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10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1.  = 1− 2,  = 2− 2, −1 ≤  ≤ 2

 −1 0 1 2

 0 1 0 −3

 −3 0 1 0

2.  = 3 + ,  = 2 + 2, −2 ≤  ≤ 2

 −2 −1 0 1 2

 −10 −2 0 2 10

 6 3 2 3 6

3.  =  + sin ,  = cos , − ≤  ≤ 

 − −2 0 2 

 − −2 + 1 0 2 + 1 

 −1 0 1 0 −1

4.  = − + ,  =  − , −2 ≤  ≤ 2

 −2 −1 0 1 2

 2 − 2

539

− 1

172

1 −1 + 1

137

−2 + 2

214

 −2 + 2

214

−1 + 1

137

1 − 1

172

2 − 2

539

5.  = 2− 1,  = 1
2
 + 1

(a)
 −4 −2 0 2 4

 −9 −5 −1 3 7

 −1 0 1 2 3

(b)  = 2− 1 ⇒ 2 =  + 1 ⇒  = 1
2
 + 1

2
, so

 = 1
2
+ 1 = 1

2


1
2
 + 1

2


+ 1 = 1

4
+ 1

4
+ 1 ⇒  = 1

4
 + 5

4
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864 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

6.  = 3+ 2,  = 2 + 3

(a)
 −4 −2 0 2 4

 −10 −4 2 8 14

 −5 −1 3 7 11

(b)  = 3+ 2 ⇒ 3 = − 2 ⇒  = 1
3
− 2

3
, so

 = 2+ 3 = 2


1
3
− 2

3


+ 3 = 2

3
− 4

3
+ 3 ⇒  = 2

3
 + 5

3

7.  = 2 − 3,  = + 2, −3 ≤  ≤ 3

(a)
 −3 −1 1 3

 6 −2 −2 6

 −1 1 3 5

(b)  =  + 2 ⇒  =  − 2, so

 = 2 − 3 = ( − 2)2 − 3 = 2 − 4 + 4− 3 ⇒
 = 2 − 4 + 1, −1 ≤  ≤ 5

8.  = sin ,  = 1− cos , 0 ≤  ≤ 2

(a)
 0 2  32 2

 0 1 0 −1 0

 0 1 2 1 0

(b)  = sin ,  = 1− cos  [or  − 1 = − cos ] ⇒

2 + ( − 1)2 = (sin )2 + (− cos )2 ⇒ 2 + ( − 1)2 = 1.

As  varies from 0 to 2, the circle with center (0 1) and radius 1 is traced out.

9.  =
√
,  = 1− 

(a)
 0 1 2 3 4

 0 1 1414 1732 2

 1 0 −1 −2 −3

(b)  =
√
 ⇒  = 2 ⇒  = 1−  = 1− 2. Since  ≥ 0,  ≥ 0.

So the curve is the right half of the parabola  = 1− 2.
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 865

10.  = 2,  = 3

(a)
 −2 −1 0 1 2

 4 1 0 1 4

 −8 −1 0 1 8

(b)  = 3 ⇒  = 3

 ⇒  = 2 =


3


2

= 23.  ∈ R,  ∈ R,  ≥ 0.

11. (a)  = sin 1
2
,  = cos 1

2
, − ≤  ≤ .

2 + 2 = sin2 1
2
 + cos2 1

2
 = 1. For − ≤  ≤ 0, we have

−1 ≤  ≤ 0 and 0 ≤  ≤ 1. For 0   ≤ , we have 0   ≤ 1

and 1   ≥ 0. The graph is a semicircle.

(b)

12. (a)  = 1
2

cos ,  = 2 sin , 0 ≤  ≤ .

(2)2 +


1
2

2

= cos2  + sin2  = 1 ⇒ 42 + 1
4
2 = 1 ⇒

2

(12)2
+

2

22
= 1, which is an equation of an ellipse with

-intercepts ± 1
2
and -intercepts ±2. For 0 ≤  ≤ 2, we have

1
2
≥  ≥ 0 and 0 ≤  ≤ 2. For 2   ≤ , we have 0   ≥ − 1

2

and 2   ≥ 0. So the graph is the top half of the ellipse.

