3 5 5 

= 300. If Player X plays while Player Y sits out, the number of possible 

        
1 2 2
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    

     

 

35 5 3 55

teams is          +          = 150 + 150 = 300. Similarly, there are 300 teams with Player X
11 2 1 21

benched and Player Y in. Finally, there are three cases when X and Y both play: they’re both guards, 

they’re both forwards, or they split duties. The number of ways to select the rest of the team under

35 5 3 55 355

these scenarios is          +           +          = 30 + 30 + 75 = 135.
10 2 1 20 111

 

Since there are 
15 

= 3003 ways to randomly select 5 players from a 15-person roster, the probability 

 5 

of randomly selecting a legitimate team is 
300 300 135 

= 
 735  

= .245.
3003 3003

 

43.         There are 
52 

= 2,598,960 five-card hands. The number of 10-high straights is (4)(4)(4)(4)(4) = 4
5 

= 1024 

 5 

(any of four 6s, any of four 7s, etc.). So, P(10 high straight) = 
    1024     

 .000394 . Next, there ten “types 
2,598,960 

of straight: A2345, 23456, …, 910JQK, 10JQKA. So, P(straight) = 10 
    1024      

 .00394 . Finally, there 
2,598,960 

are only 40 straight flushes: each of the ten sequences above in each of the 4 suits makes (10)(4) = 40. So, 

P(straight flush) = 
      40       

 .00001539 . 
2,598,960 

 n            n! n!             n   

44.                                

 k  k!(n  k)! (n  k)!k!  n  k 

 

The number of subsets of size k equals the number of subsets of size n – k, because to each subset of size k 

there corresponds exactly one subset of size n – k: the n – k objects not in the subset of size k. The 

combinations formula counts the number of ways to split n objects into two subsets: one of size k, and one 

of size n – k.
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Section 2.4 
 

45.  
a.    P(A) = .106 + .141 + .200 = .447, P(C) =.215 + .200 + .065 + .020 = .500, and P(A  C) = .200. 

 

b.   P(A|C) =  
 P( A C ) 

 
 .200 

 .400 .  If we know that the individual came from ethnic group 3, the
P(C) .500

 
probability that he has Type A blood is .40. P(C|A) = 

P( AC ) 

P( A) 
= 

.200 
= .447. If a person has Type A 

.447

blood, the probability that he is from ethnic group 3 is .447. 

 
c.    Define D = “ethnic group 1 selected.”  We are asked for P(D|B). From the table, P(DB) = .082 + 

.106 + .004 = .192 and P(B) = 1 – P(B) = 1 – [.008 + .018 + .065] = .909. So, the desired probability is 

P(D|B) = 
 P( D B ) 

 
 .192 

 .211 .
P(B) .909

 
46. Let A be that the individual is more than 6 feet tall. Let B be that the individual is a professional basketball 

player. Then P(A|B) = the probability of the individual being more than 6 feet tall, knowing that the 

individual is a professional basketball player, while P(B|A) = the probability of the individual being a 

professional basketball player, knowing that the individual is more than 6 feet tall.  P(A|B) will be larger. 

Most professional basketball players are tall, so the probability of an individual in that reduced sample 

space being more than 6 feet tall is very large. On the other hand, the number of individuals that are pro 

basketball players is small in relation to the number of males more than 6 feet tall. 

47.  
a.    Apply the addition rule for three events: P(A  B  C) = .6 + .4 + .2 – .3 – .15 – .1 + .08 = .73. 
 

 

b.   P(A  B  C′) = P(A  B) – P(A  B  C) = .3 – .08 = .22.

 

c.    P(B|A) = 
P( AB) 

 
 .3 

 .50 and P(A|B) = 
P( A)        .6 

P( AB) 
 

 .3 
 .75 . Half of students with Visa cards also 

P(B)        .4

have a MasterCard, while three-quarters of students with a MasterCard also have a Visa card. 
 

d.   P(A  B | C) = P([ A B] C ) 
 

 P( A B C ) 
 

 .08 
= .40.

P(C) P(C)             .2

 

e.    P(A  B | C) = P([ A B] C ) 
 

 P([ A C ] [ B C ]) 
. Use a distributive law:

P(C) P(C)

= 
 P( A C ) P( B C ) P([ A C ] [ B C ]) 

= 
P(C) 

P( AC ) P( B C ) P( A B C )  
= 

P(C)

.15 .1 .08 

.2 

 

= .85.
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48.  

a.     P( A  | A )  
 P( A

2  
A

1 
) 
 

 .06 
= .50. The numerator comes from Exercise 26.

P( A
1
)         .12 

b.    P( A  A  A | A )  
 P([ A1 A2 A3 ] A1 )  

 P( A1 A2 A3 )  
 .01 

= .0833. The numerator
P( A

1
) P( A

1
)            .12

simplifies because A1  A2  A3 is a subset of A1, so their intersection is just the smaller event.

 

c. For this example, you definitely need a Venn diagram. The seven pieces of the partition inside the 

three circles have probabilities .04, .05, .00, .02, .01, .01, and .01. Those add to .14 (so the chance of 

no defects is .86). 

Let E = “exactly one defect.” From the Venn diagram, P(E) = .04 + .00 + .01 = .05. From the addition 

above, P(at least one defect) = P( A1  A2  A3 ) = .14. Finally, the answer to the question is 

P(E | A  A  A )  
 P( E[ A1 A2 A3 ])  

        P( E)         
 

 .05 
= .3571. The numerator

P( A
1 
 A

2 
 A

3 
) P( A

1 
 A

2 
 A

3 
)    .14

simplifies because E is a subset of A1  A2  A3 .

 

d.    P( A | A  A )  
 P( A3

[ A1 A2 ])  
 .05 

= .8333. The numerator is Exercise 26(c), while the 
P( A

1 
 A

2 
)         .06 

denominator is Exercise 26(b). 

49. 
 

 
a.    P(small cup) = .14 + .20 = .34. P(decaf) = .20 + .10 + .10 = .40.

 

b.   P(decaf | small) = 
P(small decaf ) 

 
.20 

= .588. 58.8% of all people who purchase a small cup of 
P(small)          .34

coffee choose decaf.
 

c.    P(small | decaf) = 
 

the small size. 

P(small decaf ) 
 

.20 
= .50. 50% of all people who purchase decaf coffee choose 

P(decaf )          .40

50. 
 

 

a.    P(M  LS  PR) = .05, directly from the table of probabilities. 
 

 

b.   P(M  Pr) = P(M  LS  PR) + P(M  SS  PR) = .05 + .07 = .12. 
 

 
c.    P(SS) = sum of 9 probabilities in the SS table = .56. P(LS) = 1 – .56 = .44. 
 

 
d.   From the two tables, P(M) = .08 + .07 + .12 + .10 + .05 + .07 = .49. P(Pr) = .02 + .07 + .07 + .02 + .05 

+ .02 = .25.
 

e.    P(M|SS  Pl) = 
 

 

f.    P(SS|M  Pl) = 

 

.556. 
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P(M SS Pl) 
 

        .08        

 .533 . 
P(SS  Pl)        .04  .08  
.03 

P(SS M Pl) 
 

    .08    
 

.444 . P(LS|M  Pl) = 1 – 

P(SS|M  Pl) = 1 – .444 = 
P(M  Pl)        .08  .10
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51. 
 

 
a.    Let A = child has a food allergy, and R = child has a history of severe reaction. We are told that P(A) = 

.08 and P(R | A) = .39. By the multiplication rule, P(A  R) = P(A) × P(R | A) = (.08)(.39) = .0312. 
 

 
b.   Let M = the child is allergic to multiple foods. We are told that P(M | A) = .30, and the goal is to find 

P(M). But notice that M is actually a subset of A: you can’t have multiple food allergies without 

having at least one such allergy! So, apply the multiplication rule again: 

P(M) = P(M  A) = P(A) × P(M | A) = (.08)(.30) = .024.

 
52. We know that P(A1  A2) = .07 and P(A1  A2) = .01, and that P(A1) = P(A2) because the pumps are 

identical. There are two solution methods. The first doesn’t require explicit reference to q or r: Let A1 be 

the event that #1 fails and A2 be the event that #2 fails. 

Apply the addition rule: P(A1  A2) = P(A1) + P(A2) – P(A1  A2)  .07 = 2P(A1) – .01  P(A1) = .04. 

 
Otherwise, we assume that P(A1) = P(A2) = q and that P(A1 | A2) = P(A2 | A1) = r (the goal is to find q). 

Proceed as follows: .01 = P(A1  A2) = P(A1) P(A2 | A1) = qr and .07 = P(A1  A2) = 

P( A1  A2 ) P( A1
  A2 )  P( A1  A2

 ) = .01 + q(1 – r) + q(1 – r)  q(1 – r) = .03. 

These two equations give 2q – .01 = .07, from which q = .04 (and r = .25). 

53.         P(B|A) =  
 P( A B) 

 
 P( B) 

 

(since B is contained in A, A  B = B)

P( A) 
 

.05 
=         .0833 

.60 

P( A)

54.  

 
a.    P(A2 | A1) = 

 

 

 P( A1 A2 ) 

P( A1 ) 

 

 

 
.11 
.22 

 

 
 .50 . If the firm is awarded project 1, there is a 50% chance they will

also be awarded project 2. 
 

 

b.   P(A2  A3 | A1) = 
P( A1 A2 A3 ) 

P( A1 ) 
 

 .01 
.22 

 

 .0455 . If the firm is awarded project 1, there is a 4.55%

chance they will also be awarded projects 2 and 3. 
 

 

c.     P( A2
 

 

 A3
 | A )  

 P[ A1 ( A2 A3 )]  
 P[( A1 A2 ) ( A1 A3 )]

P( A1 ) P( A1 )

 
 P( A1 A2 ) P( A1 A3 ) P( A1 A2 A3 )  

 .15 
 .682 . If the firm is awarded project 1, there is

P( A1 ) .22

a 68.2% chance they will also be awarded at least one of the other two projects. 
 

d.    P( A1
 

 

 A2
 

 

 A3
 

 

| A1
 

 

 A2
 

 P( A A  A )    .01 
 A3 )                                       .0189 . If the firm is awarded at least one

P( A1  A2  A3 ) .53

of the projects, there is a 1.89% chance they will be awarded all three projects.
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55.         Let A = {carries Lyme disease} and B = {carries HGE}. We are told P(A) = .16, P(B) = .10, and P(A  B | 

A  B) = .10. From this last statement and the fact that AB is contained in AB,
 

.10 = 
P( AB) 

 P(A  B) = .10P(A  B) = .10[P(A) + P(B) – P(A  B)] = .10[.10 + .16 – P(A  B)] 
P( A  B)

1.1P(A  B) = .026  P(A  B) = .02364. 

Finally, the desired probability is P(A | B) = 

 
P( AB) 

 
.02364 

= .2364. 
P(B)          .10

 
 

56. P( A | B)  P( A | B)  
 P( A B) 

 
 P( AB) 

  
P( A B) P( AB) 

  
P( B) 

 1

P(B) P(B) P(B) P(B)

 
 
 

57. P(B | A) > P(B) iff P(B | A) + P(B′ | A) > P(B) + P(B′|A) iff 1 > P(B) + P(B′|A) by Exercise 56 (with the 

letters switched). This holds iff 1 – P(B) > P(B′ | A) iff P(B′) > P(B′ | A), QED. 
 

 
 

58. P( A  B | C)  
 P[( A B) C ) 

 
 P[( A C ) ( B C )] 

 
 P( A C ) P( B C ) P( A B C ) 

 

= P(A |

P(C) 

C) + P(B | C) – P(A  B | C) 

P(C) P(C)

 
59.         The required probabilities appear in the tree diagram below. 

 

.4  .3  .12  P( A  B)  P( A )P(B | A ) 
 

 
 
 
 

.35  .6  .21  P( A2   B) 

 
 
 
 
 

.25  .5  .125  P( A3  B) 
 

 
 
 

a.    P(A2  B) = .21. 

 
b.   By the law of total probability, P(B) = P(A1  B) + P(A2  B) + P(A3  B) = .455. 

 

c.    Using Bayes’ theorem, P(A1 | B) = 
 P( A1 B) 

P(B) 
 

 .12  
.455 

 

 .264 ; P(A2 | B) = 
 .21  

.455 

 

 .462 ; P(A3 | B) = 1 –
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.264 – .462 = .274. Notice the three probabilities sum to 1.
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60. The tree diagram below shows the probability for the four disjoint options; e.g., P(the flight is discovered 

and has a locator) = P(discovered)P(locator | discovered) = (.7)(.6) = .42. 

 
 

a.    P(not discovered | has locator) = 
P(not discovered has locator) 

 
    .03     

 .067 

. 
P(has locator)                  .03  

.42

 

b.   P(discovered | no locator) = 
P(discovered no locator) 

 
.28 

 .509 . 
P(no locator)              .55

 
61. The initial (“prior”) probabilities of 0, 1, 2 defectives in the batch are .5, .3, .2. Now, let’s determine the 

probabilities of 0, 1, 2 defectives in the sample based on these three cases. 

     If there are 0 defectives in the batch, clearly there are 0 defectives in the sample. 
P(0 def in sample | 0 def in batch) = 1. 

  If there is 1 defective in the batch, the chance it’s discovered in a sample of 2 equals 2/10 = .2, and the 

probability it isn’t discovered is 8/10 = .8. 

