Solution Manual for Solid State Electronic Devices 7th Edition Streetman and Banerjee 0133356035 9780133356038

Full link download
Solution Manual: https://testbankpack.com/p/solution-manual-for-solid-state-electronic-devices-7th-edition-streetman-and-banerjee-0133356035-978013335603/

Chapter 2 ATOMS AND ELECTRONS

Prob. 2.1

(a\&b) Sketch a vacuum tube device. Graph photocurrent I versus retarding voltage V for several light intensities.

Note that V_{0} remains same for all intensities.

Prob. 2.2

$$
\begin{aligned}
& \text { for work work } \\
& \text { protected assessing of }
\end{aligned}
$$

This is coursesof any the

$\mathrm{n} \quad \mathrm{mq}^{2} \quad \mathrm{mr}^{2} \quad \mathrm{q}^{2} \quad \mathrm{mr}_{2} \quad \mathrm{mv}^{2} \quad \mathrm{~m}^{2} \mathrm{v}^{2} \mathrm{r}$
в
n
n

$\mathrm{p}_{\theta}=\mathrm{n}_{\hbar}$ is the third Bohr postulate
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Prob. 2.3

(a) Find generic equation for Lyman, Balmer, and Paschen series.

$$
\begin{aligned}
& \Delta \mathrm{E}=\frac{h \mathrm{c}}{\lambda}=\frac{\mathrm{mq}^{4}}{32 \pi^{2} \in^{2} \mathrm{n}^{2} \bar{\hbar}^{2}}-\frac{\mathrm{mq}^{4}}{32 \pi^{2} \in^{2} \mathrm{n} 2 \hbar^{2}} \\
& h \mathrm{c}=\mathrm{mq}^{4}\left(\mathrm{n}^{2}-\mathrm{n}^{\mathrm{o}}\right)^{1}=\mathrm{mq}^{4}\left(\mathrm{n}^{\left.{ }^{\circ}-\mathrm{n}^{2}{ }^{2}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& 8\left(8 \cdot 85 \cdot{ }^{2} 10^{-12}{ }^{1} \mathrm{~F}\right)^{2} \cdot\left(6.63 \cdot 10^{-34} \mathrm{JS}\right)^{\frac{2}{3}} \cdot 2.998 \cdot 10^{8} \mathrm{~m} \quad \mathrm{n}^{2} \mathrm{n}^{2} \\
& \lambda=
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=9.11 \cdot 10^{8} \mathrm{~m} \cdot \underline{2}^{2}=\underline{9} .11 \AA \cdot 1 \quad \underline{2} \\
& \mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}{ }^{2} \mathrm{n}_{2}{ }^{2}-\mathrm{n}_{1}{ }^{2}
\end{aligned}
$$

$\mathrm{n}_{1}=1$ for Lyman, 2 for Balmer, and 3 for Paschen

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Prob. 2.4

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
(a) Find p_{x} for $\Delta x=1 \AA$.

$$
\Delta \underset{x}{\mathrm{p}} \cdot \Delta \mathrm{x}_{4 \pi}=\frac{h}{4 \pi} \rightarrow \Delta \mathrm{p}_{\mathrm{x}}=\frac{h}{4 \pi \cdot \Delta \mathrm{x}}-=\frac{6.63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{4 \pi \cdot 10^{0_{\mathrm{m}}}}=5.03 \cdot 10^{-25} \underset{\mathrm{k} \cdot \mathrm{~m}}{\mathrm{~s}}
$$

(b) Find tor $E=1 e V$.

$$
\underline{h} \quad-\underline{h} \quad \underline{4.14 \cdot 10^{-15} \mathrm{eV} \cdot \mathrm{~s}}
$$

$\Delta \mathrm{E} \cdot \Delta \mathrm{t}=4 \pi \rightarrow \Delta \mathrm{t}=4 \pi \cdot \Delta \mathrm{E}=4 \pi \cdot 1 \mathrm{eV}=3.30 \cdot 10 \mathrm{~s}$

Prob. 2.5

Find wavelength of 100 eV and 12 keV electrons. Comment on electron microscopes compared to visible light microscopes.

around $5000 \AA$; so, the much smaller electron wavelengths provide much better resolution.

will

Prob. 2.6
Which of the following could NOT possibly be wave functions and why? Assume 1-D in each case. (Here $\mathrm{i}=$ imaginary number, C is a normalization constant)
A) $\Psi(x)=C$ for all x.
B) $\Psi(\mathrm{x})=\mathrm{C}$ for values of x between 2 and 8 cm , and $\Psi(\mathrm{x})=3.5 \mathrm{C}$ for values of x between 5 and $10 \mathrm{~cm} . \Psi(\mathrm{x})$ is zero everywhere else.

Prolb. (x) $4=$ i C for $x=5 \mathrm{~cm}$, and linearly goes down to zero at $x=2$ and $x=10 \mathrm{~cm}$ from this peak value, and is zero for all other x.
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
If any of these are valid wavefunctions, calculate C for those case(s). What potential energy for $x \leq 2$ and $x \geq 10$ is consistent with this?

Prob. 2.4

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.

