Solution Manual for Separation Process Engineering Includes Mass Transfer Analysis 4th Edition Wankat 01334436559780133443653 Link full download Solution Manual:
https://testbankpack.com/p/solution-manual-for-separation-process-engineering-includes-mass-transfer-analysis-4th-edition-wankat-0133443655-9780133443653/

New Problems and new solutions are listed as new immediately after the solution number. These new problems are:2A8, 2A10 parts c-e, 2A11,2A12, 2A13, 2A14, 2C4, 2D1-part g, 2D3, 2D6, 2D7, 2D11, 2D13, 2D14, 2D20, 2D22, 2D23, 2D31, 2D32, 2E3, 2F4, 2G2, 2G3, 2H1, 2H3, 2H4, 2H5 and 2H6.
2.A1. Feed to flash drum is a liquid at high pressure. At this pressure its enthalpy can be calculated as a liquid. eg. $\mathrm{h} \mathrm{T}_{\mathrm{F}, \text { Phigh }}$
$\mathrm{c}_{\mathrm{p} \text { Lle }} \quad \mathrm{T}_{\mathrm{F}} \quad \mathrm{T}_{\text {is drof }}$. When pressure
its bubble point and is a two-phase mixture (It "flashes"). In the flash mixture enthalpy is unchanged but temperature changes. Feed location cannot be found from T_{F} and z on the graph because equilibrium data is at a lower pressure on the graph used for this calculation.
2.A2. Yes.
2.A3. The liquid is superheated when the pressure drops, and the energy comes from the amount of superheat.
2.A4.

2.A6. In a flash drum separating a multicomponent mixture, raising the pressure will:
i. Decrease the drum diameter and decrease the relative volatilities.

Answer is i.

2.A8. New Problem in 4 th ed.

. a. At $100_{\circ} \mathrm{C}$ and a pressure of 200 kPa what is the K value of n -hexane? 0.29
b. As the pressure increases, the K value
a. increases, b. decreases, c. stays constant b
c. Within a homologous series such as light hydrocarbons as the molecular weight increases, the K value (at constant pressure and temperature)
a. increases, b. decreases, c. stays constant b
d. At what pressure does pure propane boil at a temperature of $-30_{\circ} \mathrm{C}$? $\quad 160 \mathrm{kPa}$
2.A9. a. The answer is 3.5 to 3.6
b. The answer is \qquad
c. This part is new in $4^{\text {th }}$ ed. $-102^{\circ}{ }^{\circ} \underline{C}$
2.A10. Parts c, d, and e are new in $4^{\text {th }}$ ed. a. 0.22 ; b. No; c. From y -x plot for Methanol $\mathrm{x}=0.65$, ум $=$ 0.85 ; thus, $\mathrm{yw}=0.15$. d. $\mathrm{Km}=0.579 / 0.2=2.895, \mathrm{Kw}=(1-0.579) /(1-0.2)=0.52625 . \mathrm{e} . \alpha м$ $\mathrm{w}=\mathrm{Kм} / \mathrm{Kw}=2.895 / 0.52625=5.501$.
2.A11. New problem in $4^{\text {th }}$ edition. Because of the presence of air this is not a binary system. Also, it is not at equilibrium.
2.A12. New problem in $4^{\text {th }}$ edition. The entire system design includes extensive variables and intensive variables necessary to solve mass and energy balances. Gibbs phase rule refers only to the intensive variables needed to set equilibrium conditions.

2A13. New problem in $4^{\text {th }}$ edition. Although V is an extensive variable, V / F is an intensive variable and thus satisfies Gibbs phase rule.
2A14. New problem in $4^{\text {th }}$ edition. $1.0 \mathrm{~kg} / \mathrm{cm}^{2}=0.980665 \mathrm{bar}=0.96784 \mathrm{~atm}$.
Source: http://www.unit-conversion.info/pressure.html
2.B1. Must be sure you don't violate Gibbs phase rule for intensive variables in equilibrium.

$\mathrm{F}, \mathrm{z}, \mathrm{y}, \mathrm{P}_{\text {drum }}$
$\mathrm{F}, \mathrm{z}, \mathrm{x}, \mathrm{p}_{\text {drum }}$
$F, z, y, p_{\text {drum }}$
$\mathrm{F}, \mathrm{z}, \mathrm{x}, \mathrm{T}_{\text {drum }}$
Drum dimensions, $\mathrm{z}, \mathrm{F}_{\text {drum }}, \mathrm{p}_{\text {drum }}$
Drum dimensions, $\mathrm{z}, \mathrm{y}, \mathrm{p}_{\text {drum }}$
etc.

$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{z}, \mathrm{p}$	$\mathrm{F}, \mathrm{h}_{\mathrm{F}}, \mathrm{z}, \mathrm{p}$
$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{z}, \mathrm{y}$	$\mathrm{F}, \mathrm{h}_{\mathrm{F}}, \mathrm{z}, \mathrm{y}$
$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{z}, \mathrm{x}$	etc.
$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{z}, \mathrm{T}_{\text {drum }}, \mathrm{p}_{\text {drum }}$	
$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{y}, \mathrm{p}$	
$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{y}, \mathrm{T}_{\text {drum }}$	
$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{x}, \mathrm{p}$	
$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{x}, \mathrm{T}_{\text {drum }}$	

$\mathrm{F}, \mathrm{T}_{\mathrm{F}}, \mathrm{y}, \mathrm{x}$
2.B2. This is essentially the same problem (disguised) as problem 2-D1c and e but with an existing (larger) drum and a higher flow rate.

With $\mathrm{y}=0.58, \mathrm{x}=0.20$, and $\mathrm{V} / \mathrm{F}=0.25$ which corresponds to 2-D1c.
If F $1000 \frac{\mathrm{lb} \text { mole }}{\mathrm{hr}}, \mathrm{D} .98$ and L 2.95 ft from Problem 2-D1e.
Since $\mathrm{D} \alpha \sqrt{\mathrm{V}}$ and for constant $\mathrm{V} / \mathrm{F}, \mathrm{V} \alpha \mathrm{F}$, we have $\mathrm{D} \alpha \sqrt{\mathrm{F}}$.
With $\mathrm{F}=25,000$:

$$
\sqrt{\mathrm{F}_{\text {new }}} / \mathrm{F}_{\text {old }}=5, \mathrm{D}_{\text {new }}=5 \mathrm{D}_{\text {old }}=4.90, \text { and } \mathrm{L}_{\text {new }}=3 \mathrm{D}_{\text {new }}=14.7 .
$$

Existing drum is too small.

Since x is not specified, use bypass. This produces less vapor.
c) Look at Eq. (2-62), which becomes
$D \sqrt{\frac{V W_{V}^{v}}{3 K_{\text {drum }} 360 \sqrt{0_{\mathrm{L}} \quad \mathrm{v}}}}$
Bypass reduces V
c1) Kdrum is already 0.35 . Perhaps small improvements can be made with a better demister \rightarrow Talk to the manufacturers.
c2) ρ_{v} can be increased by increasing pressure. Thus operate at higher pressure. Note this will change the equilibrium data and raise temperature. Thus a complete new calculation needs to be done.
d) Try bypass with vapor mixing.
e) Other alternatives are possible.
2.C2.
$\underline{\mathrm{V}} \underset{-}{\mathrm{Z}_{\mathrm{A}}} \underset{-}{\mathrm{Z}_{\mathrm{B}}}$
F $\quad \mathrm{K}_{\mathrm{B}} \quad 1 \quad \mathrm{~K}_{\mathrm{A}} \quad 1$
$\mathrm{X} \quad \mathrm{Fz}_{\underline{i}}$
2.C5. a. Start with i $\mathrm{L} \mathrm{VK}_{i}$ and let V F L

F F

From $\quad y_{i} \mathrm{X}_{\mathrm{i}} \quad 0$ we obtain

2.C4. New Problem. Prove that the intersection of the operating and $\mathrm{y}=\mathrm{x}$ lines for binary flash distillation occurs at the mole fraction of the feed.

therefore

$$
\begin{equation*}
x=y=z \tag{2-18}
\end{equation*}
$$

The intersection is at the feed composition.

2.C8. Derivation of Eqs. (2-62) and (2-63). Overall and component mass balances are,

F V $\begin{array}{llllll}1 & L_{2} & \text { and } & \mathrm{Fz}_{\mathrm{i}} & \mathrm{L}_{1} \mathrm{x}_{\mathrm{i}, \mathrm{L} 1} & \mathrm{~L}_{2} \\ \mathrm{x}_{\mathrm{i}, \mathrm{L} 2} \mathrm{Vy}_{\mathrm{i}} & \text { Substituting in Eqs. (2-60b) and 2-60c) }\end{array}$ FL K $\quad \mathrm{X} \quad \mathrm{L} \quad \mathrm{x} \quad \mathrm{VK} \quad \mathrm{x}$

Solving,

Dividing numerator and denominator by F and collecting terms.

$$
\begin{equation*}
0 \tag{2-62}
\end{equation*}
$$

$$
{ }^{\mathrm{i} 1} 1 \quad \mathrm{~K}_{\mathrm{i}, \mathrm{~L} 1 \mathrm{~L} 2} \quad 1 \quad \frac{\mathrm{~L}_{1}}{\mathrm{~F}} \mathrm{~K}_{\mathrm{i}, \mathrm{~V} \text { L2 }} 11 \quad \underline{\mathrm{~V}} .
$$

$$
\begin{array}{lllllll}
{ }^{\text {i } 1} & 1 & \text { i,L1 L2 } & 1 & \underline{L_{1}} & \mathrm{~K}_{\mathrm{i}, \mathrm{~V}} & \mathrm{~L} 2 \tag{2-63}
\end{array} \quad 1 \quad \underline{\mathrm{~V}}
$$

which becomes

Slope op. line $\quad \mathrm{L} / \mathrm{V} \quad 3 / 2, \mathrm{y} \quad \mathrm{x} \quad \mathrm{z} \quad 0.6$
See graph. y 0.77 and $x \quad 0.48$
b. V 0.41500600 and L 900 . Rest same as part a.
c. Plot $x 0.2$ on equil. Diagram and $\mathrm{y} x \mathrm{z} 0.3$. $\mathrm{y}_{\text {int ercept }} \mathrm{zF} / \mathrm{V} 1.2 \mathrm{~V} / \mathrm{F} \mathrm{z} / 1.2$
0.25 . From equil y 0.58 .
d. Plot x 0.45 on equilibrium curve.

$$
\text { Slope } \quad \frac{\mathrm{L}}{\mathrm{~V}} \quad \frac{\mathrm{~F} \mathrm{~V}}{\mathrm{~V}} \quad \frac{1 \mathrm{~V} / \mathrm{F}}{\mathrm{~V} / \mathrm{F}} \quad \frac{.8}{.2} 4
$$

Plot operating line, $\mathrm{y} \quad \mathrm{x} \quad \mathrm{z}$ at $\mathrm{z} \quad 0.51$. From mass balance $\mathrm{F} \quad 37.5 \mathrm{kmol} / \mathrm{h}$.
e. Find Liquid Density.
$\begin{array}{lllllllll}\mathrm{MW}_{\mathrm{L}} & \mathrm{x}_{\mathrm{m}} & \mathrm{MW}_{\mathrm{m}} & \mathrm{x}_{\mathrm{w}} & \mathrm{MW}_{\mathrm{w}} & .2 & 32.04 & .8 & 18.01\end{array}$
Then, $\bar{v}_{\mathrm{L}} \mathrm{x}_{\mathrm{m}} \frac{\mathrm{MW}_{\mathrm{m}} \mathrm{x}}{\mathrm{m}} \underset{\mathrm{w}}{ } \frac{\mathrm{MW}_{\mathrm{w}}}{\mathrm{w}_{\mathrm{w}}} .2 \frac{32.04}{.7914} \quad .8 \frac{18.01}{1.00} 22.51 \mathrm{ml} / \mathrm{mol}$
$\begin{array}{llll}\mathrm{m} & & \mathrm{w} \\ \mathrm{L} & \begin{array}{ll}.7914 & 1.00 \\ \mathrm{MW}_{\mathrm{L}}\end{array} \overline{\mathrm{V}}_{\mathrm{L}} & 20.82 / 22.51 & 0.925 \mathrm{~g} / \mathrm{ml}\end{array}$
Vapor Density: $\rho \mathrm{v}=\mathrm{p}(\mathrm{MW}) \mathrm{v}, \mathrm{av} / \mathrm{RT} \quad$ (Need temperature of the drum)
$\overline{M W}^{\mathrm{v}} \mathrm{y}_{\mathrm{m}}$ MW $_{\mathrm{m}} \quad \mathrm{y}_{\mathrm{w}}$ MW $_{\mathrm{w}} \quad .5832 .04 \quad .4218 .01 \quad 26.15 \mathrm{~g} / \mathrm{mol}$
Find Temperature of the Drum T: From Table 3-3 find T when
y .58 , x $20, \mathrm{~T}=81.7 \mathrm{C} 354.7 \mathrm{~K}$