P(0 def in sample | 1 def in batch) = .8, P(1 def in sample | 1 def in batch) = .2. 

     If there are 2 defectives in the batch, the chance both are discovered in a sample of 2 equals 

 2 
 

1 
 .022 ; the chance neither is discovered equals 

 8  
 

7 
 .622 ; and the chance exactly 1 is

10   9 
discovered equals 1 – (.022 + .622) = .356. 

10   9

P(0 def in sample | 2 def in batch) = .622, P(1 def in sample | 2 def in batch) = .356, 

P(2 def in sample | 2 def in batch) = .022. 

 
These calculations are summarized in the tree diagram below. Probabilities at the endpoints are 

intersectional probabilities, e.g. P(2 def in batch  2 def in sample) = (.2)(.022) = .0044. 
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a.    Using the tree diagram and Bayes’ rule, 

           .5   
P(0 def in batch | 0 def in sample) =                            .578 

.5  .24  .1244 

          .24   
P(1 def in batch | 0 def in sample) =                            .278 

.5  .24  .1244 

        .1244   
P(2 def in batch | 0 def in sample) =                            .144 

.5  .24  .1244 
 

b.   P(0 def in batch | 1 def in sample) = 0 

      .06   
P(1 def in batch | 1 def in sample) =                      .457 

.06  .0712 

    .0712   
P(2 def in batch | 1 def in sample) =                      .543 

.06  .0712 
 

 
62. Let B = blue cab was involved, G = B′ = green cab was involved, and W = witness claims to have seen a 

blue cab. Before any witness statements, P(B) = .15 and P(G). The witness’ reliability can be coded as 

follows: P(W | B) = .8 (correctly identify blue), P(W′ | G) = .8 (correctly identify green), and by taking 

complements P(W′ | B) = P(W | G) = .2 (the two ways to mis-identify a color at night). 

The goal is to determine P(B | W), the chance a blue cab was involved given that’s what the witness claims 
to have seen. Apply Bayes’ Theorem: 

P(B | W )  
              P( B) P(W | B)              

 
        (.15)(.8)         

= .4138. 
P(B)P(W | B)  P(B)P(W | B)    (.15)(.8)  (.85)(.2) 

The “posterior” probability that the cab was really blue is actually less than 50%. That’s because there are 

so many more green cabs on the street, that it’s more likely the witness mis-identified a green cab (.85 × .2) 

than that the witness correctly identified a blue cab (.15 × .8). 

63.  
a. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b.   From the top path of the tree diagram, P(A  B  C) = (.75)(.9)(.8) = .54. 

 
c. Event B  C occurs twice on the diagram: P(B  C) = P(A  B  C) + P(A  B  C) = .54 + 

(.25)(.8)(.7) = .68.
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d.   P(C) = P(A  B  C) + P(A  B  C) + P(A  B  C) + P(A  B  C) = .54 + .045 + .14 + .015 = 

.74.
 

e.    Rewrite the conditional probability first: P(A | B  C) = P( A B C ) 
 

 .54 
 .7941 .

P(B  C) .68

 
 
 

64.         A tree diagram can help. We know that P(short) = .6, P(medium) = .3, P(long) = .1; also, P(Word | short) = 

.8, P(Word | medium) = .5, P(Word | long) = .3. 
 

 
a.    Use the law of total probability: P(Word) = (.6)(.8) + (.3)(.5) + (.1)(.3) = .66. 

 

b.   P(small | Word) = 
P(small Word) 

 
 (.6)(.8) 

= .727. Similarly, P(medium | Word) = 
(.3)(.5) 

= .227,

P(Word)              .66 

and P(long | Word) = .045. (These sum to .999 due to rounding error.) 

.66

 
65.         A tree diagram can help. We know that P(day) = .2, P(1-night) = .5, P(2-night) = .3; also, P(purchase | day) 

= .1, P(purchase | 1-night) = .3, and P(purchase | 2-night) = .2. 
 

Apply Bayes’ rule: e.g., P(day | purchase) = 
P(day purchase) 

 
               (.2)(.1)   

P(purchase)         (.2)(.1)  (.5)(.3)  (.3)(.2) 
= 

.02 
= .087. 

.23

Similarly, P(1-night | purchase) = 
(.5)(.3) 

= .652 and P(2-night | purchase) = .261. 
.23 

 
66. Let E, C, and L be the events associated with e-mail, cell phones, and laptops, respectively. We are told 

P(E) = 40%, P(C) = 30%, P(L) = 25%, P(EC) = 23%, P(E′C′L′) = 51%,  P(E | L) = 88%, and P(L | 

C) = 70%. 
 

 

a.    P(C | E) = P(E  C)/P(E) = .23/.40 = .575. 
 

 

b.   Use Bayes’ rule: P(C | L) = P(C  L)/P(L) = P(C)P(L | C)/P(L) = .30(.70)/.25 = .84. 
 

 

c.    P(C|E  L) = P(C  E  L)/P(E  L). 

For the denominator, P(E  L) = P(L)P(E | L) = (.25)(.88) = .22. 

For the numerator, use P(ECL) = 1 – P(E′C′L′) = 1 – .51 = .49 and write 

P(ECL) = P(C) + P(E) + P(L) – P(EC) – P(CL) – P(EL) + P(CEL) 

 .49 = .30 + .40 + .25 – .23 – .30(.70) – .22 + P(CEL)  P(CEL) = .20. 

So, finally, P(C|E  L) = .20/.22 = .9091. 
 

 
 

67.         Let T denote the event that a randomly selected person is, in fact, a terrorist. Apply Bayes’ theorem, using 

P(T) = 1,000/300,000,000 = .0000033:
 

P(T | +) =              P(T ) P(| T )              
= 

                    (.0000033)(.99)                    
= .003289. That is to
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P(T )P( | T )  P(T )P( | T ) (.0000033)(.99)  (1 .0000033)(1 .999)

say, roughly 0.3% of all people “flagged” as terrorists would be actual terrorists in this scenario.
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68. Let’s see how we can implement the hint. If she’s flying airline #1, the chance of 2 late flights is 

(30%)(10%) = 3%; the two flights being “unaffected” by each other means we can multiply their 

probabilities. Similarly, the chance of 0 late flights on airline #1 is (70%)(90%) = 63%. Since percents add 

to 100%, the chance of exactly 1 late flight on airline #1 is 100% – (3% + 63%) = 34%. A similar approach 

works for the other two airlines: the probability of exactly 1 late flight on airline #2 is 35%, and the chance 

of exactly 1 late flight on airline #3 is 45%. 

 
The initial (“prior”) probabilities for the three airlines are P(A1) = 50%, P(A2) = 30%, and P(A3) = 20%. 
Given that she had exactly 1 late flight (call that event B), the conditional (“posterior”) probabilities of the 
three airlines can be calculated using Bayes’ Rule: 

 

P( A | B)  
                           P( A

1 
) P( B| A

1 
)                            

 
                (.5)(.34)                 

= 
.170 

=
 

.4657; 

P( A
1
)P(B | A

1
)  P( A

2 
)P(B | A

2 
)  P( A

3 
)P(B | A

3 
)    (.5)(.34)  (.3)(.35)  (.2)(.45) .365

P( A | B)  
                           P( A

2 
) P( B| A

2 
)                            

 
 (.3)(.35) 

= .2877; and 
P( A

1
)P(B | A

1
)  P( A

2 
)P(B | A

2 
)  P( A

3 
)P(B | A

3 
)        .365 

P( A | B)  
                           P( A3 ) P( B| A3 )                             

 (.2)(.45) 
= .2466. 

P( A
1
)P(B | A

1
)  P( A

2 
)P(B | A

2 
)  P( A

3 
)P(B | A

3 
)       .365 

Notice that, except for rounding error, these three posterior probabilities add to 1. 

The tree diagram below shows these probabilities. 
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69. The tree diagram below summarizes the information in the exercise (plus the previous information in 

Exercise 59). Probabilities for the branches corresponding to paying with credit are indicated at the far 

right. (“extra” = “plus”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a.    P(plus  fill  credit) = (.35)(.6)(.6) = .1260. 
 

 

b.   P(premium  no fill  credit) = (.25)(.5)(.4) = .05. 
 

 

c.    From the tree diagram, P(premium  credit) = .0625 + .0500 = .1125. 
 

 

d.   From the tree diagram, P(fill  credit) = .0840 + .1260 + .0625 = .2725. 
 

 
e.    P(credit) = .0840 + .1400 + .1260 + .0700 + .0625 + .0500 = .5325. 

 

f.    P(premium | credit) = 
P(premium credit) 

 
.1125 

 .2113 . 
P(credit)             .5325
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Section 2.5 
 
 

70.         Using the definition, two events A and B are independent if P(A | B) = P(A); 

P(A | B) = .6125; P(A) = .50; .6125  .50, so A and B are not independent. 

Using the multiplication rule, the events are independent if P(A  B)=P(A)P(B); 

P(A  B) = .25; P(A)P(B) = (.5)(.4) = .2. .25  .2, so A and B are not independent. 

71. 
 

 

a.    Since the events are independent, then A and B are independent, too. (See the paragraph below 

Equation 2.7.) Thus, P(B|A) = P(B) = 1 – .7 = .3. 
 

 

b.   Using the addition rule, P(A  B) = P(A) + P(B) – P(A  B) =.4 + .7 – (.4)(.7) = .82. Since A and B are 

independent, we are permitted to write P(A  B) = P(A)P(B) = (.4)(.7).

 

c.    P(AB | A  B) = P( AB( A B)) 
 

  P( AB)   
 

 P( A) P( B) 
 

 (.4)(1 .7) 
 

.12 
 .146 .

P( A  B) P( A  B) P( A  B)           .82 .82

 
 
 

72.         P(A1  A2) = .11 while P(A1)P(A2) = .055, so A1 and A2 are not independent. 

P(A1  A3) = .05 while P(A1)P(A3) = .0616, so A1 and A3 are not independent. 

P(A2  A3) = .07 and P(A2)P(A3) = .07, so A2 and A3 are independent. 
 

 
 

73. From a Venn diagram, P(B) = P(A  B) + P(A  B) = P(B)  P(A  B) = P(B) –  P(A  B). If A and B 

are independent, then P(A  B) = P(B) – P(A)P(B) = [1 – P(A)]P(B) = P(A)P(B). Thus, A′ and B are 

independent.
 

Alternatively, P( A | B)  
 P( AB) 

 
 P( B) P( AB) 

= P( B) P( A) P( B) 
 

= 1 – P(A) = P(A′).

P(B) P(B) P(B)

 
 
 

74.         Using subscripts to differentiate between the selected individuals, 

P(O1  O2) = P(O1)P(O2) = (.45)(.45) = .2025. 

P(two individuals match) = P(A1  A2) + P(B1  B2) + P(AB1  AB2) + P(O1O2) = 

.40
2 

+ .11
2 

+ .04
2 

+ .45
2 

= .3762. 
 

 
75.         Let event E be the event that an error was signaled incorrectly. 

We want P(at least one signaled incorrectly) = P(E1  …  E10). To use independence, we need 

intersections, so apply deMorgan’s law: = P(E1  … E10) = 1 – P(E1
  E1


0 ) . P(E) = 1 – .05 = .95, 

10so for 10 independent points, P(E1
  E1


0 ) = (.95)…(.95) = (.95) . Finally, P(E1  E2   … E10) =

1 – (.95)
10 

= .401.  Similarly, for 25 points, the desired probability is 1 – (P(E))
25 

= 1 – (.95)
25 

= .723.
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76.         Follow the same logic as in Exercise 75: If the probability of an event is p, and there are n independent 

“trials,” the chance this event never occurs is (1 – p)n, while the chance of at least one occurrence is 
1 – (1 – p)

n
. With p = 1/9,000,000,000 and n = 1,000,000,000, this calculates to 1 – .9048 = .0952. 

 

 
Note: For extremely small values of p, (1 – p)

n 
≈ 1 – np. So, the probability of at least one occurrence under 

these assumptions is roughly 1 – (1 – np) = np. Here, that would equal 1/9. 
 

 
77.         Let p denote the probability that a rivet is defective. 

 

 
a.    .15 = P(seam needs reworking) = 1 – P(seam doesn’t need reworking) = 

1 – P(no rivets are defective) = 1 – P(1
st 

isn’t def  …  25
th 

isn’t def) = 

1 – (1 – p)…(1 – p) = 1 – (1 – p)
25

. 

Solve for p: (1 – p)
25 

= .85  1 – p = (.85)
1/25 

 p = 1 – .99352 = .00648. 

 
b.   The desired condition is .10 = 1 – (1 – p)

25
. Again, solve for p: (1 – p)

25 
= .90 

p = 1 – (.90)
1/25 

= 1 – .99579 = .00421. 
 

 
 

78.         P(at least one opens) = 1 – P(none open) = 1 – (.04)
5 

= .999999897. 

P(at least one fails to open) = 1 – P(all open) = 1 – (.96)
5 

= .1846. 
 
 
 

79. Let A1 = older pump fails, A2 = newer pump fails, and x = P(A1  A2). The goal is to find x. From the Venn 

diagram below, P(A1) = .10 + x and P(A2) = .05 + x. Independence implies that x = P(A1  A2) = P(A1)P(A2) 
= (.10 + x)(.05 + x) . The resulting quadratic equation, x

2 
– .85x + .005 = 0, has roots x = .0059 and x = 

.8441. The latter is impossible, since the probabilities in the Venn diagram would then exceed 1. 
Therefore, x = .0059. 