No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
A) For a wavefunction $\Psi(\mathrm{x})$, we know $\mathrm{P}=$

* $(x)(x) d x=1$
B) For $5 \leq \mathrm{x} \leq 8, \Psi(\mathrm{x})$ has two values, C and 3.5 C. For $\mathrm{c} \neq 0, \Psi(\mathrm{x})$ is not a function
and for $\mathrm{c}=0: \mathrm{P}=\quad{ }^{*}(\mathrm{x})(\mathrm{x}) \mathrm{dx}=0 \quad$ (x)cannot be a wave function.
C) $\Psi(x)=\left\{\begin{array}{l}\frac{i C}{3}(x-2) 2 \leq x \leq 5\end{array}\right.$

1

$$
\begin{aligned}
& \text { | } \underline{i} \underline{\underline{C}}(x-10) 5 \leq x \leq 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8C_ } \mathrm{C}=0.611^{\text {soley }} \text { thiss atmo }
\end{aligned}
$$

$$
\begin{aligned}
& 3
\end{aligned}
$$

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Prob. 2.7

A particle is described in 1D by a wavefunction:
$\Psi=\mathrm{Be}^{-2 x}$ for $x \geq 0$ and $\mathrm{Ce}^{+4 x}$ for $x<0$, and B and C are real constants. Calculate B and C to make Ψ a valid wavefunction. Where is the particle most likely to be?

A valid wavefunction must be continuous, and normalized.
For $\Psi(0)=\mathrm{C}=\mathrm{B}$
To normalize $\Psi, \underset{-\infty}{\infty}|\Psi|^{2} \mathrm{dx}=1$

$$
\begin{aligned}
& \int_{-\infty}^{0} C^{2} e^{8 x} d x+\int_{0}^{\infty} C^{2} e^{-4 x} d x=1 \\
& \left.\left.\underline{\mathrm{C}}_{8}^{2}-\left[{ }^{8 \mathrm{e}}\right]_{-\infty}^{0}+\mathrm{C} \quad(-\underline{1})_{4}\right)^{L^{\left[e^{-4 x}\right.}}\right]_{0}^{\infty}=1 \\
& \underline{C}^{2}+\underline{C}^{\frac{2}{2}}=1 \Rightarrow C=\underline{-} \\
& 843
\end{aligned}
$$

The electron wavefunction is Ceikx between $x=2$ and $22_{\text {the }} \mathrm{Cm}$, peemitesand zero everywhere else. What is

Prob. 2.9

Find the probability of finding an electron at $x<0$. Is the probability of finding an electron at $x>0$ zero or non-zero? Is the classical probability of finding an electron at $x>6$ zero or non?
The energy barrier at $x=0$ is infinite; so, there is zero probability of finding an electron at $x<0\left(|\Psi|^{2}=0\right)$. However, it is possible for electrons to tunnel through the barrier at $5<x<6$;
so, the probability of finding an electron at $x>6$ would be quantum mechanically greater
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
than zero $\left(|\psi|^{2}>0\right)$ and classical mechanically zero.

Prob. 2.10
Find $4 \cdot p_{x}^{2}+2 \cdot p_{z}^{2}+7 m E$ for $\Psi(x, y, z, t)=A \cdot e^{j(10 \cdot x+3 \cdot y-4 \cdot t)}$.

$$
\left.\int \mathrm{A} \cdot \mathrm{e} \quad\right|^{-}-_{\text {and } \mid \text { Acourses }} \quad \mathrm{dt}
$$

4. $\mathrm{p}_{\mathrm{x}}{ }^{2}+2 \cdot \mathrm{p}_{\mathrm{z}}{ }^{2}+7 m E=400^{\text {R }}+28\left(9.11 \cdot 10^{-31} \mathrm{~kg}\right)^{\hbar}$
© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Prob. 2.11

Find the uncertainty in position (Δx) and momentum ($\Delta \rho$).

	$\overline{2} \quad(\pi x)$	$-2 \pi \mathrm{jEt} / \mathrm{h}$
$\begin{aligned} & \Psi(x, 1, \\ & \mathrm{L} \end{aligned}$		

$$
\Delta \bar{x}=x^{2}-x^{2}=0.28 L^{2}-(0.5 \mathrm{~L})^{2}=0.17 \mathrm{~L}
$$

$$
\Delta \mathrm{p} \geqslant \frac{h}{4 \pi \cdot \Delta \mathrm{x}}=0.47 \cdot \frac{h}{\mathrm{~L}}
$$

Calculate the first three energy levels for a $10 \AA$ quantum well withweb)infinite walls.

work provided
 provided

$$
\begin{array}{ll}
& \text { inte } \\
\underset{\text { part }}{\text { and }} &
\end{array}
$$

This is coursesof any the
and

$$
\begin{array}{ccc}
\quad \begin{array}{c}
\text { or } \\
\text { their sale }
\end{array} & \text { destroy } \\
& & \\
2 & 2 & 4
\end{array}
$$

Show schematic of atom with $1 s 2 s 2 p$ and atomic weight 21 . Comment on its reactivity.

This atom is chemically reactive because the outer 2 p shell is not full. It will tend to try to add two electrons to that outer shell.

$$
\begin{aligned}
& =\text { neturon } \\
& =\text { electron }
\end{aligned}
$$

© 2015 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