Find Permissible velocity:
$\underset{\text { pem }}{\mathrm{K}} \operatorname{drum}_{v \quad /_{\mathrm{v}}}, \mathrm{K}_{\text {drum }} \quad \exp \mathrm{AB} \mathrm{nF}_{\mathrm{lv}} \quad \mathrm{CnF} \mathrm{lv}_{\mathrm{lv}} \quad{ }^{2} \mathrm{D} \mathrm{nF}_{\mathrm{lv}} \quad{ }^{3} \mathrm{EnF}_{\mathrm{lv}} \quad{ }^{4}$
V $\underline{V}_{\text {F_F }} 0.251000250 \mathrm{lbmol} / \mathrm{h}, \mathrm{W}_{\mathrm{v}}$ __V MW__ $25026.15 _\mathrm{lbmol} \mathrm{lb} \quad 6537.5 \mathrm{lb} / \mathrm{h}$
$\begin{array}{lllllllllllll}\mathrm{L} & \mathrm{F} & \mathrm{V} & 1000 & 250 & 750 \mathrm{lbmol} / \mathrm{h}, \text { and } \mathrm{W}_{\mathrm{L}} & \mathrm{L} & \mathrm{MW}_{\mathrm{L}} & 750 & 20.82 & 15,615 \mathrm{lb} / \mathrm{h},\end{array}$

$$
\mathrm{F}_{\mathrm{lv}} \frac{\mathrm{~W}_{\mathrm{L}}}{\mathrm{~W}_{\mathrm{V}}} \sqrt{-\frac{\mathrm{v}}{\mathrm{~L}}} \quad \frac{15615}{6537.5} \quad \frac{8.8910^{4}}{.925} 0.0744 \text {, and } \mathrm{n} \mathrm{~F}_{\mathrm{lv}} 2.598
$$

Then $\mathrm{K}_{\text {drum }} .442$, and u

$\mathrm{A}_{\mathrm{cs}} \xrightarrow{\mathrm{V} \mathrm{MW}_{\mathrm{v}}} \xrightarrow{\text { perm }} 2.28 \mathrm{ft}^{2} \sqrt{25026.15454 \mathrm{~g} / \mathrm{lb}}$
$\begin{array}{lllll}u_{\text {perm }} 3600_{v} & 14.19 \quad 36008.98 \quad 10^{4} \mathrm{~g} / \mathrm{ml} \quad 28316.85 \mathrm{ml} / \mathrm{ft}^{3}\end{array}$
D 4 frs $/ 1.705 \mathrm{ft}$. Use 2 ft diameter. L ranges from 3 D 6 ft to $5 \mathrm{D}=10 \mathrm{ft}$ Note that this design is conservative if a demister is used.
f. Plot T vs x from Table 3-3. When T 77 C , x 0.34 , y 0.69 . This problem is now very similar to 3-D1c. Can calculate V/F from mass balance, Fz Lx Vy. This is Fz F Vx Vy or $\quad \frac{\underline{V}}{\mathrm{~F}} \quad \frac{\mathrm{z} \mathrm{y}}{\mathrm{y} \mathrm{x}} \quad \frac{0.4}{0.34} 0.69 \quad 0.34 \mathrm{O}$
g. Part g is a new problem. $\mathrm{V}=16.18 \mathrm{~mol} / \mathrm{h}, \mathrm{L}=33.82, \mathrm{y}=0.892, \mathrm{x}=0.756$.

2-D2. Work backwards. Starting with x_{2}, find $\mathrm{y}_{2}=0.62$ from equilibrium. From equilibrium point

$\begin{array}{llll}\mathrm{F} & \mathrm{y}_{1} & \mathrm{x}_{1} & 0.780 .51\end{array}$

2.D3. New Problem in $4^{\text {th }}$ edition.. Part a.

x ethane	$\mathrm{T}^{\mathrm{o}} \mathrm{C}$	y ethane
0	63.19	0
.025	56.18	0.1610
.05	49.57	0.2970
.10	37.57	0.5060
.15	27.17	0.6503
.20	18.26	0.7492
.25	10.64	0.8175
.30	4.11	0.8652
1.0	-37.47	1.0

b. See Figure. a. If 1 bubble of vapor product $(\mathrm{V} / \mathrm{F}=0)$ vapor product, vapor $\mathrm{ye}=0.7492$
(highest) liquid $\mathrm{XE}=\mathrm{ZE}=0.20$ (highest) and $\mathrm{T}=18.26^{\circ} \mathrm{C}$. If 1 drop of liquid product $(\mathrm{V} / \mathrm{F}=1)$ ye $=\mathrm{ZE}=0.20$ (lowest), $\mathrm{XE}=0.035, \mathrm{~T}$ (by linear interpolation) $\sim 56.18+[(49.57-56.18) /(.297-$.161) $][.2-0.16]=54.2^{\circ} \mathrm{C}$ (highest).
c. See figure. Slope $=-\mathrm{L} / \mathrm{V}=-(1-\mathrm{V} / \mathrm{F}) /(\mathrm{V} / \mathrm{F})=-.6 / .4=-1.5 . \mathrm{xE}=0.12, \mathrm{yE}=0.57, \mathrm{~T}=33.4^{\circ} \mathrm{C} . \mathrm{d}$. From equilibrium data $\mathrm{yE}=0.7492$. For an $\mathrm{F}=1, \mathrm{~L}=1-\mathrm{V}$, Ethane balance: $.2 \mathrm{~L}=1(.3)-0.7492 \mathrm{~V}$. Solve 2 equations: $\mathrm{V} / \mathrm{F}=0.1821$. Can also find V / F from slope of operating line.
e. If do linear interpolation on equilibrium data, $x=0.05+(45-49.57)(0.1-0.05) /(37.57-49.57)$ $=0.069$. From equilibrium plot $\mathrm{y}=0.375$.
Mass balance for basis $\mathrm{F}=1, \mathrm{~L}=1-\mathrm{V}$ and $0.069 \mathrm{~L}=0.18-0.375 \mathrm{~V}$. Solve simultaneously, V/F $=0.363$.
2.D4. New problem in $3^{\text {rd }}$ edition. Highest temperature is dew point VF 0

$$
\text { Set } \quad z_{i} \quad y_{i} . \quad K_{K} \quad K_{i} \underset{V_{i}}{y_{i}} / x_{i} . \text { Want } \quad x_{i} y_{i} \quad / K_{i} 1.0
$$

If pick C 4 as reference: First guess butane $1.0, ~ \mathrm{~T} 41 \mathrm{C}: \mathrm{K}_{\mathrm{C} 3} \quad 3.1, \mathrm{~K}_{\mathrm{C} 6} \quad 0.125$

$$
\mathrm{K}_{\mathrm{i}}^{\mathrm{K}} \quad \frac{.2}{3.1}-\frac{.35}{1.0} \frac{.45}{.125} 4.0145 \quad \mathrm{~T} \text { too low }
$$

Guess for reference: $\mathrm{K}_{\mathrm{C} 4} 4.014$, T $118 \mathrm{C}: \mathrm{K}_{\mathrm{C} 3} 8.8, \mathrm{~K}_{\mathrm{C} 6} \quad .9$ $\frac{\mathrm{y}_{\mathrm{i}}}{\mathrm{K}_{\mathrm{i}}} \frac{.2}{8.8} \frac{.35}{4.0145}-\frac{.45}{.9} 0.6099$
$\begin{array}{lllll}\mathrm{K}_{\mathrm{C} 4, \mathrm{NEW}} & 4.0145 .6099 & 2.45, \mathrm{~T} & 85: \mathrm{K}_{\mathrm{C} 2} & 6.0, \mathrm{~K}_{\mathrm{C} 6}\end{array} \quad 0.44$

$$
\begin{aligned}
& \text { y. .2.35.45 } 1.20 \mathrm{~K}_{\mathrm{i}} 6 \\
& 2.45 .44 \\
& \begin{array}{llll}
\mathrm{K}_{\mathrm{C} 4, \mathrm{NEW}} & 2.451 .2 \quad 2.94, \mathrm{~T} & 96 \mathrm{C}: \mathrm{K}_{\mathrm{C}} & 6.9, \mathrm{~K}_{\mathrm{C} 6} \\
0.56
\end{array} \\
& \underset{2.94 .56}{\mathrm{y} .2} \cdot \frac{.35 .45}{0.8} 04 \text { Gives } 84 \mathrm{C}^{\mathrm{K}} 6.9
\end{aligned}
$$

Use $90.5^{\circ} \rightarrow$ Avg last two $T \quad \mathrm{~K}_{\mathrm{C} 4} \quad 2.7, \mathrm{~K}_{\mathrm{C} 3} \quad 6.5, \mathrm{~K}_{\mathrm{C} 6} \quad 0.49$

$$
\mathrm{y}_{\mathrm{i}} / \mathrm{K}_{\mathrm{i}} \quad 6.5 \stackrel{.2}{.35} 2.7 .49^{.45} 1.079, \mathrm{~T} \sim 8788^{\circ} \mathrm{C}
$$

Note: hexane probably better choice as reference.
2.D5.
a)

From graph | | 0.82, | x | 0.63 | V | V_. | F $0.25687 .5 \quad \$ 71.875 \mathrm{kmol} / \mathrm{h}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

F 2

2.D6. New problem in $4^{\text {th }}$ ed. a.) The answer is $\mathrm{VP}=\underline{19.30 \mathrm{~mm} \mathrm{Hg}}$

$$
\log _{10} \mathrm{VP} \quad 6.8379 \quad \frac{1310.62}{100 \quad 136.05} 1.2856
$$

Part a. Drum 1: $\mathrm{V}_{1} / \mathrm{F}_{1}=0.3$, Slope op line $=-\mathrm{L} / \mathrm{V}=-.7 / .3=-7 / 3, \mathrm{y}=\mathrm{x}=\mathrm{z}_{1}=0.46 . \mathrm{L}_{1}=\mathrm{F}_{2}=$ 70. From graph $\mathrm{x}_{1}=\mathrm{z}_{2}=0.395$

Drum 2: $V_{1} / F_{1}=30 / 70$, Slope op line $=-L / V=-7 / 3, y=x=z_{2}=0.395 . L_{1}=F_{2}-V_{2}=40$.
From graph $\mathrm{x}_{2}=0.263$
Part b. Single drum: V/F $=0.6$, Slope op line $=-L / V=-40 / 60=-2 / 3$, From graph $x=0.295$. More separation with 2 drums.

Find K_{i} from DePriester Chart: $\mathrm{K}_{1} \quad 73, \mathrm{~K}_{2} \quad 4.1 \mathrm{~K}_{3} \quad .115$
Converge on V/F $\quad .076$, V F V/F $\quad 152 \mathrm{kmol} / \mathrm{h}, \mathrm{L} \quad$ F V $\quad 1848 \mathrm{kmol} / \mathrm{h}$.
From $\mathrm{x}_{\mathrm{i}} \quad \sum_{\mathrm{V}} \underline{\mathrm{Z}_{\mathrm{i}}}-\ldots$ we obtain $\mathrm{x}_{1} .0077, \mathrm{x}_{2} \quad .0809, \mathrm{x}_{3} \quad .9113$
$1 \frac{\mathrm{~V}}{\mathrm{~F}} \mathrm{~K}_{\mathrm{i}} 1$
From $y_{i} \quad \mathrm{~K}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$, we obtain y_{1}.5621, $\mathrm{y}_{2} .3649$, $\mathrm{y}_{3} .1048$
2.D9. Need h_{F} to plot on diagram. Since pressure is high, feed remains a liquid

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{F}} \quad \overline{\mathrm{C}}_{\mathrm{P}} \mathrm{~T}_{\mathrm{F}} \quad \mathrm{~T}_{\text {ref }}, \mathrm{T}_{\text {ref }} \quad 0 \text { from chart } \\
& \underset{\mathrm{P}_{\mathrm{L}}}{\mathrm{C}} \mathrm{C}_{\text {PЕОН }} \mathrm{x}_{\text {EIOH }} \quad \mathrm{C}_{\mathrm{P}_{\mathrm{w}}} \mathrm{x}_{\mathrm{w}}
\end{aligned}
$$

Where $\mathrm{x}_{\mathrm{EtOH}}$ and x_{w} are mole fractions. Convert weight to mole fractions.
Basis: 100 kg mixture: 30 kg EtOH $\quad 46.077^{30} 0.651 \mathrm{kmol}$

70 kg water $\quad 70 / 18.016 \quad 3.885$ Total $=4.536 \mathrm{kmol}$
$\begin{array}{lllll}\text { Avg. MW } & \frac{100}{4.536} 22.046 \quad \text { Mole fracs: } \mathrm{x}_{\mathrm{E}} & \frac{0.6512}{4.536} 0.1435, \mathrm{x}_{\mathrm{w}} & 0.8565 .\end{array}$
Use $\mathrm{C}_{\mathrm{P}_{\mathrm{L}_{\text {Eон }}}}$ at 100 C as an average C_{P} value.