 
 
 

A1                                                                                             
A2 

.10               x .15
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80. Let Ai denote the event that component #i works (i = 1, 2, 3, 4). Based on the design of the system, the 

event “the system works” is ( A1  A2 )  ( A3  A4 ) . We’ll eventually need P( A1  A2 ) , so work that out 

first: P( A1  A2 )  P( A1)  P( A2 )  P( A1  A2 )  (.9)  (.9)  (.9)(.9)  .99 . The third term uses 

independence of events. Also, P( A3  A4 ) = (.8)(.8) = .64, again using independence. 

 
Now use the addition rule and independence for the system: 

P(( A1  A2 )  ( A3  A4 ))  P( A1  A2 )  P( A3  A4 )  P(( A1  A2 )  ( A3  A4 )) 

 P( A1  A2 )  P( A3  A4 )  P( A1  A2 ) P( A3  A4 ) 

 (.99)  (.64)  (.99)(.64)  .9964 

(You could also use deMorgan’s law in a couple of places.) 
 

81.         Using the hints, let P(Ai) = p, and x = p
2
. Following the solution provided in the example, 

P(system lifetime exceeds t0) = p
2 

+ p
2 

– p
4 
= 2p

2 
– p

4 
= 2x – x

2
. Now, set this equal to .99: 

2x – x
2 

= .99  x
2 

– 2x + .99 = 0  x = 0.9 or 1.1  p = 1.049 or .9487. Since the value we want is a 
probability and cannot exceed 1, the correct answer is p = .9487. 

 

 
82.         A = {(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)}  P(A) =    6   1  ; B = {(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)}   P(B) =  1 ; 

36       6                                                                                                                                      6 

1and C = {(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)}  P(C) =  
6 

. 

 1  
 

 

 
 1  

AB = {(3,4)}  P(AB) =  
36 

 1  
 

= P(A)P(B); AC = {(3,4)}  P(AC) =  
36 

= P(A)P(C); and BC =

{(3,4)}  P(BC) =  
36 

= P(B)P(C). Therefore, these three events are pairwise independent.

 1  
  

1    1    1          1  

However, ABC = {(3,4)}  P(ABC) =  
36 

, while P(A)P(B)P(C) =   = 
6 
 

6 
 

6  
 

216  
, so P(ABC) ≠ 

P(A)P(B)P(C) and these three events are not mutually independent. 
 
 
 

83.         We’ll need to know P(both detect the defect) = 1 – P(at least one doesn’t) = 1 – .2 = .8. 
 

 

a.    P(1
st 

detects  2
nd 

doesn’t) = P(1
st 

detects) – P(1
st 

does  2
nd 

does) = .9 – .8 = .1. 

Similarly, P(1
st 

doesn’t  2
nd 

does) = .1, so P(exactly one does)= .1 + .1= .2. 
 

 
b.   P(neither detects a defect) = 1 – [P(both do) + P(exactly 1 does)] = 1 – [.8+.2] = 0. That is, under this 

model there is a 0% probability neither inspector detects a defect. As a result, P(all 3 escape) = 

(0)(0)(0) = 0.
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84.         We’ll make repeated use of the independence of the Ais and their complements. 

a.     P( A1  A2  A3 )  P( A1)P( A2 )P( A3 ) = (.95)(.98)(.80) = .7448. 

 

b.   This is the complement of part a, so the answer is 1 – .7448 = .2552. 
 

c.     P( A1
  A2

  A3
)  P( A1

)P( A2
 )P( A3

) = (.05)(.02)(.20) = .0002. 

 

d.    P( A1
  A2  A3 )  P( A1

)P( A2 )P( A3 ) = (.05)(.98)(.80) = .0392. 

 

e.     P([ A1
  A2  A3 ][ A1  A2

  A3 ][ A1  A2  A3
]) = (.05)(.98)(.80) + (.95)(.02)(.80) + (.95)(.98)(.20) 

= .07302. 
 

f. This is just a little joke — we’ve all had the experience of electronics dying right after the warranty 

expires! 

85.  

a.    Let D1 = detection on 1
st 

fixation, D2 = detection on 2
nd 

fixation. 

P(detection in at most 2 fixations) = P(D1) + P(D1
  D2 ) ; since the fixations are independent, 

P(D1) + P(D1
  D2 ) = P(D1) + P(D1

) P(D2) = p + (1 – p)p = p(2 – p). 
 

 
b.   Define D1, D2, … , Dn as in a.  Then P(at most n fixations) = 

P(D1) + P(D1
  D2 ) + P(D1

  D2
  D3 ) + … + P(D1

  D2
  Dn


1  Dn ) = 

p + (1 – p)p + (1 – p)
2
p + … + (1 – p)

n–1
p = p[1 + (1 – p) + (1 – p)

2 
+ … + (1 – p)

n–1
] = 

1 (1 p) 
n 

p ·                   1 (1 p)n . 
1 (1 p) 

Alternatively, P(at most n fixations) = 1 – P(at least n+1 fixations are required) = 

1 – P(no detection in 1st n fixations) = 1 – P(D  D  D ) = 1 – (1 – p)n.1            2                         n 

 

c.    P(no detection in 3 fixations) = (1 – p)
3
. 

 

 

d.   P(passes inspection) = P({not flawed}  {flawed and passes}) 

= P(not flawed) + P(flawed and passes) 

= .9 + P(flawed) P(passes | flawed) = .9 + (.1)(1 – p)3. 
 

 

e.    Borrowing from d, P(flawed | passed) = 

 
.1(1 .5)3 

P(flawed  passed)       .1(1 p)
3 


P(passed)           .9  .1(1 p)

3
 

 

. For p = .5,

P(flawed | passed) =  

.9  .1(1 .5)
3
 

 .0137 .
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86. 
 

 

a.    P(A) = 
 2, 000 
10,000 

 
 

= .2. Using the law of total probability, P(B)  P( A)P(B | A)  P( A)P(B | A) =

(.2) 
1, 999 

 (.8) 
2, 000 

= .2 exactly. That is, P(B) = P(A) = .2. Finally, use the multiplication rule: 
9,999          9,999 

P( A  B)  P( A) P(B | A)  (.2) 
1, 999 

= .039984. Events A and B are not independent, since P(B) = 
9,999 

.2 while P(B | A)  
 1, 999 

 .19992 , and these are not equal. 
9,999 

 
b.   If A and B were independent, we’d have P( A  B)  P( A) P(B)  (.2)(.2)  .04 . This is very close to 

the answer .039984 from part a. This suggests that, for most practical purposes, we could treat events 

A and B in this example as if they were independent. 
 

c.    Repeating the steps in part a, you again get P(A) = P(B) = .2. However, using the multiplication rule, 

P( A  B)  P( A) P(B | A)  
 2 

 
1 

=.0222. This is very different from the value of .04 that we’d get 
10   9 

if A and B were independent! 
 

The critical difference is that the population size in parts a-b is huge, and so the probability a second 

board is green almost equals .2 (i.e., 1,999/9,999 = .19992 ≈ .2). But in part c, the conditional 

probability of a green board shifts a lot: 2/10 = .2, but 1/9 = .1111. 

87. 
 

 
a.    Use the information provided and the addition rule: 

P(A1  A2) = P(A1) + P(A2) – P(A1  A2)  P(A1  A2) = P(A1) + P(A2) – P(A1  A2) = .55 + .65 – .80 
= .40. 

 

 

b.   By definition, P( A | A )  
 P( A

2 
A

3 
) 
 

.40 
= .5714. If a person likes vehicle #3, there’s a 57.14%

P( A
3 
)        .70 

chance s/he will also like vehicle #2. 
 

 
c.    No. From b, P( A2 | A3 ) = .5714 ≠ P(A2) = .65. Therefore, A2 and A3 are not independent. Alternatively, 

P(A2  A3) = .40 ≠ P(A2)P(A3) = (.65)(.70) = .455. 
 

d.   The goal is to find P( A2  A3 | A1
) , i.e. 

P([ A2 A3 ] A1
) 

P( A1
) 

 

. The denominator is simply 1 – .55 = .45.

There are several ways to calculate the numerator; the simplest approach using the information 

provided is to draw a Venn diagram and observe that P([ A2  A3 ] A1
)  P( A1  A2  A3 )  P( A1) = 

.33
.88 – .55 = .33. Hence, P( A2  A3 | A1

)  =  

.45 
= .7333.
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88. Let D = patient has disease, so P(D) = .05. Let ++ denote the event that the patient gets two independent, 

positive tests. Given the sensitivity and specificity of the test, P(++ | D) = (.98)(.98) = .9604, while 

P(++ | D′) = (1 – .99)(1 – .99) = .0001. (That is, there’s a 1-in-10,000 chance of a healthy person being mis- 

diagnosed with the disease twice.) Apply Bayes’ Theorem: 

P(D | )  
               P( D) P(| D)                

 
           (.05)(.9604)   

P(D)P( | D)  P(D)P( | D)    (.05)(.9604)  (.95)(.0001) 

 

= .9980

 
 
 

89.         The question asks for P(exactly one tag lost | at most one tag lost) = P((C1  C2
 )  (C1

  C2 ) | (C1  C2 )) . 

Since the first event is contained in (a subset of) the second event, this equals 

P((C
1 
C

2
 ) (C

1
C

2 
)) 

= 
 P(C

1 
C

2
 ) P(C

1
C

2 
) 
 

 P(C
1 
) P(C

2
 ) P(C

1
) P(C

2 
) 

by independence =
P((C

1 
 C

2 
)) 1 P(C

1 
 C

2 
) 1 P(C

1
)P(C

2 
)

(1 ) (1 ) 
 

 2(1  ) 
 

 2  
.

1 2 1 2 1 
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Supplementary Exercises 
 

90.  
10

a.         = 120. 
 3 

 

b.   There are 9 other senators from whom to choose the other two subcommittee members, so the answer 

 9 
is 1 ×    = 36. 

 2
 

c.    There are 120 possible subcommittees. Among those, the number which would include none of the 5 

5
most senior senators (i.e., all 3 members are chosen from the 5 most junior senators) is    = 10. 

3

Hence, the number of subcommittees with at least one senior senator is 120 – 10 = 110, and the chance 

of this randomly occurring is 110/120 = .9167. 

 

8
d.   The number of subcommittees that can form from the 8 “other” senators is    = 56, so the 

3

probability of this event is 56/120 = .4667. 
 

91.  

a.    P(line 1) = 
 500  

= .333; 
1500 

.50500  .44400  

.40600
P(crack) = 

 
 
 

 

  
666  

= .444.

1500                         1500 
 

b.   This is one of the percentages provided: P(blemish | line 1) = .15. 
 

c.    P(surface defect) = 
.10500  .08400  .15600

 
172  

;

1500                         1500
 

P(line 1  surface defect) = .10500
  

50  
;

1500       1500 

so, P(line 1 | surface defect) = 
 50 / 1500  

 
 50  

= .291.
172 /1500 172

92. 
 

 
a. He will have one type of form left if either 4 withdrawals or 4 course substitutions remain. This means 

the first six were either 2 withdrawals and 4 subs or 6 withdrawals and 0 subs; the desired probability 

 6 4    6 4
              
       
   

10 
      
     

=  
 16  
210 

=.0762.
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b.   He can start with the withdrawal forms or the course substitution forms, allowing two sequences: W-C- 

W-C or C-W-C-W. The number of ways the first sequence could arise is (6)(4)(5)(3) = 360, and the 

number of ways the second sequence could arise is (4)(6)(3)(5) = 360, for a total of 720 such 

possibilities. The total number of ways he could select four forms one at a time is P4,10 = (10)(9)(8)(7) 
= 5040. So, the probability of a perfectly alternating sequence is 720/5040 = .143. 

 
93. Apply the addition rule: P(AB) = P(A) + P(B) – P(A  B)  .626 = P(A) + P(B) – .144. Apply 

independence: P(A  B) = P(A)P(B) = .144. 
So, P(A) + P(B) = .770 and P(A)P(B) = .144. 
Let x = P(A) and y = P(B). Using the first equation, y = .77 – x, and substituting this into the second 
equation yields x(.77 –  x) = .144 or x

2 
– .77x + .144 = 0. Use the quadratic formula to solve:

x = 
.77  (.77)

2   
 (4)(1)(.144)     .77  

.13 
                = .32 or .45. Since x = P(A) is assumed to be the larger 

2(1)                              2

probability, x = P(A) = .45 and y = P(B) = .32. 
 

 
94.         The probability of a bit reversal is .2, so the probability of maintaining a bit is .8. 

a.    Using independence, P(all three relays correctly send 1) = (.8)(.8)(.8) = .512. 
 

 
b.   In the accompanying tree diagram, each .2 indicates a bit reversal (and each .8 its opposite). There are 

several paths that maintain the original bit: no reversals or exactly two reversals (e.g., 1 → 1 → 0 → 1, 

which has reversals at relays 2 and 3). The total probability of these options is .512 + (.8)(.2)(.2) + 

(.2)(.8)(.2) + (.2)(.2)(.8) = .512 + 3(.032) = .608. 
 

 
 

 
 

c.    Using the answer from b, P(1 sent | 1 received) = 
P(1 sent 1 received) 

= 
P(1 received)

                          P(1 sent)P(1 received | 1 sent)                           
= 

         (.7)(.608)           
 

.4256 
=

P(1 sent)P(1 received | 1 sent)  P(0 sent)P(1 received | 0 sent) 

.7835. 