$\overline{\mathrm{C}}_{\mathrm{P}}$	37.96	.1435	18.0 .8565	20.86	$\frac{\mathrm{kcal}}{\mathrm{kmol} \mathrm{C}}$

Per kg this is $\underset{\underset{\text { avg }}{\underline{E}} \underset{\mathrm{P}_{\mathrm{L}}}{ } \frac{20.86}{22.046}-0.946 \frac{\mathrm{kcal}}{\mathrm{kg}}}{ }$
$\mathrm{h}_{\mathrm{F}} \quad 0.9462000 \quad 189.2 \mathrm{kcal} / \mathrm{kg}$
which can now be plotted on the enthalpy composition diagram.
Obtain $\mathrm{T}_{\text {drum }} 88.2 \mathrm{C}$, $\mathrm{x}_{\mathrm{E}} \quad 0.146$, and $\mathrm{y}_{\mathrm{E}} \quad 0.617$.
For F 1000 find L and V from $\mathrm{F}=\mathrm{L}+\mathrm{V}$ and Fz Lx Vy which gives $\mathrm{V}=326.9$, and $\mathrm{L}=673.1$

2.D. 10 Solution $400 \mathrm{kPa}, 70^{\circ} \mathrm{C}$

From DePriester chart
$\mathrm{z}_{\mathrm{C} 4} \quad 35$ Mole \% n-butane $\quad \mathrm{x}_{\mathrm{C} 6} \quad 0.7$
$\mathrm{K}_{\mathrm{C} 3} 5, \mathrm{~K}_{\mathrm{C} 4} 1.9, \mathrm{~K}_{\mathrm{C} 6} 0.3$
Know $y_{i} \quad K_{i} x_{i}, \quad x_{i} \quad \stackrel{\cdot}{z_{i}}-\dot{-} \underline{V}^{\prime} x_{i} y_{i} \quad 1 z_{i}$
$1 \mathrm{~K}_{\mathrm{i}} 1 \mathrm{~F}$

$1 \mathrm{~K}_{\mathrm{C} 6} 1 \mathrm{~F} 10.7 \mathrm{~F}$

RR Eq:

2 equations \& 2 unknowns. Substitute in for $\mathrm{z}_{\mathrm{C} 6}$. Do in Spreadsheet. Use Goal - Seek to find $\mathrm{V} / \mathrm{F} . \mathrm{V} / \mathrm{F}=0.594$ when R.R. equation 0.000881 .
$\begin{array}{llllll}\mathrm{z}_{\mathrm{C} 6} & 0.7 & 0.49 & \underline{\mathrm{~V}} & \\ \mathrm{~F} 0.7 & (0.49)(0.594) & 0.40894\end{array}$
2.D11. New Problem $4^{\text {th }}$ ed. Obtain K ethylene $=2.2, \mathrm{~K}$ propylene $=0.56$ from De Priester chart.
$K_{E}=y_{E} / \mathrm{XE}_{\mathrm{E}}$ and $\mathrm{K}_{\mathrm{P}}=\mathrm{yp} / \mathrm{xp}_{\mathrm{P}}$ Since $\mathrm{y}_{\mathrm{p}}=1-\mathrm{yE}_{\mathrm{E}}$ and $\mathrm{X}_{\mathrm{p}}=1-\mathrm{Xe}_{\mathrm{E}}, \mathrm{K}_{\mathrm{p}}=\left(1-\mathrm{yE}_{\mathrm{E}}\right) /(1-\mathrm{xE})$.
Thus, 2 eqs and 2 unknowns. Solve for ye and Xe.
$\mathrm{Xe}_{\mathrm{E}}=\left(1-\mathrm{K}_{\mathrm{p}}\right) /\left(\mathrm{K}_{\mathrm{E}}-\mathrm{K}_{\mathrm{p}}\right)$ and $\mathrm{yE}_{\mathrm{E}}=\mathrm{Kexe}_{\mathrm{E}}=\mathrm{Ke}_{\mathrm{E}}\left(1-\mathrm{K}_{\mathrm{p}}\right) /\left(\mathrm{K}_{\mathrm{E}}-\mathrm{K}_{\mathrm{p}}\right)$
$\mathrm{xe}_{\mathrm{E}}=(1-0.56) /(2.2-0.56)=0.268$ and $\mathrm{ye}^{2}=\mathrm{Ke} \mathrm{Xe}=(2.2)(0.268)=0.590$
Check: $\mathrm{x}_{\mathrm{p}}=1-\mathrm{xe}_{\mathrm{E}}=1-0.268=0.732$ and $\mathrm{y}_{\mathrm{p}}=1-\mathrm{ye}=1-0.590=0.410$
$\mathrm{K}_{\mathrm{p}}=\mathrm{y}_{\mathrm{p}} / \mathrm{x}_{\mathrm{p}}=0.410 / 0.732=0.56 \mathrm{OK}$
2.D12. For problem 2.D1c, plot $x=0.2$ on equilibrium diagram with feed composition of 0.3. The resulting operating line has a y intercept $\quad \mathrm{z} / \mathrm{V} / \mathrm{F} \quad 1.2$. Thus $\mathrm{V} / \mathrm{F} 0.25$ (see figure in Solution to 2.D1) Vapor mole fraction is $\mathrm{y}=0.58$.

Find Liquid Density. $\begin{array}{llllllll}\mathrm{MW}_{\mathrm{L}} & \mathrm{x}_{\mathrm{m}} & \mathrm{MW}_{\mathrm{m}} & \mathrm{x}_{\mathrm{w}} & \mathrm{MW}_{\mathrm{w}} & .2 & 32.04 & .8 \\ 18.01 & 20.82\end{array}$

Then, $\quad \overline{\mathrm{V}}_{\mathrm{L}} \mathrm{x} \underset{\mathrm{m}}{\mathrm{MW}_{\mathrm{m}} \mathrm{x}} \underset{\mathrm{w}}{ }{ }_{\mathrm{w}} \frac{\mathrm{MW}_{\mathrm{w}}}{\mathrm{w}} .2 \frac{3 \underline{22.04}}{.7914} .8 \frac{18.01}{1.00} 22.51 \mathrm{ml} / \mathrm{mol}$ ${ }_{\mathrm{L}} / \overline{\mathrm{MW}}_{\mathrm{L}} \overline{\mathrm{V}}_{\mathrm{L}} 20.8222 .510 .925 \mathrm{~g} / \mathrm{ml}$
Find Vapor Density. v $\frac{\mathrm{p} \overline{\mathrm{MW}}}{\mathrm{RT}}$ (Need temperature of the drum) MW vy_{m} MW $_{\mathrm{m}} \quad \mathrm{y}_{\mathrm{w}}$ MW $_{\mathrm{w}} \quad .5832 .04 \quad .4218 .01 \quad 26.15 \mathrm{~g} / \mathrm{mol}$ Find Temperature of the Drum T:

From Table 2-7 find T corresponding to y .58 , x $20, \mathrm{~T}=81.7 \mathrm{C} 354.7 \mathrm{~K}$

$$
\begin{gathered}
1_{1 \text { atm } 26.15 \mathrm{~g} \mathrm{~mol}} \quad{ }_{82.0575}^{\mathrm{ml} \mathrm{~atm}_{351.7 \mathrm{~K}}^{\mathrm{mol}} \mathrm{~K}} \\
\sqrt{/}
\end{gathered}
$$

Find Permissible velocity: $\quad u_{\text {perm }} \quad \mathrm{K}_{\mathrm{drum}} \quad \mathrm{L} \quad \mathrm{v} \quad \mathrm{v}$

| Since V V/F | $0.251000 \quad 250 \mathrm{lbmol} / \mathrm{h}$, | |
| :--- | :--- | :--- | :--- |
| W_{v} | $\mathrm{VHW}_{\mathrm{v}}$ | $25026.15 \mathrm{lb} / \mathrm{lbmol} \quad 6537.5 \mathrm{lb} / \mathrm{h}$ |

$\mathrm{F}_{\mathrm{lv}} \xrightarrow{\mathrm{~W}} \sqrt{-\underline{\mathrm{v}}}$	$--\frac{15615}{\sqrt{\frac{8.98}{} 10^{-4}}} 0.0744, \text { and } \mathrm{n} \mathrm{~F}_{\mathrm{lv}} 2.598$	
K $\quad \mathrm{W}_{\mathrm{V}} \quad \mathrm{L}$	6537.5 . 925	
drum, vertical 0.442 , and $\mathrm{K}_{\text {drum,horiz }} 0.5525$		
$u_{\text {perm }} 0.5525 \sqrt{\frac{0.925}{8.98} 18.9810^{4}}{ }^{4}{ }^{4} \quad 17.74 \mathrm{ft} / \mathrm{s}$		

With $\mathrm{L} / \mathrm{D}=4, \quad \mathrm{D} \sqrt{4 \mathrm{~A}_{\mathrm{T}}^{3} .41 \mathrm{ft}}$ and L 13.6 ft
2.D13. New Problem $4^{\text {th }}$ ed. $\mathrm{xbutane}=1-\mathrm{xE}=0.912$, $\mathrm{ybutane}=1-\mathrm{yE}=0.454 . \mathrm{KE}_{\mathrm{E}}=\mathrm{yE} / \mathrm{XE}=0.546 / 0.088=$
6.20, Kbutane $=$ ув $/ х в=0.454 / 0.912=0.498$.

Plot Ke_{e} and Kbutane on DePriester chart. Draw straight line between them. Intersections with T and P axis give $\mathrm{T}_{\text {drum }}=15^{\circ} \mathrm{C}$, and $\mathrm{p}_{\text {drum }}=385 \mathrm{kPa}$ from Figure 2-12.
Use mass balances to find V/F: $\mathrm{F}=\mathrm{L}+\mathrm{V}$ and Fze $=\mathrm{Lxe}+\mathrm{Vye}$. Substitute $\mathrm{L}=\mathrm{F}-\mathrm{V}$ into ethane balance and divide both sides by F. Obtain: $\mathrm{z}=(1-\mathrm{V} / \mathrm{F}) \mathrm{x}+\mathrm{y}(\mathrm{V} / \mathrm{F})$.
Solve for $\mathrm{V} / \mathrm{F}=(\mathrm{z}-\mathrm{x}) /(\mathrm{y}-\mathrm{x})=(0.36-0.088) /(0.546-0.088)=0.594$.
Spreadsheet used as a check (using T=15 and $\mathrm{p}=385$) gave $\mathrm{V} / \mathrm{F}=0.593$.
2.D14. New Problem $4^{\text {th }}$ ed. DePriester chart, Fig. 2-12: $\mathrm{K}_{\mathrm{C} 1}=50, \mathrm{~K}_{\mathrm{C} 4}=1.1$, and $\mathrm{K}_{\mathrm{C} 5}=0.37$; $\mathrm{z}_{1}=$ $0.12, \mathrm{z} 4=0.48, \mathrm{z5}=0.40$

5.88

Equation becomes: $\overline{149(V / F)} 10.1(V / F) \quad 10.63(V / F) \quad 0$
Trials: V/F $=0.4$, Eq. $=-.005345 ; \mathrm{V} / \mathrm{F}=0.39$, Eq. $=0.004506 ; \mathrm{V} / \mathrm{F}=0.394$, Eq. $=0.000546$, which is close enough with DePriester chart.
Liquid mole fractions:

Vapor mole fractions: $\mathrm{y}_{\mathrm{i}}=\mathrm{Ki}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}: \mathrm{ycl}^{2}=50(0.00591)=0.2955, \mathrm{yc}_{4}=0.5080, \mathrm{ycs}_{5}=0.1969, \sum \mathrm{y}_{\mathrm{i}}=1.0004$.
2.D15. This is an unusual way of stating problem. However, if we count specified variables we see that problem is not over or under specified. Usually V/F would be the variable, but here it isn't. We can still write R-R eqn. Will have three variables: $\mathrm{zc} 2, \mathrm{ZiC4}, \mathrm{Znc4}$. Need two other eqns: $\mathrm{z}_{\mathrm{iC} 4} / \mathrm{z}_{\mathrm{nC} 4} \quad$ constant, and $\mathrm{z}_{\mathrm{C} 2} \quad \mathrm{z}_{\mathrm{iC} 4} \quad \mathrm{z}_{\mathrm{nC} 4} \quad 1.0$
Thus, solve three equations and three unknowns simultaneously.
Do It. Rachford-Rice equation is,

$$
\mathrm{K}_{\mathrm{C} 2} \quad 1 \mathrm{z}_{\mathrm{C} 2}-\mathrm{K}_{\mathrm{iC} 4} \quad 1 \mathrm{z}_{\mathrm{iC} 4}-\underbrace{\mathrm{K}_{\mathrm{nC} 4}} . \quad \begin{aligned}
& 1 \mathrm{z}_{\mathrm{nC} 2} \\
& \hline
\end{aligned}
$$

$\begin{array}{lllllllllll}1 & \mathrm{~K}_{\mathrm{C} 2} & 1 & \frac{\mathrm{~V}}{\mathrm{~F}} & 1 & \mathrm{~K}_{\mathrm{iC} 4} & 1 & \frac{\mathrm{~V}}{\mathrm{~F}} & 1 & \mathrm{~K}_{\mathrm{nC} 4} & 1\end{array} \frac{\mathrm{~V}}{\mathrm{~F}}$
Can solve for $\mathrm{zc} 2=1-\mathrm{ZiC4}$ and $\mathrm{ziC4}=(.8) \mathrm{ZnC4}$. Thus $\mathrm{zC2}=1-1.8 \mathrm{ZnC4}$
Substitute for ZiC4 and zc2 into R-R eqn.

Thus,

Can now find K values and plug away. $\mathrm{K}_{\mathrm{c} 2}=2.92, \mathrm{Kic}_{\mathrm{i}}=.375, \mathrm{~K}_{\mathrm{nC} 4}=.26$.
Solution is $\mathrm{ZnC} 4=0.2957$, $\mathrm{ziC} 4=.8(.2957)=0.2366$, and $\mathrm{zC} 2=0.4677$
2.D16. $\quad \mathrm{z}_{\mathrm{C} 1} \quad 0.5, \mathrm{z}_{\mathrm{C} 4} \quad 0.1, \mathrm{z}_{\mathrm{C} 5} \quad 0.15, \mathrm{z}_{\mathrm{C} 6} \quad 0.25, \mathrm{~K}_{\mathrm{C} 1} \quad 50, \mathrm{~K}_{\mathrm{C} 4} \quad .6, \mathrm{~K}_{\mathrm{C} 5} \quad .17, \mathrm{~K}_{\mathrm{C} 6} \quad 0.05$ $1^{\text {st }}$ guess. Can assume all C_{1} in vapor, $\sim 1 / 3 \mathrm{C}_{4}$ in vapor, $\mathrm{C}_{5} \& \mathrm{C}_{6}$ in bottom
$\mathrm{V} / \mathrm{F}_{1} \quad .5$.1/3.53 This first guess is not critical.
${ }_{\text {R.R. eq. } f}^{\mathrm{V}} \underset{\mathrm{F}}{\mathrm{V}} \frac{\mathrm{K}_{\mathrm{i}} 1 \mathrm{z}_{\mathrm{i}}}{1 \mathrm{~K}_{\mathrm{i}} 1 \mathrm{VF}}{ }^{0}$

$$
\frac{49.5}{149.53} \frac{.4 .1}{1.4 .53} \frac{.83 .15}{1.83 .53} \frac{.95 .25}{1.95 .53} 0.157
$$

Eq. 3.33

$\mathrm{F}_{2} \quad \mathrm{~F}_{1} \quad \mathrm{Z}_{\mathrm{i}} \underline{K}_{\mathrm{i}} 1-\mathrm{V}^{2}$
$\begin{array}{llll}1 & \mathrm{~K}_{\mathrm{i}} & 1 & \text { - }_{\mathrm{F}}\end{array}$
where calculate

V/F 10.53 and $\mathrm{f} V / \mathrm{F}_{1} 0.157$. V/
$\mathrm{F}_{2} .530 .157 / 2.920 .584$
$\begin{array}{lllllll}\mathrm{V} & .584 & 150 & 87.6 \mathrm{kmol} / \mathrm{h} \text { and } \mathrm{L} & 150 & 87.6 & 62.4\end{array}$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{Cl}} \frac{\mathrm{Z}_{\mathrm{Cl}}}{1 \mathrm{~K}_{\mathrm{Cl}} 1(\mathrm{~V} / \mathrm{F})} \quad-\frac{.5}{1} \frac{49.584}{0.016883} \\
& \begin{array}{lllll}
\mathrm{y}_{\mathrm{C} 1} & \mathrm{~K}_{\mathrm{Cl}} \mathrm{x}_{\mathrm{C} 1} & 50 & 0.016883 & 0.844
\end{array}
\end{aligned}
$$

Similar for other components.
2-D17. a. V 0.4F 400, L 600 SlopeL/F 1.5
Intercepts $y=x=z=0.70$. Plot line and find $x_{A}=0.65, y_{A}=0.77$ (see graph)
b. $V=2000, \mathrm{~L}=3000$. Rest identical to part a .
c. Lowest x_{A} is horizontal op line $(L=0)$. $x_{A}=0.12$

Highest y_{A} is vertical op line $(\mathrm{V}=0)$. $\mathrm{y}_{\mathrm{A}}=0.52$. See graph

d. $\quad \mathrm{V}=600, \mathrm{~L}=400,-\mathrm{L} / \mathrm{V}=-0.667$.

Find $\mathrm{x}_{\mathrm{A}}=0.40$ on equilibrium curve. Plot op line \& find intersection point with $y=x \operatorname{line} . z_{A}=0.52$
2.D18.

Guess $\mathrm{T}_{\text {drum }}$, calculate $\mathrm{K}_{\mathrm{h}}, \mathrm{K}_{\mathrm{b}}$ and K_{p}, and then determine V / F.
Check:

Initial guess: $\mathrm{T}_{\text {drum }}$ must be less than temperature to boil pure hexane
$\mathrm{K}_{\mathrm{h}} 1.0, \mathrm{~T} 94 \mathrm{C} . \operatorname{Try} 85^{\circ} \mathrm{C}$ as first guess (this is not very will tell critical and the calculation us if there is a mistake). $\mathrm{K}_{\mathrm{h}}=0.8, \mathrm{~K}_{\mathrm{b}} 4.8, \mathrm{~K}_{\mathrm{p}}=11.7$.

$\underline{\mathrm{V}} \quad$| $\underline{0.6}$ | |
| :--- | :--- | :--- | :--- |
| $\underline{0.8} 51$ | 1.471 | . Not possible. Must have $\mathrm{K}_{\mathrm{h}} \quad 0.85^{\underline{0} .6} \quad 0.706$

F $\quad 0.81$
Try T 73 C where $\mathrm{K}_{\mathrm{h}} \quad 0.6$. Then $\mathrm{K}_{\mathrm{b}} \quad 3.8, \mathrm{~K}_{\mathrm{p}} \quad 9.9$.

$$
\begin{array}{c|}
\mathrm{V} \\
\mathrm{~F}
\end{array} \frac{\frac{0.6}{.85}}{.6} \frac{1}{1} 0.735
$$

Check:
$\frac{\mathrm{K}_{\mathrm{i}}}{1 \mathrm{~K}_{\mathrm{i}}} \frac{1 \mathrm{z}_{\mathrm{i}}}{1 \mathrm{VF}} \frac{8.9 .1}{18.9 .735} \frac{2.8 .3}{12.8 .735} \frac{.4 .6}{1.47350 .05276}$

Converge on $\mathrm{T} \sim 65.6 \mathrm{C}$ and $\mathrm{V} / \mathrm{F} \sim 0.57$.
2.D19. 90% recovery n-hexane means $0.9 \mathrm{Fz}_{\mathrm{C} 6} \mathrm{~L} \mathrm{x}_{\mathrm{C} 6}$ Substitute in LF V to obtain $\mathrm{z}_{\mathrm{C} 6} .91 \mathrm{~V} / \mathrm{F}_{\mathrm{C} 6}$
C_{8} balance: $\mathrm{z}_{\mathrm{C} 6} \mathrm{~F}_{\mathrm{Lx}}^{\mathrm{C} 6}$ Vy $\mathrm{C} 6 \quad \mathrm{~F} \quad \mathrm{~V} \mathrm{x}_{\mathrm{C} 6} \quad \mathrm{~K}_{\mathrm{C} 6} \mathrm{Vx}_{\mathrm{C} 6}$ or $\mathrm{z}_{\mathrm{C} 6} 1 \mathrm{~V} / \mathrm{F} \mathrm{x}_{\mathrm{C} 6} \mathrm{X}_{\mathrm{C} 6} \mathrm{~K}_{\mathrm{C} 6} \mathrm{~V} / \mathrm{F}$ Two
equations and two unknowns. Remove $\mathrm{X}_{\mathrm{C} 6}$ and solve
$\mathrm{V} \frac{\mathrm{z}_{\mathrm{C} 6} \quad .93 \mathrm{C}_{6}}{.1}-\frac{.9 \mathrm{z}_{\mathrm{C} 6}}{1 \mathrm{KV} / \mathrm{K}} \frac{\mathrm{K}}{\mathrm{F}}$
Solve for V $/ \overline{\mathrm{F}} . \overline{\mathrm{F}} \quad .9 \mathrm{~K}_{\mathrm{C} 6} \quad .1 \quad$. Trial and error scheme.
Pick T, Calc $\mathrm{K}_{\mathrm{C}}{ }_{\mathrm{K}} \mathrm{Cafc} \mathrm{V}$ F, and Check f $\mathrm{VF}^{/} 0$?
If notK ref $_{\text {new }}-\frac{\text { ref old }}{1 \mathrm{df} \mathrm{T}}$
Try \quad T 70 C. $\mathrm{K}_{\mathrm{C} 4} \quad 3.1, \mathrm{~K}_{\mathrm{C} 5} \quad .93, \mathrm{~K}_{\mathrm{C} 6} \quad .37 \mathrm{~K}_{\mathrm{ref}}$

V	.1	
F	. $\mathrm{Cl}^{2} .37 \quad .1$	

Rachford Rice equation
2.1 .4
. 08.25
. 63.35 f $\overline{12.1 .231} \overline{1.08 .231} \begin{aligned} & 1.63 .231 .28719\end{aligned}$ K T
${ }^{\text {ref }} \quad$ new $\quad 1 \quad 0.287190 .28745$ use .28

Converge on $\mathrm{T}_{\mathrm{New}} \sim 57 \mathrm{C}$. Then $\mathrm{K}_{\mathrm{C} 4} \quad 2.50, \mathrm{~K}_{\mathrm{C} 8} \quad .67$, and V/F $\quad 0.293$.
2.D20. New Problem $4^{\text {th }}$ ed.

2.D21. a.)
$\begin{array}{llll}\mathrm{K}_{\mathrm{C} 2} & 4.8 & \mathrm{~K}_{\mathrm{C} 5} & 0.153\end{array}$
$\underline{\mathrm{V}} \underline{\mathrm{Z}}_{\mathrm{A}} \quad \mathrm{Z}_{\mathrm{B}} \quad \underline{\mathrm{V}} \quad 0.55 \xrightarrow{0.45}$
Soln to Binary R.R. eq. $\mathrm{F} \quad \mathrm{K}_{\mathrm{B}} \quad 1 \quad \mathrm{~K}_{\mathrm{A}} \quad 1 \quad$, $\mathrm{F} \quad . \begin{array}{lllllll}153 & 1 & 4.8 & 1 & 0.5309\end{array}$

$$
\mathrm{x}_{\mathrm{C} 2} \xlongequal[\mathrm{C} 2]{\mathrm{V}} \frac{0.55}{13.8 .5309} 0.1823, \quad \mathrm{y}_{\mathrm{C} 2} \quad 0.8749, \mathrm{x}_{\mathrm{C} 5} \quad 0.8177, \mathrm{y}_{\mathrm{C} 5} \quad 0.1251
$$

$1 \mathrm{~K}_{\mathrm{C} 2} 1 \mathrm{~F}$

Need to convert F to kmol. Avg MW $\quad 0.5530 .07 \quad 0.4572 .15 \quad 49.17$ F 100,000 $\frac{\mathrm{kg}}{\mathrm{hr}}\left|-\frac{\mathrm{kmol}}{49.17 \mathrm{~kg}}\right| 2033.7 \mathrm{kmol} / \mathrm{h}, \quad$ V V F/F 1079.7, \quad L F V $954.0 \mathrm{kmol} / \mathrm{h}$
b.)

To find

$$
\begin{array}{lllll}
\text { MW }_{\mathrm{L} 0.1823} & 30.07 & 0.8177 & 72.15 & 64.48 \\
\overline{\mathrm{MW}}_{\mathrm{v} 0.8749} & 30.07 & 0.1251 & 72.15 & 35.33
\end{array}
$$

For liquid assume ideal mixture:

$$
\begin{aligned}
& \begin{array}{lllllll}
\overline{\mathrm{V}} & \mathrm{x} & \overline{\mathrm{~V}} & \mathrm{x} & \overline{\mathrm{~V}} & \mathrm{x} & \underline{\underline{\mathrm{MW}}}_{\underline{\underline{\mathrm{C}} 2}} \mathrm{x}
\end{array} \quad \underline{\underline{\mathrm{M} W}}_{\underline{\mathrm{C}}}
\end{aligned}
$$

V

$82.0575 \mathrm{~mol} \mathrm{~K} \quad 303.16 \mathrm{~K}$
$\mathrm{K}_{\text {drum }}$: Use Eq. (2-60) with $\mathrm{F}_{1 \mathrm{~V}} \frac{\mathrm{~W}_{\mathrm{L}}}{\mathrm{W}_{\mathrm{V}}} \sqrt{\frac{\mathrm{v}}{\mathrm{L}}}$

$\mathrm{W}_{\mathrm{L}} 997.7 \frac{\mathrm{kmol}}{\mathrm{h}}\left|\frac{64.48 \mathrm{~kg}}{\mathrm{kmol}}\right| \quad 6,4331.7 \mathrm{~kg} / \mathrm{h}, \mathrm{W}_{\mathrm{v}} \quad 881.535 .33 \mathrm{3} \mid 31,143.4 \mathrm{~kg} / \mathrm{h}$ Fiv $\frac{64331.7}{}$| | 0.009814 |
| :--- | :--- |
| $31,143.3 \sqrt{0.621}$ | |

$\begin{array}{llllll}\mathrm{K}_{\text {drum }} \exp & 1.877478 & 0.81458 & \mathrm{n} .2597 & 0.18707 & \mathrm{n} 0.2597^{2}\end{array}$
0.0145229 n $0.2597^{3} 0.0010149$ n $0.2597^{4} \quad 0.3372$

2.D22. New problem in $4^{\text {th }}$ edition.
a. $\mathrm{V}=\mathrm{F}-\mathrm{L}=50-20=20 \mathrm{kmol} / \mathrm{h} . \mathrm{V} / \mathrm{F}=3 / 5$, Slope operating line $=-\mathrm{L} / \mathrm{V}=-20 / 30=-2 / 3, \mathrm{zm}=0.7$

From graph, $\mathrm{y}=0.8, \mathrm{x}=0.54$.
b. From graph of T vs. $x, T_{\text {drum }}=72.3^{\circ}$. . (see graph $)$.