(.7)(.608)  (.3)(.392)     .5432

In the denominator, P(1 received | 0 sent) = 1 – P(0 received | 0 sent) = 1 – .608, since the answer from 

b also applies to a 0 being relayed as a 0.
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95.  
a.    There are 5! = 120 possible orderings, so P(BCDEF) =    1   = .0833. 
 

 

b.   The number of orderings in which F is third equals 431*21 = 24 (*because F must be here),  so 

P(F is third) =    24  = .2. Or more simply, since the five friends are ordered completely at random, there 

is a ⅕ chance F is specifically in position three. 
 

 

c.    Similarly, P(F last) = 
 4 3 2 11 

= .2. 
120

 

d.   P(F hasn’t heard after 10 times) = P(not on #1  not on #2  …  not on #10) =
 4 

 
4 
 
 4   

=
 

 
.1074. 

   5          5       

 

 
   (c / c*) 



96.         Palmberg equation: P (c) d               
1 (c / c*)

 

   (c * / c*) 
             

  1

          1   

a.     P (c*)                                         .5 .d                  
1 (c * /c*) 11 11

 

 

b.   The probability of detecting a crack that is twice the size of the “50-50” size c* equals 
                                                                                                     4

 

P (2c*)  
  (2c * / c*)      

 
  2      

. When β = 4, P (2c*)  
  2     

 
16 

= .9412.d                     
1 (2c * /c*) 1 2


d                     

1 24       17

 

 

c. Using the answers from a and b, P(exactly one of two detected) = P(first is, second isn’t) + P(first 

isn’t, second is) = (.5)(1 – .9412) + (1 – .5)(.9412) = .5. 
 

d.   If c = c*, then Pd(c) = .5 irrespective of β. If c < c*, then c/c* < 1 and Pd(c) → 
 

Finally, if c > c* then c/c* > 1 and, from calculus, Pd(c) → 1 as β → ∞. 

0 

0 1 

 

= 0 as β → ∞.

 
97.         When three experiments are performed, there are 3 different ways in which detection can occur on exactly 

2 of the experiments: (i) #1 and #2 and not #3; (ii) #1 and not #2 and #3; and (iii) not #1 and #2 and #3. If 

the impurity is present, the probability of exactly 2 detections in three (independent) experiments is 

(.8)(.8)(.2) + (.8)(.2)(.8) + (.2)(.8)(.8) = .384. If the impurity is absent, the analogous probability is 

3(.1)(.1)(.9) = .027. Thus, applying Bayes’ theorem, P(impurity is present | detected in exactly 2 out of 3) 

= 
 P(detected in exactly 2 present) 

= 
         (.384)(.4)           

= .905.
P(detected in exactly 2) (.384)(.4)  (.027)(.6)
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98.         Our goal is to find P(A  B  C  D  E). We’ll need all of the following probabilities: 

P(A) = P(Allison gets her calculator back) = 1/5. This is intuitively obvious; you can also see it by writing 

out the 5! = 120 orderings in which the friends could get calculators (ABCDE, ABCED, …, EDCBA) and 

observe that 24 of the 120 have A in the first position. So, P(A) = 24/120 = 1/5. By the same reasoning, 

P(B) = P(C) = P(D) = P(E) = 1/5. 

P(A  B) = P(Allison and Beth get their calculators back) = 1/20. This can be computed by considering all 
120 orderings and noticing that six — those of the form ABxyz — have A and B in the correct positions. 

Or, you can use the multiplication rule: P(A  B) = P(A)P(B | A) = (1/5)(1/4) = 1/20. All other pairwise 
intersection probabilities are also 1/20. 

P(A  B  C) = P(Allison and Beth and Carol get their calculators back) = 1/60, since this can only occur 
if two ways — ABCDE and ABCED — and 2/120 = 1/60. So, all three-wise intersections have probability 
1/60. 

P(A  B  C  D) = 1/120, since this can only occur if all 5 girls get their own calculators back. In fact, all 

four-wise intersections have probability 1/120, as does P(A  B  C  D  E) — they’re the same event. 

Finally, put all the parts together, using a general inclusion-exclusion rule for unions: 

P( A  B  C  D  E)  P( A)  P(B)  P(C)  P(D)  P(E) 

P( A  B)  P( A  C)  P(D  E) 

P( A  B  C)  P(C  D  E) 

P( A  B  C  D)  P(B  C  D  E) 

P( A  B  C  D  E) 

 5  
1 
10  

 1  
10  

 1  
 5  

 1  
 

 1  
 1 

1 
 

1 
 

 1  
 

 1  
 

 76 

 

 
 
 
 
 
 
 
 
 
 .633

5         20         60 120 120         2    6 24   120 120

The final answer has the form 1 
1 
 

1 
 

 1  
 

 1 
 

 1 
 

 1 
 

 1 
 

 1 
2    6    24    1!   2!   3!   4!   5! 

 

. Generalizing to n friends, the

 

probability at least one will get her own calculator back is 1 
 

 1 
 

 1 
 

 1 
 (1)n1  1 

.

1!   2!   3!   4!                     n! 

 

When n is large, we can relate this to the power series for ex evaluated at x = –1:
    x

k 
x    x

2        
x

3

e
x  
 

k 0  k ! 
 1            

1!    2!    3!

e1   1 
 1 
 

 1 
 

 1 
  1 

 1 
 

 1 
 

 1 
    



1!   2!   3! 

1 e1   
 1 
 

 1 
 

 1 



1!   2!   3!

1!   2!   3! 

So, for large n, P(at least one friend gets her own calculator back) ≈ 1 – e
–1 

= .632. Contrary to intuition, 

the chance of this event does not converge to 1 (because “someone is bound to get hers back”) or to 0 

(because “there are just too many possible arrangements”). Rather, in a large group, there’s about a 63.2% 

chance someone will get her own item back (a match), and about a 36.8% chance that nobody will get her 

own item back (no match).
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99.         Refer to the tree diagram below. 

 
 

a.    P(pass inspection) = P(pass initially  passes after recrimping) = 

P(pass initially) + P(fails initially  goes to recrimping  is corrected after recrimping) = 

.95 + (.05)(.80)(.60) (following path “bad-good-good” on tree diagram) = .974. 
 

 

b.   P(needed no recrimping | passed inspection) = 
  P(passed initially)  

= 
 .95  

 .9754 .
P(passed inspection) .974

 
 

100.  
a.    First, the probabilities of the Ai are P(A1) = P(JJ) = (.6)

2 
= .36; P(A2) = P(MM) = (.4)

2 
= .16; and 

P(A3) = P(JM or MJ) = (.6)(.4) + (.4)(.6) = .48. 

Second, P(Jay wins | A1) = 1, since Jay is two points ahead and, thus has won; P(Jay wins | A2) = 0, 

since Maurice is two points ahead and, thus, Jay has lost; and P(Jay wins | A3) = p, since at that 

moment the score has returned to deuce and the game has effectively started over. Apply the law of 
total probability: 

P(Jay wins) = P(A1)P(Jay wins | A1) + P(A2)P(Jay wins | A2) + P(A3)P(Jay wins | A3) 

p = (.36)(1) + (.16)(0) + (.48)(p) 

Therefore, p = .36 + .48p; solving for p gives p = 
  .36   

= .6923. 
1 .48

 

b.   Apply Bayes’ rule: P(JJ | Jay wins) = 
P( JJ ) P(Jay wins | JJ ) 

 
(.36)(1) 

 

= .52.

P(Jay wins) .6923

 

 
 

101.       Let A = 1
st 

functions, B = 2
nd 

functions, so P(B) = .9, P(A  B) = .96, P(A  B)=.75. Use the addition rule: 

P(A  B) = P(A) + P(B) – P(A  B)  .96 = P(A) + .9 – .75  P(A) = .81.
 

Therefore, P(B | A) = 
P( BA) 

 
.75 

= .926. 
P( A)       .81
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102. 
 

 
a.    P(F) = 919/2026 = .4536. P(C) = 308/2026 = .1520. 
 

 

b.   P(F  C) = 110/2026 = .0543. Since P(F) × P(C) = .4536 × .1520 = .0690 ≠ .0543, we find that 
events F and C are not independent. 

 

 

c.    P(F | C) = P(F  C)/P(C) = 110/308 = .3571. 
 

 

d.   P(C | F) = P(C  F)/P(F) = 110/919 = .1197. 
 

 
e.    Divide each of the two rows, Male and Female, by its row total.

 
 Blue Brown Green Hazel 

Male .3342 .3180 .1789 .1689 

Female .3906 .3156 .1197 .1741 

 

According to the data, brown and hazel eyes have similar likelihoods for males and females. However, 

females are much more likely to have blue eyes than males (39% versus 33%) and, conversely, males 

have a much greater propensity for green eyes than do females (18% versus 12%). 
 

 
103.       A tree diagram can help here. 

a.    P(E1  L) = P(E1)P(L | E1) = (.40)(.02) = .008. 

 
b.   The law of total probability gives P(L) = ∑ P(Ei)P(L | Ei) = (.40)(.02) + (.50)(.01) + (.10)(.05) = .018. 

c.     P(E | L)  1 P(E | L) = 1 
 P( E1 L) = 11                                     1                                    

P(L) 

P( E1 ) P( L| E1 ) 

1 P(L) 

 

= 1
(.40)(.98) 

1 .018 

 

= .601.

 

 
 

104.       Let B denote the event that a component needs rework.  By the law of total probability, 

P(B) = ∑ P(Ai)P(B | Ai) = (.50)(.05) + (.30)(.08) + (.20)(.10) = .069.
 

Thus, P(A1 | B) = 
(.50)(.05) 

.069 

 

= .362, P(A2 | B) = 
(.30)(.08) 

.069 

 

= .348, and P(A3 | B) = .290.

 

 
105.       This is the famous “Birthday Problem” in probability. 

a. There are 365
10 

possible lists of birthdays, e.g. (Dec 10, Sep 27, Apr 1, …). Among those, the number 
with zero matching birthdays is P10,365 (sampling ten birthdays without replacement from 365 days. So,

 

P(all different) = P
10,365   

 
 (365)(364)(356) 

= .883. P(at least two the same) = 1 – .883 = .117.

365
10

 (365)
10
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b.   The general formula is P(at least two the same) = 1 – 
Pk ,365  

. By trial and error, this probability equals 
365

k

.476 for k = 22 and equals .507 for k = 23. Therefore, the smallest k for which k people have at least a 
50-50 chance of a birthday match is 23. 

 

 
c.    There are 1000 possible 3-digit sequences to end a SS number (000 through 999). Using the idea from 

a, P(at least two have the same SS ending) = 1 – 
 P

10,1000   
= 1 – .956 = .044. 

1000
10

 

Assuming birthdays and SS endings are independent, P(at least one “coincidence”) = P(birthday 

coincidence  SS coincidence) = .117 + .044 – (.117)(.044) = .156.
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106.       See the accompanying tree diagram. 

 
 

a.    P(G | R1 < R2 < R3) = 
.15 

.15  .075 

 

 .67 while P(B | R1 < R2 < R3) = .33, so classify the specimen as

granite. Equivalently, P(G | R1 < R2 < R3) = .67 > ½ so granite is more likely. 
 

b.   P(G | R1 < R3 < R2) = 
 

 
P(G | R3 < R1 < R2) = 

.0625 

.2125 

.0375 

.5625 

 

 .2941 < ½, so classify the specimen as basalt. 
 

 

 .0667 < ½, so classify the specimen as basalt.

 
c.    P(erroneous classification) = P(B classified as G) + P(G classified as B) = 

P(B)P(classified as G | B) + P(G)P(classified as B | G) = 

(.75)P(R1 < R2 < R3 | B) + (.25)P(R1 < R3 < R2 or R3 < R1 < R2 | G) = 

(.75)(.10) + (.25)(.25 + .15) = .175. 

 
d.   For what values of p will P(G | R1 < R2 < R3), P(G | R1 < R3 < R2), and P(G | R3 < R1 < R2) all exceed 

½? Replacing .25 and .75 with p and 1 – p in the tree diagram,
 

P(G | R1 < R2 < R3) = .6 p 
    

.6 p    
 .5  iff p  

1 
;

 
 

P(G | R1 < R3 < R2) = 

.6 p  .1(1 p)    .1 .5 p 

.25 p         
 .5  iff 

.25 p  .2(1 p) 

.15 p 

7 

p  
4 

; 
9 

14

P(G | R3 < R1 < R2) =  

.15 p  .7(1 p) 
 .5  iff p       (most restrictive). Therefore, one would always 

17

 

classify a rock as granite iff p  
14 

. 
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i 

 
1


 
 

107.       P(detection by the end of the nth glimpse) = 1 – P(not detected in first n glimpses) = 

n 

1 – P(G1
  G2

  Gn
 ) = 1 – P(G1

)P(G2
 )P(Gn

 ) = 1 – (1 – p1)(1 – p2) … (1 – pn) = 1 –  (1 p ) . 
i1 

 

108.  
a.    P(walks on 4

th 
pitch) = P(first 4 pitches are balls) = (.5)

4 
= .0625. 

 
b.   P(walks on 6

th 
pitch) = P(2 of the first 5 are strikes  #6 is a ball) = 

 5 
P(2 of the first 5 are strikes)P(#6 is a ball) =    (.5)

2
(.5)

3 
(.5) = .15625. 