2.D23. New Problem $4^{\text {th }}$ ed.

Part a. $\mathrm{F}_{\text {new }}=(1500 \mathrm{kmol} / \mathrm{h})(1.0 \mathrm{lbmol} /(0.45359 \mathrm{kmol}))=3307 \mathrm{lb} \mathrm{mol} / \mathrm{h} . \mathrm{V}, \mathrm{Wv}, \mathrm{L}$, and W_{L} are the values in Example 2-4 divided by 0.45359 . The conversion factor divides out in Fiv term. Thus, Fiv, Kdrum, and uperm are the same as in Example 2-4. The Area increases because V increases: Area $=$ AreaExample $2-4 / 0.45359=16.047 / 0.45359=35.38 \mathrm{ft}^{2}$.

Diameter $\sqrt{4 \text { Area } /} \quad 6.71$ feet
Probably round this off to 7.0 feet and use a drum height of 28 feet.
b. $\quad \mathrm{F}_{\text {parallel }}=3307-1500=1807 \mathrm{lbmol} / \mathrm{h}$.
$\mathrm{Flv}_{\mathrm{lv}}, \mathrm{K}_{\text {drum }}$, and $\mathrm{u}_{\text {perm }}$ are the same as in Example 2-4. $\mathrm{V}_{\text {parallel }}=(\mathrm{V} / \mathrm{F}) \mathrm{F}_{\text {parallel }}=0.51(1807)=921.6 \mathrm{kmol} / \mathrm{h}$.

V

A 16.047 $16.047(921.6 / 765) 19.33 f t^{2}$

Then, Diameter $\sqrt{4 \text { Area } / 4.96}$ feet , Use a 5.0 feet diameter and a length of 20 feet.
2.D24. $\mathrm{p}=300 \mathrm{kPa}$ At any T. $\mathrm{K}_{\mathrm{C} 3} \quad \mathrm{y}_{\mathrm{C} 3} / \mathrm{x}_{\mathrm{C} 3}, \mathrm{~K}$'s are known. $\mathrm{K}_{\mathrm{C} 6} \quad \mathrm{y}_{\mathrm{d} 6} \mathrm{x}_{\mathrm{C} 6} \quad 1 \quad \mathrm{y}_{\mathrm{C} 3} / 1 \mathrm{x}_{\mathrm{C} 3}$ Substitute $1^{\text {st }}$ equation into $2^{\text {nd }} \quad \mathrm{K}_{\mathrm{C} 6} \quad 1 \mathrm{~K}_{\mathrm{C} 3} \mathrm{x}_{\mathrm{C} 3} / 1 \mathrm{x}_{\mathrm{C} 3}$ Solve for $\mathrm{xC} 3, \quad 1 \mathrm{x}_{\mathrm{C} 3} \mathrm{~K}_{\mathrm{C} 6} \quad 1 \mathrm{~K}_{\mathrm{C} 3} \mathrm{x}_{\mathrm{C} 3}, \mathrm{x}_{\mathrm{C} 3} \mathrm{~K}_{\mathrm{C} 3} \mathrm{~K}_{\mathrm{C} 6} \quad 1 \mathrm{~K}_{\mathrm{C} 6}$

At 300 kPa pure propane $\mathrm{K}_{\mathrm{C} 3} \quad 1.0$ boils at $-14^{\circ} \mathrm{C}$
(Fig. 2-10)
At 300 kPa pure n -hexane $\mathrm{K}_{\mathrm{C} 6} 1.0$ boils at $110^{\circ} \mathrm{C}$
Check: at $-14^{\circ} \mathrm{C}$

	$1 \mathrm{~K}_{\mathrm{C} 6}$	$\mathrm{~K}^{\mathrm{K}_{\mathrm{C} 6}}$
X	$-\underline{0}, \underline{0}$	

at $110^{\circ} \mathrm{C}$
с3 с3 0,
$\begin{array}{lll}y_{C 3} & K_{c 3} & 0\end{array}$

Pick intermediate temperatures, find $\mathrm{K}_{\mathrm{C} 3}$ \& $\mathrm{K}_{\mathrm{C} 6}$, calculate $\mathrm{x}_{\mathrm{C} 3} \& \mathrm{y}_{\mathrm{C} 3}$.

Operating line intersects $\mathrm{y} x 0.3$, Slope 1.5
$\begin{array}{llllllll}y & \frac{\mathrm{~L}}{\mathrm{~V}} & \frac{\mathrm{~F}}{\mathrm{~V}} \mathrm{~F}\end{array}$ at $\quad \mathrm{x} 0, \quad$ y $\frac{\underline{\mathrm{F}} \mathrm{z}}{\underline{0.3}} 0.75$
Find $\mathrm{y}_{\mathrm{c} 3}=0.63$ and $\mathrm{xc}_{\mathrm{C}}=0.062$

Check with operating line: 0.63 1.5 .062 $0.750 .657 \quad$ OK within accuracy of the graph.
c. Drum T: $\mathrm{K}_{\mathrm{C} 3} \quad \mathrm{y}_{\mathrm{C} 3} / \mathrm{x}_{\mathrm{C} 3} \quad 0.63 / 0.06210 .2$, DePriester Chart $\mathrm{T}=109^{\circ} \mathrm{C}$

$$
\frac{\mathrm{L}}{\mathrm{~V}} \frac{\mathrm{y}}{\mathrm{x}} \frac{.8 .6}{.16 .6} \text { d. y .8, } \mathrm{x} \sim .16 \quad \text { Slope }
$$

$$
\mathrm{V} / \mathrm{F}=\mathrm{f}=1 / 1.45=0.69
$$

2.D25. $\quad 20 \%$ Methane and 80% n-butane. $\mathrm{T}_{\text {drum }} .50^{\circ} \mathrm{C}, \quad \frac{\mathrm{V}}{\mathrm{F}} 0.40 \quad$, Find $\mathrm{p}_{\text {drum }}$

Pick pdrum $\quad 1500 \mathrm{kPa}: \mathrm{K}_{\mathrm{C} 4} \quad 13 \quad \mathrm{~K}_{\mathrm{nC} 4} \quad 0.4$
(Any pressure with $\mathrm{K}_{\mathrm{C} 1} \quad 1$ and $\mathrm{K}_{\mathrm{C} 4} \quad 1.0$ is OK)
Trial $1 \quad \mathrm{f}_{1}-\frac{12.2}{12.4} \frac{.6 .8}{12.6 .4} 0.2178 \quad \quad$ Need lower $\mathrm{p}_{\text {drum }}$

$$
\mathrm{f}_{3} \frac{16.4 .2}{116.4 .4}-\frac{.459 .8}{1.459 .4} \cdot 0.0159 \text {, OK. Drum pressure }=1100 \mathrm{kPa}
$$

b.)

$$
x_{i} \xlongequal[z_{i}]{\underline{V}}, x_{\mathrm{C} 1} \frac{0.2}{16.4 .4} 0.02645
$$

$1 \mathrm{~K}_{\mathrm{i}} 1 \quad \mathrm{~F}$

$$
\begin{array}{lllll}
\mathrm{y}_{\mathrm{C} 1} & \mathrm{~K}_{\mathrm{C} 1} \mathrm{x}_{\mathrm{C} 1} & 17.4 & 0.02645 & 0.4603
\end{array}
$$

2.D26. a) Can solve for L and V from M.B. $\quad 100=\mathrm{F}=\mathrm{V}+\mathrm{L}$

45 Fz 0.8 V 0.2162 L
Find: $\mathrm{y} \quad \mathrm{L}=59.95$ and $\mathrm{V}=40.05$

K

b) Stage is equil.

$$
\begin{array}{llllll}
& \frac{\mathrm{C} 3}{\mathrm{X}} & 0^{0.8^{-}} & & \cdot 0.2 \\
& & 3.700 & , \mathrm{~K}_{\mathrm{C} 5} & \\
& & 0.7838
\end{array}
$$

These K values are at same T, P. Find these 2 K values on DePriester chart.
Draw straight line between them. Extend to $\mathrm{T}_{\text {drum }}, \mathrm{p}_{\text {drum }}$. Find $10^{\circ} \mathrm{C}, 160 \mathrm{kPa}$.
2.D27. a.) $\underset{\mathrm{CF}}{\mathrm{VP}}: \log _{10} \mathrm{VP} 6.853 \quad \frac{1064.8}{0} 233.01-2.2832$, VP 191.97 mmHg
b.) VP $37602280 \mathrm{mmHg}, \quad \log _{10} \mathrm{VP} 6.853 \quad 1064.8 / \mathrm{T} 233.01$

Solve for $T=71.65^{\circ} \mathrm{C}$
c.) $\quad P_{\text {tot }} \quad 191.97 \mathrm{~mm} \mathrm{Hg}$ [at boiling for pure component $\left.P_{\text {tot }} \quad V P\right]$
d.) C5: $\log _{10}$ VP $6.853 \quad-\frac{1064.8}{30} \quad 2.8045$, VP 637.51 mm Hg
$\mathrm{K}_{\mathrm{C} 5} \quad \mathrm{VP}_{\mathrm{C} 5} / \mathrm{P}_{\text {tot }} 637.51 / 500 \quad 1.2750$

C6: $\log _{10} \underset{\text { C6 }}{\text { VP }} 6.876 \frac{1171.17}{30224.41} 2.2725$, VP 187.29 mm Hg
$\begin{array}{ll}\mathrm{K}_{\mathrm{C} 6} & 187.2 \mathrm{~S} / 500 \\ 0.3746\end{array}$
e.)

$$
\mathrm{K}_{\mathrm{A}} \quad \mathrm{y}_{\mathrm{A}} / \mathrm{x}_{\mathrm{A}} \quad \mathrm{~K}_{\mathrm{B}} \quad \mathrm{y}_{\mathrm{B}} / \mathrm{x}_{\mathrm{B}} \quad\left(\begin{array}{ll}
1 & \mathrm{y}_{\mathrm{A}}
\end{array}\right) /\left(\begin{array}{ll}
1 & x_{\mathrm{A}}
\end{array}\right)
$$

If $K_{A} \& K_{B}$ are known, two eqns. with 2 unknowns $K_{A} \& y_{A} \quad$ Solve.
$\mathrm{X}_{\mathrm{C} 5} \quad \frac{1}{\mathrm{~K}_{\mathrm{C}}} \frac{\mathrm{K}_{\mathrm{C} 6}}{\mathrm{~K}_{\mathrm{C} 6}} \frac{10.3746}{1.27500 .3746} 0.6946$

$$
\begin{array}{llll}
y_{\mathrm{C} 5} & \mathrm{~K}_{\mathrm{C} 5} x_{\mathrm{C} 5} & 1.2750 & 0.6946
\end{array}
$$

f.) Overall, M.B., $\mathrm{F}=\mathrm{L}+\mathrm{V}$ or $1=\mathrm{L}+\mathrm{V}$

C5: $\mathrm{Fx}_{\mathrm{F}} \mathrm{Lx}$ Vy $\quad .750 .6946 \mathrm{~L}+0.8856 \mathrm{~V}$
Solve for L \& V: $\mathrm{L}=0.7099$ \& $\mathrm{V}=0.2901 \mathrm{~mol}$
g.) Same as part f, except units are $\mathrm{mol} / \mathrm{min}$.
2.D28.

From example 2-4, $\mathrm{x}_{\mathrm{H}} \quad 0.19, \mathrm{~T}_{\text {drum }} \quad 378 \mathrm{~K}, \mathrm{~V} / \mathrm{F} \quad 0.51, \mathrm{y}_{\mathrm{H}} \quad 0.6, \mathrm{z}_{\mathrm{H}} \quad 0.40$ $\mathrm{MW}_{\mathrm{v}}=97.39 \mathrm{lbm} / \mathrm{lbmole}($ Example 2-4)

From Example 2-4, $\mathrm{K}_{\text {vertical }} \quad 0.4433$, $\mathrm{K}_{\text {horiz }} \quad 1.250 .44330 .5541$

$$
{\underset{p e m m}{u}}_{u^{0}}^{0.5541} \frac{0.69600 .00314^{1} \text { ín }}{0.00314} 8.231 \mathrm{fts} \text { s [denģties from Example 2-4] }
$$

$\mathrm{A}_{\text {total }} \mathrm{A}_{\text {vap }} / 0.2128 .4 \mathrm{ft}^{3}, \mathrm{D}_{\min } \sqrt{4 \mathrm{~A}_{\mathrm{tgtal}^{2} /}} 12.8 \mathrm{ft}$
$\mathrm{V} \quad \underline{160,068} \underline{55 \quad 85} \quad 8603.8 \mathrm{ft} 3, \mathrm{~h} \quad \xrightarrow[\text { lia }]{ } 83.51 \mathrm{ft}$ and $\mathrm{h} / \mathrm{D}=6.5$.
liq $\quad 43.4160 \mathrm{~min} / \mathrm{h}$
D^{2}
2.D29. The stream tables in Aspen Plus include a line stating the fraction vapor in a given stream. Change the feed pressure until the feed stream is all liquid (fraction vapor $=0$). For the Peng-Robinson correlation the appropriate pressure is 74 atm .
The feed mole fractions are: methane $=0.4569$, propane $=0.3087$, n -butane $=0.1441$, i -butane $=$ 0.0661 , and n-pentane $=0.0242$.
b. At 74 atm , the Aspen Plus results are; $\mathrm{L}=10169.84 \mathrm{~kg} / \mathrm{h}=201.636 \mathrm{kmol} / \mathrm{h}, \mathrm{V}=4830.16 \mathrm{~kg} / \mathrm{h}$ $=228.098 \mathrm{kmol} / \mathrm{h}$, and $\mathrm{T}_{\text {drum }}=-40.22^{\circ} \mathrm{C}$.
The vapor mole fractions are: methane $=0.8296$, propane $=0.1458$, n-butane $=0.0143$, i-butane $=$ 0.0097 , and n-pentane $=0.0006$.