 2

c.    Following the pattern from b, P(walks on 5
th 

pitch) = 
 4 

(.5)
1
(.5)

3
(.5) = .125. Therefore,  P(batter 

   
walks) = P(walks on 4

th
) + P(walks on 5

th
) + P(walks on 6

th
) = 

.0625 + .125 + .15625 = .34375. 

d.   P(first batter scores while no one is out) = P(first four batters all walk) = (.34375)4 = .014.

109. 
 

 

a.    P(all in correct room) = 
 1 
 

 1  
= .0417. 

4!    24

 
b.   The 9 outcomes which yield completely incorrect assignments are: 2143, 2341, 2413, 3142, 3412, 

3421, 4123, 4321, and 4312, so P(all incorrect) = 
 9  

= .375. 
24 

110. 
 

 

a.    P(all full) = P(A  B  C) = (.9)(.7)(.8) = .504. 

P(at least one isn’t full) = 1 – P(all full) = 1 – .504 = .496. 
 

 

b.   P(only NY is full) = P(A  B  C) = P(A)P(B)P(C) = (.9)(1–.7)(1–.8) = .054. 

Similarly, P(only Atlanta is full) = .014 and P(only LA is full) = .024. 

So, P(exactly one full) = .054 + .014 + .024 = .092.
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2431 2  1  1  1 4321 4 3  2  1 

 

 
 

 
111. Note: s = 0 means that the very first candidate interviewed is hired. Each entry below is the candidate hired 

for the given policy and outcome. 
 

 
  Outcome     s = 0    s = 1    s = 2    s = 3    Outcome     s = 0    s = 1    s = 2    s = 3   

1234           1          4         4         4          3124          3          1         4         4 

1243           1          3         3         3          3142          3          1         4         2 

1324           1          4         4         4          3214          3          2         1         4 

1342           1          2         2         2          3241          3          2         1         1 

1423           1          3         3         3          3412          3          1         1         2 

1432           1          2         2         2          3421          3          2         2         1 
2134           2          1         4         4          4123          4          1         3         3 
2143           2          1         3         3          4132          4          1         2         2 

2314           2          1         1         4          4213          4          2         1         3 

2341           2          1         1         1          4231          4          2         1         1 

2413           2          1         1         3          4312          4          3         1         2 
 

 
 

From the table, we derive the following probability distribution based on s: 
 

 

s 
 

0 
 

1 
 

2 
 

3 

P(hire #1)  6  11 10  6  

24 24 24 24 

Therefore s = 1 is the best policy. 
 
 
 

112.       P(at least one occurs) = 1 – P(none occur) = 1 – (1 – p1)(1 – p2)(1 – p3)(1 – p4). 

P(at least two occur) = 1 – P(none or exactly one occur) = 

1 – [(1 – p1)(1 – p2)(1 – p3)(1 – p4) + p1(1 – p2)(1 – p3)(1 – p4) + (1 – p1) p2(1 – p3)(1 – p4) + 

(1 – p1)(1 – p2)p3(1 – p4) + (1 – p1)(1 – p2)(1 – p3)p4]. 

 
113. P(A1) = P(draw slip 1 or 4) = ½; P(A2) = P(draw slip 2 or 4) = ½; 

P(A3) = P(draw slip 3 or 4) = ½; P(A1  A2) = P(draw slip 4) = ¼; 

P(A2  A3) = P(draw slip 4) = ¼; P(A1  A3) = P(draw slip 4) = ¼. 

Hence P(A1  A2) = P(A1)P(A2) = ¼; P(A2  A3) = P(A2)P(A3) = ¼; and 

P(A1  A3) = P(A1)P(A3) = ¼. Thus, there exists pairwise independence. However, 

P(A1  A2  A3) = P(draw slip 4) = ¼  ⅛ = P(A1)P(A2)P(A3), so the events are not mutually independent. 

P( A  A  A ) P( A )P( A )P( A )

114.       P(A1| A2  A3) =             1           2            3           1             2              3    = P(A1).
P( A

2 
 A

3 
) P( A

2 
)P( A

3 
)
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2.5         Independence 
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Independence 

3 

 

 

 

 

The definition of conditional probability enables us to revise 

the probability P(A) originally assigned to A when we are 

subsequently informed that another event B has occurred; 

the new probability of A is P(A | B). 
 
 
 
 

In our examples, it was frequently the case that 

P(A | B) differed from the unconditional probability P(A), 

indicating that the information “B has occurred” resulted in 

a change in the chance of A occurring. 
 
 
 
 

Often the chance that A will occur or has occurred is not 

affected by knowledge that B has occurred, so that 

P(A | B) = P(A).



Independence 

4 

 

 

 

 

It is then natural to regard A and B as independent events, 

meaning that the occurrence or nonoccurrence of one 

event has no bearing on the chance that the other will 

occur. 
 
 
 
 

Definition 
 

 
 
 
 
 
 
 

The definition of independence might seem “unsymmetric” 

because we do not also demand that P(B | A) = P(B).
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However, using the definition of conditional probability and 

the multiplication rule, 
 

 
 

P(B | A) =  =                     (2.7) 
 

 
 

The right-hand side of Equation (2.7) is P(B) if and only if 

P(A | B) = P(A) (independence), so the equality in the 

definition implies the other equality (and vice versa). 
 
 
 
 

It is also straightforward to show that if A and B are 

independent, then so are the following pairs of events: 

(1) A′ and B, (2) A and B′, and (3) A′ and B′.



6 

Example 2.32 
 

 

 

 

Consider a gas station with six pumps numbered 

1, 2, . . . , 6, and let Ei denote the simple event that a 
randomly selected customer uses pump i (i = 1, . . . ,6). 

 
 
 
 

Suppose that 

P(E1) = P(E6) = .10, 

P(E2) = P(E5) = .15, 

P(E3) = P(E4) = .25 
 
 

 

Define events A, B, C by 
 
 

A = {2, 4, 6}, B = {1, 2, 3}, C = {2, 3, 4, 5}.
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Example 2.32 
cont’d 

 

 

 

 

We then have P(A) = .50, P(A | B) = .30, and P(A | C) = .50. 

That is, events A and B are dependent, whereas events 

A and C are independent. 
 
 
 
 

Intuitively, A and C are independent because the relative 

division of probability among even- and odd-numbered 

pumps is the same among pumps 2, 3, 4, 5 as it is among 

all six pumps.
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The Multiplication Rule for 

P(A ∩  B)
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The Multiplication Rule for P(A ∩ B) 
 

 

 

 

Frequently the nature of an experiment suggests that two 

events A and B should be assumed independent. 
 
 
 
 

This is the case, for example, if a manufacturer receives a 

circuit board from each of two different suppliers, each 

board is tested on arrival, and 
 
 
 
 

A = {first is defective} and 
 

B = {second is defective}.
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If P(A) = .1, it should also be the case that P(A | B) = .1; 

knowing the condition of the second board shouldn’t 

provide information about the condition of the first. 
 
 
 
 

The probability that both events will occur is easily 

calculated from the individual event probabilities when the 

events are independent.
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Proposition 

 
 

The verification of this multiplication rule is as follows: 
 

P(A ∩ B) = P(A | B)  P(B) = P(A)  P(B)       (2.9) 
 
 
 
 

where the second equality in Equation (2.9) is valid iff 

A and B are independent. Equivalence of independence 

and Equation (2.8) imply that the latter can be used as a 

definition of independence.
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Example 2.34 
 

 

 

 

It is known that 30% of a certain company’s washing 

machines require service while under warranty, whereas 

only 10% of its dryers need such service. 
 
 
 
 

If someone purchases both a washer and a dryer made by 

this company, what is the probability that both machines 

will need warranty service?
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Example 2.34 
cont’d 

 

 

 

 

Let A denote the event that the washer needs service while 

under warranty, and let B be defined analogously for the 

dryer. 
 
 
 
 

Then P(A) = .30 and P(B) = .10. 
 
 
 
 

Assuming that the two machines will function independently 

of one another, the desired probability is 
 
 

P(A ∩ B) = P(A)  P(B) = (.30)(.10) = .03
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Independence of More Than Two 

Events
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Independence of More Than Two Events 
 

 

 

 

The notion of independence of two events can be extended 

to collections of more than two events. 
 
 
 
 

Although it is possible to extend the definition for two 

independent events by working in terms of conditional and 

unconditional probabilities, it is more direct and less 

cumbersome to proceed along the lines of the last 

proposition.
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Independence of More Than Two Events 
 

 

 

 

Definition 
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Independence of More Than Two Events 
 

 

 

 

To paraphrase the definition, the events are mutually 

independent if the probability of the intersection of any 

subset of the n events is equal to the product of the 

individual probabilities. 
 
 
 
 

In using the multiplication property for more than two 
independent events, it is legitimate to replace one or more 
of the Ai s by their complements (e.g., if A1, A2, and A3 are 
independent events, so are             and       ).
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Independence of More Than Two Events 
 

 

 

 

As was the case with two events, we frequently specify at 

the outset of a problem the independence of certain events. 
 
 
 
 

The probability of an intersection can then be calculated via 

multiplication.
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Example 2.36 
 

 

 

 

The article “Reliability Evaluation of Solar Photovoltaic 

Arrays”(Solar Energy, 2002: 129–141) presents various 

configurations of solar photovoltaic arrays consisting of 

crystalline silicon solar cells. 
 
 
 
 

Consider first the system illustrated in Figure 2.14(a). 
 
 
 
 

 
 

System configurations for Example 36: (a) series-parallel 
 

Figure 2.14(a)
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There are two subsystems connected in parallel, each one 

containing three cells. 
 
 
 
 

In order for the system to function, at least one of the two 

parallel subsystems must work. 
 
 
 
 

Within each subsystem, the three cells are connected in 

series, so a subsystem will work only if all cells in the 

subsystem work.
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Consider a particular lifetime value t0, and supose we want 

to determine the probability that the system lifetime 
exceeds t0. 

 

 
 
 

Let Ai denote the event that the lifetime of cell i exceeds 
t0 (i = 1, 2, . . . , 6). 

 

 
 
 

We assume that the  are independent events (whether 
any particular cell lasts more than t0 hours has no bearing 
on whether or not any other cell does) and that P(Ai) = .9 
for every i since the cells are identical.
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cont’d 
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Then 
 

P(system lifetime exceeds t0) 
 
 
 

= P[(A1 ∩ A2 ∩ A3) ∪ (A4 ∩ A5 ∩ A6)] 
 
 
 

= P(A1 ∩ A2 ∩ A3) + P(A4 ∩ A5 ∩ A6) 

– P[(A1 ∩ A2 ∩ A3) ∩ (A4 ∩ A5 ∩ A6)] 
 
 
 

= (.9)(.9)(.9) + (.9)(.9)(.9) – (.9)(.9)(.9)(.9)(.9)(.9) 
 

 
 
 

= .927
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Alternatively, 
 

P(system lifetime exceeds t0) 
 

 
 
 

= 1 – P(both subsystem lives are ≤ t0) 
 

 
 
 

= 1 – [P(subsystem life is ≤ t0)]
2 

 

 
 

= 1 – [1 – P(subsystem life is > t0)]
2 

 

 
 

= 1 – [1 – (.9)3]2 
 
 
 

= .927
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Next consider the total-cross-tied system shown in 

Figure 2.14(b), obtained from the series-parallel array by 

connecting ties across each column of junctions. Now the 

system fails as soon as an entire column fails, and system 

lifetime exceeds t0 only if the life of every column does so. 

For this configuration, 
 

 
 

 

 

System configurations for Example 36: (b) total-cross-tied 
 

Figure 2.14(b)
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P(system lifetime is at least t0) 
 

 
 
 

= [P(column lifetime exceeds t0)]
3 

 

 
 

= [1 – P(column lifetime ≤ t0)]
3 

 

 
 

= [1 – P(both cells in a column have lifetime ≤ t0)]
3 

 

 
 

= [1 – (1 – .9)2]3 
 
 
 

= .970



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Probability 
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Sample Spaces and Events 
 

 

 

 

An experiment is any activity or process whose outcome is 

subject to uncertainty. 
 
 
 
 

Although the word experiment generally suggests a 
planned or carefully controlled laboratory testing situation, 
we use it here in a much wider sense. 

 
 
 
 

Thus experiments that may be of interest include tossing a 

coin once or several times, selecting a card or cards from a 

deck, weighing a loaf of bread, ascertaining the commuting 

time from home to work on a particular morning, obtaining 

blood types from a group of individuals, or measuring the 

compressive strengths of different steel beams. 
3



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Sample Space of an Experiment 
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The Sample Space of an Experiment 

5 

 

 

 

 

Definition 
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Example 2.1 
 

 

 

 

The simplest experiment to which probability applies is one 

with two possible outcomes. 
 
 
 
 

One such experiment consists of examining a single weld 

to see whether it is defective. 
 
 
 
 

The sample space for this experiment can be abbreviated 

as    = {N, D}, where N represents not defective, 

D represents defective, and the braces are used to 

enclose the elements of a set.
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Example 2.1 
cont’d 

 

 

 

 

Another such experiment would involve tossing a 

thumbtack and noting whether it landed point up or point 

down, with sample space    = {U, D}, and yet another would 

consist of observing the gender of the next child born at the 

local hospital, with   = {M, F}.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Events 
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Events 

9 

 

 

. 

 

 

In our study of probability, we will be interested not only in 

the individual outcomes of  but also in various collections 

of outcomes from  
 
 
 
 

Definition 
 

 
 
 



Events 

10 

 

 

 

 

When an experiment is performed, a particular event A is 

said to occur if the resulting experimental outcome is 

contained in A. 
 
 
 
 

In general, exactly one simple event will occur, but many 

compound events will occur simultaneously.
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Example 2.5 
 

 

 

 

Consider an experiment in which each of three vehicles 

taking a particular freeway exit turns left (L) or right (R) at 

the end of the exit ramp. 
 
 
 
 

The eight possible outcomes that comprise the sample 

space are LLL, RLL, LRL, LLR, LRR, RLR, RRL, and RRR. 
 
 
 
 

Thus there are eight simple events, among which are 

E1 = {LLL} and E5 = {LRR}.
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Example 2.5 
cont’d 

 

 

 

 

Some compound events include 
 

A = {LLL, LRL, LLR} = the event that exactly one of the 

three vehicles turns right 
 
 

 

B = {LLL, RLL, LRL, LLR} = the event that at most one of 

the vehicles turns right 
 
 
 
 

C = {LLL, RRR} = the event that all three vehicles turn in 

the same direction



13 

Example 2.5 
cont’d 

 

 

 

 

Suppose that when the experiment is performed, the 

outcome is LLL. 
 
 
 
 

Then the simple event E1 has occurred and so also have 
the events B and C (but not A).



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some Relations from Set Theory 
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Some Relations from Set Theory 

15 

 

 

 

 

An event is just a set, so relationships and results from 

elementary set theory can be used to study events. 
 
 
 
 

The following operations will be used to create new events 

from given events. 
 

Definition
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Example 2.8 
 

 

 

 

For the experiment in which the number of pumps in use at 

a single six-pump gas station is observed, 
 

let A = {0, 1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {1, 3, 5}. 
 
 
 
 

Then 
 

A′ = {5, 6}, 

A ∪ B = {0, 1, 2, 3, 4, 5, 6} = , 

A ∪ C = {0, 1, 2, 3, 4, 5}, 
 

A ∩ B = {3, 4}, 
 

A ∩ C = {1, 3}, 
 

(A ∩ C)′ = {0, 2, 4, 5, 6}
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Sometimes A and B have no outcomes in common, so that 

the intersection of A and B contains no outcomes. 
 
 
 
 

Definition 
 

 



18 

Example 2.10 
 

 

 

 

A small city has three automobile dealerships: a GM dealer 

selling Chevrolets and Buicks; a Ford dealer selling Fords 

and Lincolns; and a Toyota dealer. 
 
 

 

If an experiment consists of observing the brand of the next 

car sold, then the events A = {Chevrolet, Buick} and 

B = {Ford, Lincoln} are mutually exclusive because 

the next car sold cannot be both a GM product and a Ford 

product (at least until the two companies merge!).
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Some Relations from Set Theory 
 

 

 

 

The operations of union and intersection can be extended 

to more than two events. 
 

 
 
 

For any three events A, B, and C, the event A ∪ B ∪ C is 

the set of outcomes contained in at least one of the three 

events, whereas A ∩ B ∩ C is the set of outcomes 

contained in all three events. 
 
 
 
 

Given events A1, A2, A3 ,..., these events are said to be 
mutually exclusive (or pairwise disjoint) if no two events 
have any outcomes in common.



Some Relations from Set Theory 
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. 

 

 

A pictorial representation of events and manipulations with 

events is obtained by using Venn diagrams. 
 
 
 
 

To construct a Venn diagram, draw a rectangle whose 

interior will represent the sample space  
 

 
 
 

Then any event A is represented as the interior of a closed 

curve (often a circle) contained in    .
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Figure 2.1 shows examples of Venn diagrams. 
 

 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Probability 
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Axioms, Interpretations, 

and Properties of Probability 
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Axioms, Interpretations, and Properties of Probability 

3 

 

 

 

 

Given an experiment and a sample space , the objective 

of probability is to assign to each event A a number P(A), 

called the probability of the event A, which will give a 

precise measure of the chance that A will occur. 
 
 
 

To ensure that the probability assignments will be 

consistent with our intuitive notions of probability, all 

assignments should satisfy the following axioms (basic 

properties) of probability.



Axioms, Interpretations, and Properties of Probability 

4 

 

 

 
 
 

 

 
 

 
 
 

You might wonder why the third axiom contains no 

reference to a finite collection of disjoint events.



Axioms, Interpretations, and Properties of Probability 

5 

 

 

 

 

It is because the corresponding property for a finite 

collection can be derived from our three axioms. We want 

our axiom list to be as short as possible and not contain 

any property that can be derived from others on the list. 
 
 

 

Axiom 1 reflects the intuitive notion that the chance of A 

occurring should be nonnegative. 
 

 
 
 

The sample space is by definition the event that must occur 

when the experiment is performed ( contains all possible 

outcomes), so Axiom 2 says that the maximum possible 

probability of 1 is assigned to .



Axioms, Interpretations, and Properties of Probability 

6 

 

 

 

 

The third axiom formalizes the idea that if we wish the 

probability that at least one of a number of events will occur 

and no two of the events can occur simultaneously, then 

the chance of at least one occurring is the sum of the 

chances of the individual events. 
 

 
 

Proposition 
 

 



7 

Example 2.11 
 

 

, 

 

 

Consider tossing a thumbtack in the air. When it comes to 

rest on the ground, either its point will be up (the outcome U) 

or down (the outcome D). The sample space for this event is 

therefore = {U, D}. 
 
 
 
 

The axioms specify P( ) = 1, so the probability assignment 

will be completed by determining P(U) and P(D). 
 
 
 
 

Since U and D are disjoint and their union is   the foregoing 

proposition implies that 
 
 
 

1 = P( ) = P(U) + P(D)
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Example 2.11 
cont’d 

 

 

 

 

It follows that P(D) = 1 – P(U). 
 
 
 
 

One possible assignment of probabilities is 
 

P(U) = .5, P(D) = .5, 
 
 
 
 

whereas another possible assignment is 
 

 

P(U) = .75, P(D) = .25. 
 
 
 
 

In fact, letting p represent any fixed number between 0 and 1, 

P(U) = p, P(D) = 1 – p is an assignment consistent with the 

axioms.



Example 2.12 

9 

 

 

 

 

Consider testing batteries coming off an assembly line one 

by one until one having a voltage within prescribed limits is 

found. 
 
 
 
 

The simple events are 
 
 
 
 

E1 = {S},                           E2 = {FS}, 

E3 = {FFS},                       E4 = {FFFS}, . . . . 

Suppose the probability of any particular battery being 

satisfactory is .99.



Example 2.12 
cont’d 

10 

 

 

 

 

Then it can be shown that 
 
 

 

P(E1) = .99,                       P(E2) = (.01)(.99), 
 

 
 
 

P(E3) = (.01)2(.99), . . . is an assignment of probabilities to 
the simple events that satisfies the axioms. In particular, 
because the Eis are disjoint and = E1 ∪ E2 ∪ E3 ∪ …, 

it must be the case that 
 
 
 
 

1 = P(S) = P(E1) + P(E2) + P(E3) + ··· 
 
 

= .99[1 + .01 + (.01)2 + (.01)3 + ···]



Example 2.12 
cont’d 

11 

 

 

 

 

Here we have used the formula for the sum of a geometric 

series: 
 

 

 
 
 
 

However, another legitimate (according to the axioms) 

probability assignment of the same “geometric” type is 

obtained by replacing .99 by any other number p between 

0 and 1 (and .01 by 1 – p).



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interpreting Probability 
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Interpreting Probability 
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Examples 2.11 and 2.12 show that the axioms do not 

completely determine an assignment of probabilities to 

events. The axioms serve only to rule out assignments 

inconsistent with our intuitive notions of probability. 
 
 
 
 

In the tack-tossing experiment of Example 2.11, two 

particular assignments were suggested. 
 
 
 
 

The appropriate or correct assignment depends on the 

nature of the thumbtack and also on one’s interpretation of 

probability.
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The interpretation that is most frequently used and most 

easily understood is based on the notion of relative 

frequencies. 
 
 
 
 

Consider an experiment that can be repeatedly performed 

in an identical and independent fashion, and let A be an 

event consisting of a fixed set of outcomes of the 

experiment. 
 
 
 
 

Simple examples of such repeatable experiments include 

the tacktossing and die-tossing experiments previously 

discussed.



Interpreting Probability 

15 

 

 

 

 

If the experiment is performed n times, on some of the 

replications the event A will occur (the outcome will be in 

the set A), and on others, A will not occur. 
 
 
 
 

Let n(A) denote the number of replications on which A does 

occur. 
 
 
 
 

Then the ratio n(A)/n is called the relative frequency of 

occurrence of the event A in the sequence of n replications.



Interpreting Probability 
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For example, let A be the event that a package sent within 

the state of California for 2nd day delivery actually arrives 

within one day. 
 
 
 
 

The results from sending 10 such packages (the first 10 

replications) are as follows: 
 

 
 



Interpreting Probability 

Behavior of relative frequency (a) Initial fluctuation 
 

Figure 2.2 17 

 

 

 

 

Figure 2.2(a) shows how the relative frequency n(A)/n 

fluctuates rather substantially over the course of the first 50 

replications. 



Interpreting Probability 

Behavior of relative frequency (b) Long-run stabilization 
 

Figure 2.2 18 

 

 

 

 

But as the number of replications continues to increase, 

Figure 2.2(b) illustrates how the relative frequency 

stabilizes.



Interpreting Probability 

19 

 

 

 

 

More generally, empirical evidence, based on the results of 

many such repeatable experiments, indicates that any 

relative frequency of this sort will stabilize as the number of 

replications n increases. 
 
 
 
 

That is, as n gets arbitrarily large, n(A)/n approaches a 

limiting value referred to as the limiting (or long-run) relative 

frequency of the event A. 
 
 
 
 

The objective interpretation of probability identifies this 

limiting relative frequency with P(A).



Interpreting Probability 
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Suppose that probabilities are assigned to events in 

accordance with their limiting relative frequencies. 
 
 
 
 

Then a statement such as “the probability of a package 

being delivered within one day of mailing is .6” means that 

of a large number of mailed packages, roughly 60% will 

arrive within one day. 
 
 
 
 

Similarly, if B is the event that an appliance of a particular 

type will need service while under warranty, then P(B) = .1 

is interpreted to mean that in the long run 10% of such 

appliances will need warranty service.
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This doesn’t mean that exactly 1 out of 10 will need 

service, or that exactly 10 out of 100 will need service, 

because 10 and 100 are not the long run. 
 
 
 
 

This relative frequency interpretation of probability is said to 

be objective because it rests on a property of the 

experiment rather than on any particular individual 

concerned with the experiment. 
 
 
 
 

For example, two different observers of a sequence of coin 

tosses should both use the same probability assignments 

since the observers have nothing to do with limiting relative 

frequency.



Interpreting Probability 
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In practice, this interpretation is not as objective as it might 

seem, since the limiting relative frequency of an event will 

not be known. 
 
 
 
 

Thus we will have to assign probabilities based on our 

beliefs about the limiting relative frequency of events under 

study. 
 
 
 
 

Fortunately, there are many experiments for which there 

will be a consensus with respect to probability 

assignments.



Interpreting Probability 
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When we speak of a fair coin, we shall mean 
 
 

P(H) = P(T) = .5, 
 

 
 
 

and a fair die is one for which limiting relative frequencies 

of the six outcomes are all  suggesting probability 

assignments P({1}) = · · · = P({6}) =  
 
 
 

 

Because the objective interpretation of probability is based 

on the notion of limiting frequency, its applicability is limited 

to experimental situations that are repeatable.
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Yet the language of probability is often used in connection 

with situations that are inherently unrepeatable. 
 
 
 
 

Examples include: “The chances are good for a peace 

agreement”; “It is likely that our company will be awarded 

the contract”; and “Because their best quarterback is 

injured, I expect them to score no more than 10 points 

against us.” 
 
 
 
 

In such situations we would like, as before, to assign 

numerical probabilities to various outcomes and events 

(e.g., the probability is .9 that we will get the contract).
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We must therefore adopt an alternative interpretation of 

these probabilities. Because different observers may have 

different prior information and opinions concerning such 

experimental situations, probability assignments may now 

differ from individual to individual. 
 
 
 
 

Interpretations in such situations are thus referred to as 

subjective. 
 
 
 

 

The book by Robert Winkler listed in the chapter references 

gives a very readable survey of several subjective 

interpretations.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More Probability Properties 
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Proposition 
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Example 2.13 
 

 

 

 

Consider a system of five identical components connected 

in series, as illustrated in Figure 2.3. 
 
 

 

 
 

 

A system of five components connected in a series 
 

Figure 2.3 
 

 

Denote a component that fails by F and one that doesn’t fail 

by S (for success). 
 
 
 

 

Let A be the event that the system fails. For A to occur, at 

least one of the individual components must fail.
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Example 2.13 
cont’d 

 

 

 

 

Outcomes in A include SSFSS (1, 2, 4, and 5 all work, but 

3 does not), FFSSS, and so on. 
 
 

There are in fact 31 different outcomes in A. However, A′, 
the event that the system works, consists of the single 

outcome SSSSS. 
 