The liquid mole fractions are: methane $=0.0353$, propane $=0.4930$, n -butane $=0.2910$, i-butane $=$ 0.1298 , and n-pentane $=0.0509$.
c. Aspen Plus gives the liquid density $=0.60786 \mathrm{~g} / \mathrm{cc}$, liquid avg MW $=50.4367$, vapor density $=$ $0.004578 \mathrm{~g} / \mathrm{cc}=4.578 \mathrm{~kg} / \mathrm{m}^{3}$, and vapor $\operatorname{avg} \mathrm{MW}=21.17579 \mathrm{~g} / \mathrm{mol}=\mathrm{kg} / \mathrm{kmol}$.
The value of $\mathrm{u}_{\mathrm{perm}}(\mathrm{in} \mathrm{ft} / \mathrm{s}$) can be determined by combining Eqs. (2-64), (2-65) and (2-69)
$\mathrm{F}_{\mathrm{lv}}=\left(\mathrm{W}_{\mathrm{L}} / \mathrm{Wv}_{\mathrm{v}}\right)\left[\rho \mathrm{v} / \rho_{\mathrm{L}}\right]^{0.5}=(10169.84 / 4830.16)[0.004578 / 0.60786]^{0.5}=0.18272$
Resulting $K_{\text {vertical }}=0.378887$, Khorizontal $=0.473608$, and $u_{\text {perm }}=5.436779 \mathrm{ft} / \mathrm{s}=1.657 \mathrm{~m} / \mathrm{s}$

2.D30.. a. From the equilibrium data if $\mathrm{y}_{\mathrm{A}}=.40$ mole fraction water, then $\mathrm{x}_{\mathrm{A}}=0.09$ mole fraction water. Can find L_{A} and V_{A} by solving the two mass balances for stage A simultaneously.
$\mathrm{L}_{\mathrm{A}}+\mathrm{V}_{\mathrm{A}}=\mathrm{F}_{\mathrm{A}}=100$ and $\mathrm{L}_{\mathrm{A}}(.09)+\mathrm{V}_{\mathrm{A}}(.40)=(100)(.20)$. The results are $\mathrm{V}_{\mathrm{A}}=35.48$ and $\mathrm{L}_{\mathrm{A}}=64.52$.
b. In chamber B, since 40% of the vapor is condensed, $(V / F)_{B}=0.6$. The operating line for this flash chamber is,
$\left.\mathrm{y}=-(\mathrm{L} / \mathrm{V}) \mathrm{x}+\mathrm{FB}_{\mathrm{B}} / \mathrm{V}\right) \mathrm{zB}$ where $\mathrm{zB}=\mathrm{yA}_{\mathrm{A}}=0.4$ and $\mathrm{L} / \mathrm{V}+.4 \mathrm{~F}_{\mathrm{B}} / .6 \mathrm{~F}_{\mathrm{B}}=2 / 3$. This operating line goes through the point $y=x=z b=0.4$ with a slope of $-2 / 3$. This is shown on the graph. Obtain $x_{b}=0.18 \& y_{b}=0.54$. $\mathrm{L}_{\mathrm{B}}=($ fraction condensed $)($ feed to B$)=0.4(35.48)=14.19 \mathrm{kmol} / \mathrm{h}$ and $\mathrm{V}_{\mathrm{B}}=\mathrm{F}_{\mathrm{B}}-\mathrm{L}_{\mathrm{B}}=21.29$.
c. From the equilibrium if $\mathrm{x}_{\mathrm{B}}=0.20$, ув $=0.57$. Then solving the mass balances in the same way as for part a with $\mathrm{F}_{\mathrm{B}}=35.48$ and $\mathrm{ZB}=0.4, \mathrm{~L}_{\mathrm{B}}=16.30$ and $\mathrm{V}_{\mathrm{B}}=19.18$. Because $\mathrm{x}_{\mathrm{B}}=\mathrm{ZA}$, recycling L_{B} does not change $y_{в}=0.57$ or $\mathrm{x}_{\mathrm{A}}=0.09$, but it changes the flow rates $\mathrm{V}_{\mathrm{B}, \text { new }}$ and $\mathrm{L}_{\mathrm{A}, \text { new. With recycle these can be }}$ found from the overall mass balances: $F=V_{B, n e w}+L_{A, n e w}$ and $F_{z A}=V_{B, n e w} y_{B}+L_{A, n e w} X_{A}$. Then $V_{B, n e w}=$ 22.92 and $\mathrm{LA}_{\mathrm{A}, \text { new }}=77.08$.

Graph for problem 2.D30.
2.D31. New problem in $4^{\text {th }}$ US edition. Was $2 . D 13$ in $3^{\text {rd }}$ International Edition.
a) Since K's are for mole fractions, need to convert feed to mole fractions.

Basis: $\quad 100 \mathrm{~kg}$ feed

DePriester Chart $\mathrm{K}_{\mathrm{C} 4} 2.05, \mathrm{~K}_{\mathrm{C} 5} 0.58$, Result similar if use Raoult's law .

$$
\begin{array}{llllll}
\underline{\mathrm{V}} & \underline{0.555} & \underline{0.445} & & 1.3214 & 0.424 \\
\mathrm{~F} & \overline{0} .581 & 1.05 & & &
\end{array}
$$

Check

$$
\mathrm{f}_{\mathrm{F}} \underset{1}{-05} \frac{1.05}{.05} \cdot \frac{.555}{\mathrm{Z}}=-\frac{.42 \quad .445}{1.42 .8976} 0.3000 .299990 \mathrm{OK}
$$

$$
1 \mathrm{~K}_{\mathrm{C} 4} \quad 1 \mathrm{VF} / \quad 11.056 .8976
$$

$$
\begin{array}{lllll}
\mathrm{x}_{\mathrm{C} 5} & .7143 \mathrm{y}_{\mathrm{C} 4} & \mathrm{~K}_{\mathrm{C} 4} \mathrm{x}_{\mathrm{C} 4} & 0.5857, \mathrm{y}_{\mathrm{C} 5} & 0.4143
\end{array}
$$

b) From problem 2.D.g., $\mathrm{K}_{\mathrm{C} 4} \quad 1.019$ and $\mathrm{K}_{\mathrm{C} 5} \quad 0.253$.

Solving RR equation,
2.D32. New problem in $4^{\text {th }}$ US edition. Was 2.D28 in $3^{\text {rd }}$ International Edition.
$\mathrm{VF}_{\mathrm{A}} 23 / \mathrm{L} / \mathrm{V} \quad \frac{1 / 3}{/} 12^{/} \quad$ Slope1 2 Through y x $\mathrm{z}_{\mathrm{A}} \quad 0.6 \quad$ See figure
a. L
${ }_{\text {A }} \frac{1}{3} \mathrm{~F} 33.33, \mathrm{x} \underset{\mathrm{M}, \mathrm{A}}{ } 0.375$ (from Figure) $\mathrm{V}_{\mathrm{A}} \underset{3}{2} \underset{3}{2} \mathrm{~F} 66.67, \quad$ y ${ }_{\mathrm{M}, \mathrm{A}} 0.72 \quad$ (from Figure)

$$
\left.\frac{\mathrm{V}}{\mathrm{~F}}\right|_{\mathrm{B}} 0.4 \quad \frac{\mathrm{~L}}{\mathrm{~V}_{\mathrm{B}}} \begin{array}{lll}
\mathrm{f} & 0.4
\end{array}
$$

Through y $x \quad z_{B} \quad y_{A} \quad 0.72$
$\begin{array}{llllllllll}\mathrm{V}_{\mathrm{B}} & 0.4 \mathrm{~F}_{\mathrm{B}} & 0.4 \mathrm{~V}_{\mathrm{A}} & 0.466 .67 & 26.67, & \mathrm{~L}_{\mathrm{B}} & 0.6 \mathrm{~F}_{\mathrm{B}} & 0.6 & 66.67 & 40.00\end{array}$
b. $\mathrm{z}_{\mathrm{C}} \quad \mathrm{x}_{\mathrm{A}} 0.375, \quad \mathrm{x}_{\mathrm{C}} \quad 0.15, \quad \mathrm{~F}_{\mathrm{C}} \quad \mathrm{L}_{\mathrm{A}} \quad 33.33$, From equilibrium $\mathrm{y}_{\mathrm{C}} \quad 0.51$

$$
\begin{aligned}
& \text { NOT possible. Won't flash at } 0^{\circ} \mathrm{C} \text {. }
\end{aligned}
$$

2.E1. From Aspen Plus run with $1000 \mathrm{kmol} / \mathrm{h}$ at $1 \mathrm{bar}, \mathrm{L}=\mathrm{V}=500 \mathrm{kmol} / \mathrm{h}, \mathrm{W}_{\mathrm{L}}=9212.78 \mathrm{~kg} / \mathrm{h}, \mathrm{W}_{\mathrm{v}}=$ $13010.57 \mathrm{~kg} / \mathrm{h}$, liquid density $=916.14 \mathrm{~kg} / \mathrm{m}^{3}$, liquid avg $\mathrm{MW}=18.43$, vapor density $=0.85 \mathrm{~kg} / \mathrm{m}^{3}$, and
vapor avg MW $=26.02, \mathrm{~T}_{\text {drum }}=94.1^{\circ} \mathrm{C}$, and $\mathrm{Q}=6240.85 \mathrm{~kW}$.
The diameter of the vertical drum in meters (with $u_{\text {perm }}$ in ft / s) is
$D=\left\{[4(\mathrm{MWv}) \mathrm{V}] /\left[3600 \pi \rho v u_{\text {perm }}(1 \mathrm{~m} / 3.281 \mathrm{ft})\right]\right\}^{0.5}=$
$\left\{[4(26.02)(500)] /\left[3600(3.14159)(0.85)(1 / 3.281) u_{\text {perm }}\right]\right\}^{0.5}$
$\mathrm{F}_{\mathrm{lv}}=\left(\mathrm{W}_{\mathrm{L}} / \mathrm{Wv}\right)\left[\rho_{\mathrm{v}} / \rho_{\mathrm{L}}\right]^{0.5}=(9212.78 / 13010.57)[0.85 / 916.14]^{0.5}=0.02157$
Resulting Kvertical $=0.404299$, and $u_{p e r m}=13.2699 \mathrm{ft} / \mathrm{s}$, and $\mathrm{D}=1.16 \mathrm{~m}$. Appropriate standard size would be used. Mole fractions isopropanol: liquid $=0.00975$, vapor $=0.1903$
b. Ran with feed at 9 bar and pdrum at 8.9 bar with $\mathrm{V} / \mathrm{F}=0.5$. Obtain $\mathrm{W}_{\mathrm{L}}=9155.07 \mathrm{~kg} / \mathrm{h}, \mathrm{Wv}=13068.27$, density liquid $=836.89$, density vapor $=6.37 \mathrm{~kg} / \mathrm{m}^{3}$
$D=\left\{[4(\mathrm{MWv}) \mathrm{V}] /\left[3600 \pi \rho v u_{\text {perm }}(1 \mathrm{~m} / 3.281 \mathrm{ft})\right]\right\}^{0.5}=$
$\left\{[4(26.14)(500)] /\left[3600(3.14159)(6.37)(1 / 3.281) u_{\text {perm }}\right]\right\}^{0.5}$
$\mathrm{F}_{\mathrm{lv}}=\left(\mathrm{W}_{\mathrm{L}} / \mathrm{Wv}\right)\left[\rho_{\mathrm{v}} / \rho_{\mathrm{L}}\right]^{0.5}=(9155.07 / 13068.27)[6.37 / 836.89]^{0.5}=0.06112$
Resulting $\mathrm{K}_{\text {vertical }}=.446199$, $\mathrm{u}_{\text {perm }}=5.094885 \mathrm{ft} / \mathrm{s}$, and $\mathrm{D}=0.684 \mathrm{~m}$. Thus, the method is feasible.
c. Finding a pressure to match the diameter of the existing drum is trial and error. If we do a linear interpolation between the two simulations to find a pressure that will give us $\mathrm{D}=1.0 \mathrm{~m}$ (if linear), we find $\mathrm{p}=3.66$. Running this simulation we obtain, $\mathrm{W}_{\mathrm{L}}=9173.91 \mathrm{~kg} / \mathrm{h}, \mathrm{Wv}=13049.43$, density liquid $=874.58$, density vapor $=2.83 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{MW}_{\mathrm{v}}=26.10$
$D=\left\{[4(\mathrm{MWv}) \mathrm{V}] /\left[3600 \pi \rho v \mathrm{u}_{\text {perm }}(1 \mathrm{~m} / 3.281 \mathrm{ft})\right]\right\}^{0.5}=$
$\left\{[4(26.10)(500)] /\left[3600(3.14159)(2.83)(1 / 3.281) u_{\text {perm }}\right]\right\}^{0.5}$
$0.5 \quad 0.5$
$\mathrm{F}_{\mathrm{lv}}=(\mathrm{WL} / \mathrm{Wv})[\mathrm{\rho v} / \rho \mathrm{L}]=(9173.91 / 13049.43)[2.83 / 874.58]=0.0400$

Resulting Kvertical $=.441162$, uperm $=7.742851 \mathrm{ft} / \mathrm{s}$, and $\mathrm{D}=0.831 \mathrm{~m}$.
Plotting the curve of D versus pdrum and setting $\mathrm{D}=1.0$, we interpolate $\mathrm{p}_{\text {drum }}=2.1$ bar At $\mathrm{p}_{\text {drum }}=2.1$ bar simulation gives, $\mathrm{W}_{\mathrm{L}}=9188.82 \mathrm{~kg} / \mathrm{h}, \mathrm{W}_{\mathrm{v}}=13034.53$, density liquid $=893.99$, density vapor $=1.69$ $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{MW}_{\mathrm{v}}=26.07$.
$\mathrm{D}=\{[4(\mathrm{MWv}) \mathrm{V}] /[3600 \pi \rho \mathrm{u} \text { uperm }(1 \mathrm{~m} / 3.281 \mathrm{ft})]\}^{0.5}=$
$\{[4(26.07)(500)] /[3600(3.14159)(1.69)(1 / 3.281) \text { uperm }]\}^{0.5}$
$0.5 \quad 0.5$
$\mathrm{F}_{\mathrm{lv}}=(\mathrm{WL} / \mathrm{Wv})[\mathrm{\rho v} / \rho \mathrm{L}]=(9188.82 / 13034.53)[1.69 / 893.99]=0.0307$

Resulting $K_{\text {vertical }}=.42933$, uperm $=9.865175 \mathrm{ft} / \mathrm{s}$, and $\mathrm{D}=0.953 \mathrm{~m}$.

This is reasonably close and will work $\mathrm{OK} . \mathrm{T}_{\mathrm{drum}}=115.42^{\circ} \mathrm{C}, \mathrm{Q}=6630.39 \mathrm{~kW}$, Mole fractions isopropanol: liquid $=0.00861$, vapor $=0.1914$

In this case there is an advantage operating at a somewhat elevated pressure.
2.E2. This problem was $2 . \mathrm{D} 13$ in the $2^{\text {nd }}$ edition of $S P E$.
a. Will show graphical solution as a binary flash distillation. Can also use R-R equation. To generate equil. data can use
$\left.\begin{array}{lllllll}\mathrm{x}_{\mathrm{C} 6} & \mathrm{x}_{\mathrm{C} 8} & 1.0\end{array}\right)$ and $\mathrm{y}_{\mathrm{C} 6} \quad \mathrm{y}_{\mathrm{C} 8} \quad \mathrm{~K}_{\mathrm{C} 6} \mathrm{X}_{\mathrm{C} 6} \quad \mathrm{~K}_{\mathrm{C} 8} \mathrm{X}_{\mathrm{C} 8} \quad 1.0$
Substitute for XC6

Pick T, find $\mathrm{K}_{\mathrm{c} 6}$ and $\mathrm{K}_{\mathrm{c} 8}$ (e.g. from DePriester charts), solve for Xc_{c}. Then yc6 $=\mathrm{K}_{\mathrm{c} 6 \mathrm{Xc}}$

$\mathrm{T}^{\circ} \mathrm{C}$	Kc6	Kc8	XC6	
125	4	1.4	0	0
120	3.7		. 0357	. 321
110	3.0		. 1379	. 141
100	2.37		. 2595	. 615
90	1.8		. 4406	. 793
80	1.4		. 650	. 909
66.5	1.0	. 17	1.0	1.0

Op Line Slope $\frac{\mathrm{L}}{\mathrm{V}} \quad \frac{1 \mathrm{~V} / \mathrm{F}}{\mathrm{V} / \mathrm{F}} \quad \frac{.6}{4} 1.5$, Intersection $\mathrm{y}=\mathrm{x}=\mathrm{z}=0.65$.
See Figure. $\mathrm{yc}_{\mathrm{C}}=0.85$ and $\mathrm{x}_{\mathrm{C} 6}=0.52$. Thus $\mathrm{K}_{\mathrm{c} 6}=.85 / .52=1.63$.
This corresponds to $\mathrm{T}=86^{\circ} \mathrm{C}=359 \mathrm{~K}$

b. Follows Example 2-4.

$$
\begin{aligned}
& \begin{array}{llllllll}
\mathrm{MW}_{\mathrm{L}} & \mathrm{x}_{\mathrm{C} 8} & \mathrm{MW}_{\mathrm{C} 6} & \mathrm{x}_{\mathrm{C} 8} & \mathrm{MW}_{\mathrm{C} 8} & .52 & 86.17 & .48 \\
114.22 & 99.63
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C6 С8 . }{ }^{\text {. }} \text {. } 703 \\
& \text { L } \quad \overline{\mathrm{MW}}_{\mathrm{L}} \quad \underline{99.63} .682 \mathrm{~g} / \mathrm{ml} \quad \underline{28316 \mathrm{ml} / \mathrm{ft}^{3}} 42.57 \quad \frac{\mathrm{lbm}}{3}
\end{aligned}
$$

$\begin{array}{ll}\mathrm{V}_{\mathrm{L}} & 145.98\end{array}$
$454 \mathrm{~g} / \mathrm{lbm}$
ft

$$
\begin{aligned}
& \frac{\mathrm{p} \overline{\mathrm{MW}}_{\mathrm{v}}}{\mathrm{RT}}-\frac{1}{-} \cdot \underline{0} \cdot \frac{90.38 \mathrm{~g} / \underline{\mathrm{mol}}}{\mathrm{ml} \mathrm{~atm}} \\
& 82.0575 \frac{0.00307 \mathrm{~g} / \mathrm{ml}}{\mathrm{~mol} \mathrm{~K}} 359 \mathrm{~K}
\end{aligned}
$$

Now we can determine flow rates

$$
\mathrm{v} \frac{\mathrm{~V}}{\mathrm{~F}} \cdot 4 \quad 10,000 \quad 4000 \mathrm{lbmolh}
$$

W_{v} V MW.4000 $90.38 \quad 361,520 \mathrm{lb} / \mathrm{h}$

L F V $6000 \mathrm{lbmol} / \mathrm{h}, \mathrm{W}_{\mathrm{L}}$ L MWL $6000 \quad 99.63 \quad 597,780 \mathrm{lb} / \mathrm{h}$

$$
\begin{aligned}
& \mathrm{F}_{\text {lv }} \frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{~W}_{\mathrm{v}}} \sqrt{\frac{\mathrm{v}}{2}} \frac{597,780}{361,520} \sqrt{\frac{0.19135}{42.57}} 0.111, \quad \mathrm{nF}_{\mathrm{lv}} \quad 2.1995 \\
& K_{\text {drum }} \exp \quad 1.87748 \quad .81458 \quad 2.1995 \quad .18707 \quad 2.1995^{2} \\
& \begin{array}{lllll}
0.01452 & 2.1995^{3} 0.00101 & 2.1995^{4} & 0.423
\end{array} \\
& \mathrm{u}_{\text {Perm }}^{\mathrm{K}} \underset{\text { drum }}{\mathrm{L} \sqrt{\mathrm{v}}} \begin{array}{lllllll}
& / \mathrm{v} & 0.423 & 42 \\
\hline
\end{array} \\
& \mathrm{~A}_{\mathrm{Cs}} \quad \mathrm{~V} \mathrm{MW}_{\mathrm{v}} \quad 400090.38-83.33 \mathrm{ft}^{2} \\
& \begin{array}{cccc}
& \mathrm{u}_{\text {Perm }} 3600 \mathrm{v}_{\mathrm{v}} & 6.336000 .19135 \\
\mathrm{D} & \sqrt{4 \mathrm{~A}_{\mathrm{CS}} / 4} 83 \sqrt{33} & / 10.3 \mathrm{ft} . \text { Use } 10.5 \mathrm{ft} .
\end{array}
\end{aligned}
$$

L ranges from $3 \times 10.5=31.5 \mathrm{ft}$ to $5 \times 10.5=52.5 \mathrm{ft}$.
Note: This uPerm is at 85% of flood. If we want to operate at lower \% flood (say 75\%)
$u_{\text {Perm } 75 \%} 0.75 / 0.85$ u Perm85\% $0.75 / 0.85 .63$ 5.56 Then at
75% of flood, $\mathrm{Acs}=94.44$ which is $\mathrm{D}=10.96$ or 11.0 ft .
2.E3. New problem $4^{\text {th }}$ edition. The difficulty of this problem is it is stated in weight units, but the VLE data is in molar units. The easiest solution path is to work in weight units, which requires converting some of the equilibrium data to weight units and replotting - good practice. The difficulty with trying to work in molar units is the ratio $\mathrm{L} / \mathrm{V}=0.35 / 0.65=$ 0.5385 in weight units becomes in molar units, ${ }_{\text {molar }}$
$V_{\text {molar }}$
$V_{w t}$
${ }_{w t}$
$(M W)_{\text {liquid }}$, but x and y are not known the molecular weights are unknown.

In weight units, $\mathrm{V}=\mathrm{F}(\mathrm{V} / \mathrm{F})=2000 \mathrm{~kg} / \mathrm{h}(0.35)=700 \mathrm{~kg} / \mathrm{h} . \mathrm{L}=\mathrm{F}-\mathrm{V}=1300 \mathrm{~kg} / \mathrm{h}$.
In weight units the equilibrium data (Table 2-7) can be converted as follows:
Basis: $1 \mathrm{~mol}, \mathrm{x}=0.4$ and $\mathrm{y}=0.729, \mathrm{~T}=75.3 \mathrm{C}$
Liquid: 0.4 mol methanol $\times 32.04 \mathrm{~g} / \mathrm{mol}=12.816 \mathrm{~g}$
0.6 mol water $\times 18.016 \mathrm{~g} / \mathrm{mol}=$

$$
\text { Total }=23.622 \mathrm{~g} \rightarrow \mathrm{x}=0.5425 \mathrm{wt} \text { frac methanol }
$$

Vapor: 0.729 mol methanol $=23.357 \mathrm{~g}$ 0.271 mol water $\quad=\underline{4.881 \mathrm{~g}}$ $28.238 \mathrm{~g} \rightarrow \mathrm{y}=0.8271 \mathrm{wt}$ frac methanol.

Similar calculations for: 0.3 mole frac liquid give $\mathrm{X}_{\mathrm{wt}}=0.433$ and $\mathrm{y}_{\mathrm{wt}}=0.7793, \mathrm{~T}=78.0 \mathrm{C} 0.2$
mole frac liquid give $\mathrm{x}_{\mathrm{wt}}=0.3078$ and $\mathrm{y}_{\mathrm{wt}}=0.7099, \mathrm{~T}=81.7 \mathrm{C}$
0.15 mole frac liquid give $\mathrm{X}_{\mathrm{wt}}=0.2389$ and $\mathrm{y}_{\mathrm{wt}}=0.6557, \mathrm{~T}=84.4 \mathrm{C}$.

Plot this data on $y_{w t}$ Vs $x_{w t}$ diagram. Operating line is $y=-(L / V) x+(F / V) z$ in weight units.
Slope $=-1.857, \mathrm{y}=\mathrm{x}=\mathrm{z}=0.45$, and y intercept $=\mathrm{z} /(\mathrm{V} / \mathrm{F})=1.286$ all in weight units.
Result is $х м$, wt $=0.309, y м, \mathrm{wt}=0.709$ (see graph). Note that plotting only the part of the graph needed to solve the problem, the scale could be increased resulting in better accuracy. By linear interpolation $\mathrm{T}_{\text {drum }}=81.66 \mathrm{C}$.

2.F1

X_{B}	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1
$\mathrm{y}_{\text {в }}$	0	.22	.38	.52	.62	.71	.79	.85	.9	.96	1

Benzene-toluene equilibrium is plotted in Figure 13-8 of Perry's Chemical Engineers Handbook, $6{ }^{\text {th }}$ ed.
2.F2. \quad See Graph. Data is from Perry's Chemical Engineers Handbook, $6^{\text {th }}$ ed., p. 13-12.

2.F3. Bubble Pt. At $\mathrm{P}=250 \mathrm{kPa}$. Want $\quad \mathrm{K}_{1} \mathrm{Z}_{1} \quad 1$. Solution uses DePriester chart for K values.

Guess $\quad \mathrm{T} \quad 18 \mathrm{C}, \quad \mathrm{K}_{1} 1, \quad \mathrm{~K}_{2} .043, \quad \mathrm{~K}_{3} .00095$, 52
Converge to T 0 C

Dew Pt. Calc. Want
Z_{1}.
Dew.Pt. Calc. Want
$\mathrm{K}_{1} 1.0 \mathrm{~K}$
Try $\quad \mathrm{T} 0 \mathrm{C}, \quad \mathrm{K}_{1} 1.93, \quad 2 \quad 0.11, \mathrm{~K}_{3} 0.0033,120.26$

First Trial: Guess $\quad \mathrm{T}_{\mathrm{d}, 1} 70 \mathrm{C}: \quad \underset{1}{\mathrm{~K}} 7.8, \mathrm{~K}_{2} 1.07, \mathrm{~K}_{3} .083$
Guess V F 0.5 . Rachford Rice Eq.