 

We will see in Section 2.5 that if 90% of all such 

components do not fail and different components fail 

independently of one another, then 
 

 

P(A′) = P(SSSSS) = .95 = .59. 
 
 

Thus P(A) = 1 – .59 = .41; so among a large number of 

such systems, roughly 41% will fail.
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In general, the foregoing proposition is useful when the 

event of interest can be expressed as “at least . . . ,” since 

then the complement “less than . . .” may be easier to work 

with (in some problems, “more than . . .” is easier to deal 

with than “at most . . .”). 
 
 

 

When you are having difficulty calculating P(A) directly, 

think of determining P(A′). 
 
 

 

Proposition 
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This is because 1 = P(A) + P(A′) ≥ P(A) since P(A′) ≥ 0. 
 

 
 
 

When events A and B are mutually exclusive, 

P(A ∪ B) = P(A) + P(B). 
 

 
 
 

For events that are not mutually exclusive, adding 

P(A) and P(B) results in “doublecounting” outcomes in the 

intersection. The next result shows how to correct for this. 
 
 

 

Proposition
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Proof 
 

Note first that A    B can be decomposed into two disjoint 

events, A and B    A’; the latter is the part of B that lies 

outside A (see Figure 2.4). Furthermore, B itself is the 

union of the two disjoint events A    B and A’    B, so P(B) = 
 

P(A    B) 1 P(A’    B). Thus 
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The addition rule for a triple union probability is similar to 

the foregoing rule. 
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This can be verified by examining a Venn diagram of 

A ∪ B ∪ C, which is shown in Figure 2.6. 
 

 

 
 

 

A ∪ B ∪ C 

Figure 2.6 
 

When P(A), P(B), and P(C) are added, the intersection 

probabilities P(A    B), P(A    C), and P(B    C) are all 

counted twice. Each one must therefore be subtracted. 
 

But then P(A    B    C) has been added in three times and 

subtracted out three times, so it must be added back.
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In general, the probability of a union of k events is obtained 
 

by summing individual event probabilities, subtracting 

double intersection probabilities, adding triple intersection 

probabilities, subtracting quadruple intersection robabilities, 
 

and so on.
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Determining Probabilities 

Systematically
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Determining Probabilities Systematically 
 

 

 

 

Consider a sample space that is either finite or “countably 

infinite” (the latter means that outcomes can be listed in an 

infinite sequence, so there is a first outcome, a second 

outcome, a third outcome, and so on—for example, the 

battery testing scenario of Example 12). 
 

 
 

Let E1, E2, E3, … denote the corresponding simple events, 
each consisting of a single outcome.
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Determining Probabilities Systematically 
 

 

 

 

A sensible strategy for probability computation is to first 

determine each simple event probability, with the 

requirement that ΣP(Ei) = 1. 
 

 
 
 

Then the probability of any compound event A is computed 

by adding together the P(Ei)’s for all Ei’s in A: 
 
 
 
 



Example 2.15 
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During off-peak hours a commuter train has five cars. 

Suppose a commuter is twice as likely to select the middle 

car (#3) as to select either adjacent car (#2 or #4), and is 

twice as likely to select either adjacent car as to select 

either end car (#1 or #5). 
 
 

 

Let pi = P(car i is selected) = P(Ei). Then we have 
p3 = 2p2 = 2p4 and p2 = 2p1 = 2p5 = p4. This gives 

 

 
 

1 = ΣP(Ei) = p1 + 2p1 + 4p1 + 2p1 + p1 = 10p1 
 

 

implying p1 = p5 = .1, p2 = p4 = .2, p3 = .4. The probability 
that one of the three middle cars is selected (a compound 
event) is then p2 + p3 + p4 = .8.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Equally Likely Outcomes 
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Equally Likely Outcomes 
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In many experiments consisting of N outcomes, it is 

reasonable to assign equal probabilities to all N simple 

events. 
 

 
 

These include such obvious examples as tossing a fair coin 

or fair die once or twice (or any fixed number of times), or 

selecting one or several cards from a well-shuffled deck 

of 52. With p = P(Ei) for every i, 
 

 
 

That is, if there are N equally likely outcomes, the 

probability for each is 
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Now consider an event A, with N(A) denoting the number of 

outcomes contained in A. Then 
 

 
 

 
 
 
 

Thus when outcomes are equally likely, computing 

probabilities reduces to counting: determine both the 

number of outcomes N(A) in A and the number of 

outcomes N in , and form their ratio.
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You have six unread mysteries on your bookshelf and six 

unread science fiction books. 
 

 
 
 

The first three of each type are hardcover, and the last 

three are paperback. 
 
 

 

Consider randomly selecting one of the six mysteries and 

then randomly selecting one of the six science fiction books 

to take on a post-finals vacation to Acapulco (after all, you 

need something to read on the beach). 
 
 

 

Number the mysteries 1, 2, . . . , 6, and do the same for the 

science fiction books.
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Example 2.16 
cont’d 

 

 

 

 

Then each outcome is a pair of numbers such as (4, 1), 

and there are N = 36 possible outcomes (For a visual of 

this situation, refer the table below and delete the first row 

and column). 
 

 



Example 2.16 
cont’d 
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With random selection as described, the 36 outcomes are 

equally likely. 
 
 
 
 

Nine of these outcomes are such that both selected books 

are paperbacks (those in the lower right-hand corner of the 

referenced table): (4, 4), (4, 5), . . . , (6, 6). 
 
 
 
 

So the probability of the event A that both selected books 

are paperbacks is 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Probability 
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Counting Techniques 

3 

 

 

 

 

When the various outcomes of an experiment are equally 

likely (the same probability is assigned to each simple 

event), the task of computing probabilities reduces to 

counting. 
 
 
 
 

Letting N denote the number of outcomes in a sample 
space and N(A) represent the number of outcomes 
contained in an event A, 

 

 
 
 
 

(2.1)
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If a list of the outcomes is easily obtained and N is small, 

then N and N(A) can be determined without the benefit of 

any general counting principles. 
 

 

There are, however, many experiments for which the effort 

involved in constructing such a list is prohibitive because N 

is quite large. 
 

 

By exploiting some general counting rules, it is possible to 

compute probabilities of the form (2.1) without a listing of 

outcomes. 
 

 

These rules are also useful in many problems involving 

outcomes that are not equally likely.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Product Rule for Ordered Pairs 
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The Product Rule for Ordered Pairs 
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Our first counting rule applies to any situation in which a set 

(event) consists of ordered pairs of objects and we wish to 

count the number of such pairs. 
 
 
 
 

By an ordered pair, we mean that, if O1 and O2 are objects, 
then the pair (O1, O2) is different from the pair (O2, O1). 

 
 
 
 

For example, if an individual selects one airline for a trip 

from Los Angeles to Chicago and (after transacting 

business in Chicago) a second one for continuing on to 

New York, one possibility is (American, United), another is 

(United, American), and still another is (United, United).
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Proposition 

 
 

An alternative interpretation involves carrying out an 

operation that consists of two stages. 
 

 
 
 

If the first stage can be performed in any one of n1 ways, 

and for each such way there are n2 ways to perform the 

second stage, then n1n2 is the number of ways of carrying 

out the two stages in sequence.
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Example 2.18 
 

 

 

 

A family has just moved to a new city and requires the 

services of both an obstetrician and a pediatrician. There 

are two easily accessible medical clinics, each having two 

obstetricians and three pediatricians. 
 
 
 
 

The family will obtain maximum health insurance benefits 

by joining a clinic and selecting both doctors from that 

clinic. In how many ways can this be done? 
 
 
 
 

Denote the obstetricians by O1, O2, O3, and O4 and the 
pediatricians by P1, . . . ., P6.
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Example 2.18 
cont’d 

 

 

 

 

Then we wish the number of pairs (Oi, Pj) for which 
Oi and Pj  are associated with the same clinic. 

 

 
 
 

Because there are four obstetricians, n1 = 4, and for each 
there are three choices of pediatrician, so n2 = 3. 

 
 
 
 

Applying the product rule gives N = n1n2 = 12 possible 
choices.
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In many counting and probability problems, a configuration 

called a tree diagram can be used to represent pictorially 

all the possibilities. 
 
 

The tree diagram associated with Example 2.18 appears in 

Figure 2.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tree diagram for Example 18 
 

Figure 2.7
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Starting from a point on the left side of the diagram, for 

each possible first element of a pair a straight-line segment 

emanates rightward. 
 
 
 
 

Each of these lines is referred to as a first-generation 

branch. 
 
 
 
 

Now for any given first-generation branch we construct 

another line segment emanating from the tip of the branch 

for each possible choice of a second element of the pair.
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Each such line segment is a second-generation branch. 

Because there are four obstetricians, there are four 

first-generation branches, and three pediatricians for each 

obstetrician yields three second-generation branches 

emanating from each first-generation branch. 
 
 
 
 

Generalizing, suppose there are n1 first-generation 
branches, and for each first generation branch there are 
n2 second-generation branches. 

 
 
 

The total number of second-generation branches is then 

n1n2.
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Since the end of each second-generation branch 

corresponds to exactly one possible pair (choosing a first 
element and then a second puts us at the end of exactly 
one second-generation branch), there are n1n2 pairs, 
verifying the product rule. 

 
 
 
 

The construction of a tree diagram does not depend on 

having the same number of second-generation branches 

emanating from each first-generation branch.
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If the second clinic had four pediatricians, then there would 

be only three branches emanating from two of the 

first-generation branches and four emanating from each of 

the other two first-generation branches. 
 
 
 
 

A tree diagram can thus be used to represent pictorially 

experiments other than those to which the product rule 

applies.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A More General Product Rule 
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A More General Product Rule 
 

 

 

 

If a six-sided die is tossed five times in succession rather 

than just twice, then each possible outcome is an ordered 

collection of five numbers such as (1, 3, 1, 2, 4) or 

(6, 5, 2, 2, 2). 
 
 
 
 

We will call an ordered collection of k objects a k-tuple 

(so a pair is a 2-tuple and a triple is a 3-tuple). 
 
 
 
 

Each outcome of the die-tossing experiment is then a 

5-tuple. 
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A More General Product Rule 
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An alternative interpretation involves carrying out an 

operation in k stages. 
 

 
 

If the first stage can be performed in any one of n1 ways, 

and for each such way there are n2 ways to perform the 

second stage, and for each way of performing the first two 
stages there are n3 ways to perform the 3rd stage, and so 

on, then n1n2  · · ·  nk is the number of ways to carry out 
the entire k-stage operation in sequence. 

 

 
 

This more general rule can also be visualized with a tree 

diagram. For the case k = 3, simply add an appropriate 

number of 3rd generation branches to the tip of each 

2nd generation branch.
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If, for example, a college town has four pizza places, a 

theater complex with six screens, and three places to go 

dancing, then there would be four 1st generation branches, 

six 2nd generation branches emanating from the tip of each 

1st generation branch, and three 3rd generation branches 

leading off each 2nd generation branch. 
 
 
 
 

Each possible 3-tuple corresponds to the tip of a 

3rd generation branch.
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Example 17 continued… 
 
 
 

Suppose the home remodeling job involves first purchasing 

several kitchen appliances. They will all be purchased from 

the same dealer, and there are five dealers in the area. 
 
 
 
 

With the dealers denoted by D1, . . . , D5, there are 
N = n1n2n3 = (5)(12)(9) = 540 3-tuples of the form 
(Di, Pj, Qk), so there are 540 ways to choose first an 

appliance dealer, then a plumbing contractor, and finally an 

electrical contractor.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Permutations and Combinations 
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Consider a group of n distinct individuals or objects 

(“distinct” means that there is some characteristic that 

differentiates any particular individual or object from any 

other). 
 
 
 
 

How many ways are there to select a subset of size k from 

the group? 
 
 
 
 

For example, if a Little League team has 15 players on its 

roster, how many ways are there to select 9 players to form 

a starting lineup?
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Or if a university bookstore sells ten different laptop 

computers but has room to display only three of them, in 

how many ways can the three be chosen? 
 
 
 
 

An answer to the general question just posed requires that 

we distinguish between two cases. In some situations, such 

as the baseball scenario, the order of selection is 

important. 
 
 
 

 

For example, Angela being the pitcher and Ben the catcher 

gives a different lineup from the one in which Angela is 

catcher and Ben is pitcher.
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Often, though, order is not important and one is interested 

only in which individuals or objects are selected, as would 

be the case in the laptop display scenario. 
 

 

Definition 
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The number of permutations can be determined by using 

our earlier counting rule for k-tuples. Suppose, for example, 

that a college of engineering has seven departments, which 

we denote by a, b, c, d, e, f, and g. 
 
 
 
 

Each department has one representative on the college’s 

student council. From these seven representatives, one is 

to be chosen chair, another is to be selected vice-chair, and 

a third will be secretary. 
 
 
 
 

How many ways are there to select the three officers? That 

is, how many permutations of size 3 can be formed from 

the 7 representatives?
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To answer this question, think of forming a triple (3-tuple) in 

which the first element is the chair, the second is the 

vice-chair, and the third is the secretary. 
 
 
 
 

One such triple is (a, g, b), another is (b, g, a), and yet 

another is (d, f, b). Now the chair can be selected in any of 

n1 = 7 ways. 
 

 
 
 

For each way of selecting the chair, there are n2 = 6 ways 
to select the vice-chair, and hence 7 × 6 = 42 (chair, 

vice-chair) pairs.
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Finally, for each way of selecting a chair and vice-chair, 

there are n3 = 5 ways of choosing the secretary. This gives 
 

 

P3,7 = (7)(6)(5) = 210 
 

 

as the number of permutations of size 3 that can be formed 

from 7 distinct individuals. A tree diagram representation 

would show three generations of branches. 
 
 
 
 

The expression for P3,7 can be rewritten with the aid of 
factorial notation. Recall that 7! (read “7 factorial”) is 
compact notation for the descending product of integers 
(7)(6)(5)(4)(3)(2)(1).
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More generally, for any positive integer m, 
 
 
 

m! = m(m – 1)(m – 2)  · · · · (2)(1.) This gives 1! = 1, and 

we also define 0! = 1. Then 
 

 

P3,7 = (7)(6)(5) =   

More generally, 

Pk,n = n(n – 1)(n – 2)  · · · · (n – (k – 2))(n – (k – 1)) 

Multiplying and dividing this by (n – k)! gives a compact 

expression for the number of permutations.
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Proposition 
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There are ten teaching assistants available for grading 

papers in a calculus course at a large university. 
 
 
 
 

The first exam consists of four questions, and the professor 

wishes to select a different assistant to grade each 

question (only one assistant per question). 
 
 
 
 

In how many ways can the assistants be chosen for 

grading? Here n = group size = 10 and k = subset size = 4.
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The number of permutations is 
 
 

P4,10 10(9)(8)(7) = 5040 
 

 
 

That is, the professor could give 5040 different 

four-question exams without using the same assignment of 

graders to questions, by which time all the teaching 

assistants would hopefully have finished their degree 

programs!
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Now let’s move on to combinations (i.e., unordered 

subsets). 
 
 
 
 

Again refer to the student council scenario, and suppose 

that three of the seven representatives are to be selected 

to attend a statewide convention. 
 
 
 
 

The order of selection is not important; all that matters is 
which three get selected. So we are looking for , the 
number of combinations of size 3 that can be formed from 
the 7 individuals.
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Consider  for a moment the combination a, c, g. 
 
 
 
 

These three individuals can be ordered in 3! = 6 ways to 

produce permutations: 
 

 
 

 

 

a, c, g   a, g, c    c, a, g    c, g, a     g, a, c    g, c, a 
 
 
 
 

Similarly, there are 3! = 6 ways to order the combination 

b, c, e to produce permutations, and in fact 3! ways to order 

any particular combination of size 3 to produce 

permutations.
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This implies the following relationship between the number 

of combinations and the number of permutations: 
 

 

 

 
 

 

It would not be too difficult to list the 35 combinations, but 
there is no need to do so if we are interested only in how 
many there are. 

 
 
 

 

Notice that the number of permutations 210 far exceeds the 

number of combinations; the former is larger than the latter by 

a factor of 3! since that is how many ways each combination 

can be ordered.                                                 
34
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Generalizing the foregoing line of reasoning gives a simple 

relationship between the number of permutations and the 

number of combinations that yields a concise expression 

for the latter quantity. 
 
 

 
 

Proposition 
 

 
 
 
 
 
 
 

Notice that  and  since there is only one way to 

choose a set of (all) n elements or of no elements, and 

since there are n subsets of size 1.
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A particular iPod playlist contains 100 songs, 10 of which 

are by the Beatles. 
 

 
 
 

Suppose the shuffle feature is used to play the songs in 

random order (the randomness of the shuffling process is 

investigated in “Does Your iPod Really Play Favorites?” 
 
 

 

What is the probability that the first Beatles song heard is 

the fifth song played? 
 
 

 

In order for this event to occur, it must be the case that the 

first four songs played are not Beatles’ songs (NBs) and 

that the fifth song is by the Beatles (B).
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cont’d 

 

 

 

 

The number of ways to select the first five songs is 

100(99)(98)(97)(96). 
 
 
 
 

The number of ways to select these five songs so that the 

first four are NBs and the next is a B is 90(89)(88)(87)(10). 
 
 
 
 

The random shuffle assumption implies that any particular 

set of 5 songs from amongst the 100 has the same chance 

of being selected as the first five played as does any other 

set of five songs; each outcome is equally likely.



Example 2.22 
cont’d 

38 

 

 

 

 

Therefore the desired probability is the ratio of the number 

of outcomes for which the event of interest occurs to the 

number of possible outcomes: 
 

 

 
 
 
 

Here is an alternative line of reasoning involving 

combinations. 
 
 
 
 

Rather than focusing on selecting just the first five songs, 

think of playing all 100 songs in random order.
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The number of ways of choosing 10 of these songs to be 

the Bs (without regard to the order in which they are then 

played) is . 
 

 
 
 

Now if we choose 9 of the last 95 songs to be Bs, which 

can be done in  ways, that leaves four NBs and one B for 
the first five songs. 

 
 
 
 

There is only one further way for these five to start with four 

NBs and then follow with a B (remember that we are 

considering unordered subsets).
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Thus 
 
 
 
 

P(1st B is the 5th song played) 
 

 
 
 
 
 
 
 

It is easily verified that this latter expression is in fact 

identical to the first expression for the desired probability, 

so the numerical result is again .0679.
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The probability that one of the first five songs played is a 

Beatles’ song is 
 

 

P(1st B is the 1st or 2nd or 3rd or 4th or 5th song played) 
 

 

 
 
 
 

It is thus rather likely that a Beatles’ song will be one of the 

first five songs played. Such a “coincidence” is not as 

surprising as might first appear to be the case.
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The probabilities assigned to various events depend on 

what is known about the experimental situation when the 

assignment is made. 
 
 
 
 

Subsequent to the initial assignment, partial information 

relevant to the outcome of the experiment may become 

available. Such information may cause us to revise some of 

our probability assignments. 
 
 
 
 

For a particular event A, we have used P(A) to represent 

the probability, assigned to A; we now think of P(A) as the 

original, or unconditional probability, of the event A.
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In this section, we examine how the information “an event B 

has occurred” affects the probability assigned to A. 
 
 
 
 

For example, A might refer to an individual having a 

particular disease in the presence of certain symptoms. 
 
 
 
 

If a blood test is performed on the individual and the result is 

negative (B = negative blood test), then the probability of 

having the disease will change (it should decrease, but not 

usually to zero, since blood tests are not infallible).
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We will use the notation P(A | B) to represent the 

conditional probability of A given that the event B has 

occurred. B is the “conditioning event.” 
 

 
 

As an example, consider the event A that a randomly 

selected student at your university obtained all desired 

classes during the previous term’s registration cycle. 

Presumably P(A) is not very large. 
 
 

 

However, suppose the selected student is an athlete who 

gets special registration priority (the event B). Then P(A | B) 

should be substantially larger than P(A), although perhaps 

still not close to 1.
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Complex components are assembled in a plant that uses 

two different assembly lines, A and A′. 
 

 
 
 

Line A uses older equipment than A′, so it is somewhat 

slower and less reliable. 
 
 
 
 

Suppose on a given day line A has assembled 8 

components, of which 2 have been identified as defective 

(B) and 6 as nondefective (B′), whereas A′ has produced 

1 defective and 9 nondefective components.
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This information is summarized in the accompanying table. 
 

 
 

 
 

Unaware of this information, the sales manager randomly 

selects 1 of these 18 components for a demonstration. 

Prior to the demonstration 
 

P(line A component selected) = P(A)             = .44
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However, if the chosen component turns out to be 

defective, then the event B has occurred, so the 

component must have been 1 of the 3 in the B column of 

the table. 
 
 

 

Since these 3 components are equally likely among 
themselves after B has occurred, 

 
 
 
 
 

 

(2.2)
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In Equation (2.2), the conditional probability is expressed 

as a ratio of unconditional probabilities: The numerator is 

the probability of the intersection of the two events, 

whereas the denominator is the probability of the 

conditioning event B. A Venn diagram illuminates this 

relationship (Figure 2.8). 
 
 
 

 
 
 

Motivating the definition of conditional probability 
 

 

Figure 2.8                                                                                            9
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Given that B has occurred, the relevant sample space is no 

longer S but consists of outcomes in B; A has occurred if 

and only if one of the outcomes in the intersection 

occurred, so the conditional probability of A given B is 
 

proportional to  
 
 
 

The proportionality constant 1/P(B) is used to ensure that 

the probability P(B | B) of the new sample space B equals 1.
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The Definition of Conditional 

Probability
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The Definition of Conditional Probability 
 

 

 

 

Example 2.24 demonstrates that when outcomes are 

equally likely, computation of conditional probabilities can 

be based on intuition. 
 

 
 

When experiments are more complicated, though, intuition 

may fail us, so a general definition of conditional probability 

is needed that will yield intuitive answers in simple 

problems. 
 
 
 

The Venn diagram and Equation (2.2) suggest how to 

proceed.
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Definition 
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Suppose that of all individuals buying a certain digital 

camera, 60% include an optional memory card in their 

purchase, 40% include an extra battery, and 30% include 

both a card and battery. Consider randomly selecting a 

buyer and let 
 
 

 

A = {memory card purchased} and 

B = {battery purchased}. 
 
 
 
 

Then P(A) = .60, 

P(B) = .40, P(both purchased) = P(A ∩ B) = .30
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Given that the selected individual purchased an extra 

battery, the probability that an optional card was also 

purchased is 
 
 
 
 
 
 
 
 

 

That is, of all those purchasing an extra battery, 75% 

purchased an optional memory card. Similarly, 
 
 
 

P(battery | memory card) = 
 

 
 
 

Notice that               ≠ P(A) and               ≠ P(B).
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The Multiplication Rule for 

P(A ∩ B)
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The Multiplication Rule for P(A ∩ B) 
 

 

 

 

The definition of conditional probability yields the following 

result, obtained by multiplying both sides of Equation (2.3) 

by P(B). 
 
 
 

The Multiplication Rule 
 

 
 

This rule is important because it is often the case that 

P(A ∩ B) is desired, whereas both P(B) and  can be 
specified from the problem description. 

 
 
 

Consideration of            gives P(A ∩ B) =             P(A)
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Four individuals have responded to a request by a blood 

bank for blood donations. None of them has donated 

before, so their blood types are unknown. Suppose only 

type O+ is desired and only one of the four actually has this 

type. If the potential donors are selected in random order 

for typing, what is the probability that at least three 

individuals must be typed to obtain the desired type? 
 
 

 

Making the identification 
 
 
 

B = {first type not O+}   and 
 

 
 
 

A = {second type not O+}, P(B) =
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Given that the first type is not O+, two of the three 
 

individuals left are not O+, so 
 
 
 
 

The multiplication rule now gives 
 
 

P(at least three individuals are typed) = P(A ∩ B) 
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The multiplication rule is most useful when the experiment 

consists of several stages in succession. 
 

 
 
 

The conditioning event B then describes the outcome of the 

first stage and A the outcome of the second, so that 

—conditioning on what occurs first—will often be 

known. 
 

 
 
 

The rule is easily extended to experiments involving 

more than two stages.
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For example, consider three events    ,    , and    . The 

triple intersection of these events can be represented as 

the double intersection (            )        . Applying our 

previous multiplication rule to this intersection and then to 

gives 
 

 
 

Thus the triple intersection probability is a product of three 

probabilities, two of which are conditional.



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bayes’ Theorem 
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Bayes’ Theorem 
 

 

 

 

The computation of a posterior probability             from 

given prior probabilities P(Ai) and conditional probabilities 
occupies a central position in elementary probability. 

 
 
 

The general rule for such computations, which is really just 
a simple application of the multiplication rule, goes back to 
Reverend Thomas Bayes, who lived in the eighteenth 
century. 

 
 
 

To state it we first need another result. Recall that events 

A1, . . . , Ak are mutually exclusive if no two have any 
common outcomes. The events are exhaustive if one Ai 

must occur, so that  A1 ∪ …∪ Ak  =  
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Bayes’ Theorem 
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An individual has 3 different email accounts. Most of her 

messages, in fact 70%, come into account #1, whereas 

20% come into account #2 and the remaining 10% into 

account #3. 
 
 

 

Of the messages into account #1, only 1% are spam, 

whereas the corresponding percentages for accounts 

#2 and #3 are 2% and 5%, respectively. 
 

 
 
 

What is the probability that a randomly selected message is 

spam?
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cont’d 

 

 

 

 

To answer this question, let’s first establish some notation: 
 

 
 
 

Ai = {message is from account # i}  for i = 1, 2, 3, 
 
 
 

B = {message is spam} 
 

 
 
 

Then the given percentages imply that 
 
 
 

P(A1) = .70, P(A2) = .20, P(A3) = .10 
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Now it is simply a matter of substituting into the equation 

for the law of total probability: 
 
 
 

P(B) = (.01)(.70) + (.02)(.20) + (.05)(.10) = .016 
 
 
 

In the long run, 1.6% of this individual’s messages will be 

spam.



Bayes’ Theorem 
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Bayes’ Theorem 
 

 

 

 

The transition from the second to the third expression in 

(2.6) rests on using the multiplication rule in the numerator 

and the law of total probability in the denominator. 
 

 
 

The proliferation of events and subscripts in (2.6) can be a 

bit intimidating to probability newcomers. 
 
 
 

As long as there are relatively few events in the partition, a 

tree diagram (as in Example 2.29) can be used as a basis 

for calculating posterior probabilities without ever referring 

explicitly to Bayes’ theorem. 
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