By linear interpolation: V/F .56. f $0.56 \quad .0016$ which is close enough for first trial.

$$
\text { V V F/F 56, } \quad \text { L } 44
$$

$$
\begin{array}{lllllll}
\mathrm{x}_{1} .1075 & \mathrm{x}_{2} & .088 & \mathrm{x}_{3} & .806 & \mathrm{x} & 1.001
\end{array}
$$

$$
\begin{array}{llllll}
\mathrm{y}_{1} .839 & \mathrm{y}_{2} & .094 & \mathrm{y}_{3} & .067 & \text { y } .9999
\end{array}
$$

Data: Pick $\underset{\text { ref }}{\text { T25 C }}$. (Perry's $6^{\text {th }}$ ed; p. 3-127), and (Perry's $6^{\text {th }}$ ed; p. 3-138)

$$
1 \quad 81.76 \mathrm{cal} / \mathrm{g} \quad 44 \quad 3597.44 \mathrm{kcal} / \mathrm{kmol}
$$

$$
287.54 \mathrm{cal} / \mathrm{g}_{2} 726302.88 \mathrm{kcal} / \mathrm{kmol}_{3}
$$

$$
86.80 \mathrm{cal} / \mathrm{g} 1149895.2 \mathrm{kcal} / \mathrm{kmol}
$$

at $\quad \mathrm{T} 0 \mathrm{C}, \mathrm{C}_{\mathrm{pL} 1} \quad 0.576 \mathrm{cal} /(\mathrm{g} \mathrm{C}) 4425.34 \mathrm{kcal} /(\mathrm{kmol} \mathrm{C})$.
For $\quad \mathrm{T} 20$ to $123 \mathrm{C}, \mathrm{C}_{\mathrm{pL}} 3 \quad 65.89 \mathrm{kcal} /(\mathrm{kmol} \mathrm{C})$
at \quad T $75 \mathrm{C}, \mathrm{C}_{\mathrm{pL} 2} \quad 39.66 \mathrm{kcal} /(\mathrm{kmol} \mathrm{C})$. (Himmelblau/Appendix E-7) C_{pv} a bT cT ${ }^{2}$
propane $\mathrm{a}=16.26 \mathrm{~b}=5.398 \times 10^{-2} \quad \mathrm{c}=-3.134 \times 10^{-5}$
n-pentane $\quad \mathrm{a}=27.45 \quad \mathrm{~b}=8.148 \times 10^{-2} \quad \mathrm{c}=-4.538 \times 10^{-5}$
**n-octane $\quad a=8.163 \quad b=140.217 \times 10^{-3} \quad c=-44.127 \times 10^{-6}$
** Smith \& Van Ness p. 106
Energy Balance: $\mathrm{E}\left(\mathrm{T}_{\mathrm{d}}\right)=\mathrm{VH}_{\mathrm{v}}+\mathrm{Lh}_{\mathrm{L}}-\mathrm{Fh}_{\mathrm{F}}=0$
$\begin{array}{llllllllll}\text { Fh } & 100 & .577 & 25.34 & .091 & 39.66 & .392 & 65.89 & 95.25 & 297,773 \mathrm{kcal} / \mathrm{h}\end{array}$
$\begin{array}{lllllllll}\text { Lh } 44 & .1075 & 25.34 & .088 & 39.66 & .806 & 65.89 & 70.25 & 117,450\end{array}$

$\begin{array}{lllll}0.67 & 9895.3 & 8.163 & 140.217 & 10^{3}\end{array} 45240,423$
$\mathrm{E} \mathrm{T}_{\text {drum }} \quad 60,101$ Thus, $\mathrm{T}_{\text {drum }}$ is too high.
Converge on $\mathrm{T}_{\text {drum }} 57.2 \mathrm{C}: \mathrm{K} \quad 6.4, \mathrm{~K}{ }_{2} .8, \mathrm{~K}{ }_{3} .054$ /
For V F 0.513, f $0.513 \quad 0.0027$. V 51.3 , L 48.7

$$
\begin{aligned}
& \text { V/F . } 6 \text { gives f } 6 \text {. } 101
\end{aligned}
$$

$\mathrm{x}_{1} .137, \mathrm{x}_{2} .101, \mathrm{x}_{3} .762, \mathrm{x}_{1} 1.0000$
$\mathrm{y}_{1} .878, \mathrm{y}_{2} .081, \mathrm{y}_{3} .041, \mathrm{y}_{1} 1.0000$
$\mathrm{Fh}_{\mathrm{F}} \quad 297,773 ; \mathrm{Lh}_{\mathrm{L}} \quad 90,459 ; \mathrm{VH}_{\mathrm{v}} \quad 209,999 ; \mathrm{E} \mathrm{T}_{\text {drum }} 2685$
Thus $\mathrm{T}_{\text {drum }}$ must be very close to $57.3^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{x}_{1} .136, \mathrm{x}_{2} .101, \mathrm{x}_{3} .762, \mathrm{y}_{1} .328, \mathrm{y}_{2} .081, \mathrm{y}_{3} .041 \mathrm{~V} 51.3 \\
& \mathrm{kmol} / \mathrm{h}, \mathrm{~L} 48.7 \mathrm{kmol} / \mathrm{h}
\end{aligned}
$$

Note: With different data Tdrum $_{\text {may vary significantly. }}$
2.F4. New Problem $4^{\text {th }}$ edition. This is a mass and energy balance problem disguised as a flash distillation problem. Data is readily available in steam tables.. At 5000 kPa and 500 K the feed is a liquid, $\mathrm{h}_{\mathrm{F}}=17.604 \mathrm{~kJ} / \mathrm{mol}$. For an adiabatic flash, $\mathrm{h}_{\mathrm{F}}=\left[\mathrm{VHv}+\mathrm{Lh}_{\mathrm{L}}\right] / \mathrm{F}$
Vapor and liquid are in equilibrium. Saturated steam at 100 kPa is at $\mathrm{T}=372.76 \mathrm{~K}, \mathrm{hL}=7.5214$ $\mathrm{kJ} / \mathrm{mol}, \mathrm{Hv}=48.19 \mathrm{~kJ} / \mathrm{mol}$
Mass balance: $\mathrm{F}=\mathrm{V}+\mathrm{L}$ where F in $\mathrm{kmol} / \mathrm{min}=(1500 \mathrm{~kg} / \mathrm{min})(1 \mathrm{kmol} / 18.016 \mathrm{~kg})=83.259 \mathrm{kmol} / \mathrm{min}$
$\mathrm{EB}: \mathrm{Fh}_{\mathrm{F}}=\mathrm{VHv}+\mathrm{Lh}_{\mathrm{L}} \rightarrow$
$(83.259 \mathrm{kmol} / \mathrm{min})(17.604 \mathrm{~kJ} / \mathrm{mol})(1000 \mathrm{~mol} / \mathrm{kmol})=(48.19)(1000) \mathrm{V}+(7.5214)(1000) \mathrm{L}$.
Solve equations simultaneously. $\mathrm{L}=62.617 \mathrm{kmol} / \mathrm{min}=1128.12 \mathrm{~kg} / \mathrm{min}$ and $\mathrm{V}=20.642 \mathrm{kmol} / \mathrm{min}=$
$371.88 \mathrm{~kg} / \mathrm{min}$
2.G1. Used Peng-Robinson for hydrocarbons.

Find $\quad \mathrm{T}_{\text {drum }} 33.13 \mathrm{C}, \mathrm{L} \quad 34.82$ and V $\quad 65.18 \mathrm{kmol} / \mathrm{h}$
In order ethylene, ethane, propane, propylene, n-butane, $\mathrm{xi}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}\right)$ are:
$0.01220 .0748,0.08660 .3005,0.33180 .3781,0.03060 .0404,0.53880 .2062$.
2.G2. New problem in $4^{\text {th }}$ edition. Part a. $\mathrm{p}=31.26 \mathrm{kPa}$ with V / F)feed $=0.0009903$.

Part b. Use preed $=31.76 \mathrm{kPa}, \mathrm{V} / \mathrm{F})_{\text {feed }}=0.0$
Part c. Drum p $=3.9$ bar, $\mathrm{T}_{\mathrm{drmu}}=19.339, \mathrm{~V} / \mathrm{F}=0.18605$,
Liquid mole fractions: $\mathrm{C} 1=0.14663, \mathrm{C} 2=0.027869\left(\sum=0.05253\right.$ is in spec), $\mathrm{C} 5=0.6171, \mathrm{C} 6=0.3404$.
Vapor mole fractions: $\mathrm{C} 1=0.68836, \mathrm{C} 2=0.20057, \mathrm{C} 5=0.9523$, and $\mathrm{C} 6=0.01584$.
2.G3. New problem $4^{\text {th }}$ edition. K values in Aspen Plus are higher by 17.6% (methane), 7.04% (nbutane) and 0.07% n-pentane. Since the K values are higher V/F is higher by 10.2%. Results:

	x	y	K
Methane	0.004599	0.27039	58.79
n-butane	0.44567	0.52474	1.1774
n-pentane	0.54973	0.20488	0.37269

$\left.\mathrm{V} / \mathrm{F})_{\text {drum }}=0.43419 ; \mathrm{V} / \mathrm{F}\right)_{\text {feed }}=0.3654 ; \mathrm{Q}=-3183.4 \mathrm{cal} / \mathrm{s}$
2.G4.

COMP	$\mathrm{x}(\mathrm{I})$	$\mathrm{y}(\mathrm{I})$
METHANE	$0.12053 \mathrm{E}-01$	0.84824
BUTANE	0.12978	$0.78744 \mathrm{E}-01$
PENTANE	0.29304	$0.47918 \mathrm{E}-01$
HEXANE	0.56513	$0.25101 \mathrm{E}-01$
$\mathrm{~V} / \mathrm{F}=0.58354$		

2.G5. N. Used NRTL. $\mathrm{T}=368.07, \mathrm{Q}=14889 \mathrm{~kW}, 1^{\text {st }}$ liquid/total liquid $=0.4221$,

Comp	Liquid 1, x_{1}	Liquid 2, x_{2}	Vapor, y

Furfural	0.630	0.0226	0.0815
Water	0.346	0.965	0.820
Ethanol	0.0241	0.0125	0.0989

2.G6. Used Peng Robinson. Feed pressure $=10.6216 \mathrm{~atm}$, Feed temperature $=81.14^{\circ} \mathrm{C}, \mathrm{V} / \mathrm{F}=0.40001$,
$Q_{\text {drum }}=0$. There are very small differences in feed temperature with different versions of AspenPlus.

COMP	$\mathrm{x}(\mathrm{I})$	$\mathrm{y}(\mathrm{I})$
METHANE	0.000273	0.04959
BUTANE	0.18015	0.47976
PENTANE	0.51681	0.39979
HEXANE	0.30276	0.07086
V/F $=0.40001$		

2.H1. New Problem $4^{\text {th }}$ ed A. 563.4 R, b.V/F $=.4066$. c. 18.264 psia
2.H3. New Problem. $4^{\text {th }}$ ed. Answer V/F $=0.564 ; \mathrm{xE}=0.00853$, $\mathrm{xhex}=0.421$, x hept $=.570 ; \mathrm{yE}=.421$, y Hex $=0.378$, y Hept $=.201$.
2H4. New Problem, $4^{\text {th }}$ ed. Answer: $\mathrm{p}_{\mathrm{drum}}=120.01, \mathrm{kPa}=17.40 \mathrm{psia}$
$\mathrm{xB}=0.1561$, xpen $=0.4255, \mathrm{x}$ hept $=0.4184, \mathrm{yB}=0.5130, \mathrm{yPen}=0.4326, \mathrm{yhept}=0.0544$
2H5. New problem $4^{\text {th }} \mathrm{ed}$.
a. \quad SOLUTION. $\mathrm{P}=198.52 \mathrm{kPa}$.
b. $V / F=0.24836$, ethane $\mathrm{x}=0.00337, \mathrm{y}=0.0824$; Propane $\mathrm{x}=0.05069, \mathrm{y}=0.3539$;

Butane $x=0.1945, y=0.3536$; Pentane $x=0.3295, y=0.1584$; Hexane $x=0.3198, y=0.0469$
Heptane $x=0.1022, y=0.00464$
c. $\mathrm{T}=34.48^{\circ} \mathrm{C}$
d. $\mathrm{T}=-1.586^{\circ} \mathrm{C}$ and $\mathrm{V} / \mathrm{F}=0.0567$

2H6. New problem in $4^{\text {th }}$ ed.

4	A	B	C	D	E	F	G	H	1	J
1										
2	Example 2-2 on spreadsheet									
3	K1	7	K2	2.4	K3	0.8	K4	0.3		
4	z1	0.3	z2	0.1	z3	0.15	24	0.45		
5	Guess	0.500823								
6	x1	0.074908	$\times 2$	0.058784	x3	0.166697	x4	0.692922		
7	y1	0.524353	y2	0.141081	y3	0.12	y 4	0.207877	sum \downarrow	
8	yk-xi	0.449445		0.082297		-0.0467		-0.48505	-2.1E-07	
9								chk	-0.00021	
10		Goal seek 91 to zero by changing B5								
1.1										