(b)

13. (a)  = sin   = csc , 0    
2
.  = csc  =

1

sin 
=

1


.

For 0    
2
, we have 0    1 and   1. Thus, the curve is

the portion of the hyperbola  = 1 with   1.

(b)

14. (a)  = −2 = ()−2 = −2 = 12 for   0 since  = . (b)
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15. (a)  = ln  ⇒  =  , so  = 2 = ()2 = 2 . (b)

16. (a)  =
√
 + 1 ⇒ 2 = + 1 ⇒  = 2 − 1.

 =
√
− 1 =


(2 − 1)− 1 =

√
2 − 2. The curve is the part of

the hyperbola 2 − 2 = 2 with  ≥ √2 and  ≥ 0.

(b)

17. (a)  = sinh ,  = cosh  ⇒ 2 − 2 = cosh2 − sinh2  = 1.

Since  = cosh  ≥ 1, we have the upper branch of the hyperbola

2 − 2 = 1.

(b)

18. (a)  = tan2 ,  = sec , −2    2.

1 + tan2  = sec2  ⇒ 1 +  = 2 ⇒  = 2 − 1. For

−2   ≤ 0, we have  ≥ 0 and  ≥ 1. For 0    2, we have

0   and 1  . Thus, the curve is the portion of the parabola  = 2 − 1

in the first quadrant. As  increases from −2 to 0, the point ( )

approaches (0 1) along the parabola. As  increases from 0 to 2, the

point ( ) retreats from (0 1) along the parabola.

(b)

19.  = 5 + 2 cos,  = 3 + 2 sin ⇒ cos =
− 5

2
, sin =

 − 3

2
. cos2() + sin2() = 1 ⇒


− 5

2

2

+


 − 3

2

2

= 1. The motion of the particle takes place on a circle centered at (5 3) with a radius 2. As  goes

from 1 to 2, the particle starts at the point (3 3) and moves counterclockwise along the circle


− 5

2

2

+


 − 3

2

2

= 1 to

(7 3) [one-half of a circle].

20.  = 2 + sin ,  = 1 + 3 cos  ⇒ sin  = − 2, cos  =
 − 1

3
. sin2  + cos2  = 1 ⇒ (− 2)2 +


 − 1

3

2

= 1.

The motion of the particle takes place on an ellipse centered at (2 1). As  goes from 2 to 2, the particle starts at the point

(3 1) and moves counterclockwise three-fourths of the way around the ellipse to (2 4).
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 867

21.  = 5 sin ,  = 2cos  ⇒ sin  =


5
, cos  =



2
. sin2  + cos2  = 1 ⇒


5

2

+


2

2

= 1. The motion of the

particle takes place on an ellipse centered at (0 0). As  goes from− to 5, the particle starts at the point (0−2) and moves

clockwise around the ellipse 3 times.

22.  = cos2  = 1− sin2  = 1− 2. The motion of the particle takes place on the parabola  = 1− 2. As  goes from −2 to

−, the particle starts at the point (0 1), moves to (1 0), and goes back to (0 1). As  goes from − to 0, the particle moves

to (−1 0) and goes back to (0 1). The particle repeats this motion as  goes from 0 to 2.

23. We must have 1 ≤  ≤ 4 and 2 ≤  ≤ 3. So the graph of the curve must be contained in the rectangle [1 4] by [2 3].

24. (a) From the first graph, we have 1 ≤  ≤ 2. From the second graph, we have −1 ≤  ≤ 1 The only choice that satisfies

either of those conditions is III.

(b) From the first graph, the values of  cycle through the values from−2 to 2 four times. From the second graph, the values

of  cycle through the values from−2 to 2 six times. Choice I satisfies these conditions.

(c) From the first graph, the values of  cycle through the values from −2 to 2 three times. From the second graph, we have

0 ≤  ≤ 2. Choice IV satisfies these conditions.

(d) From the first graph, the values of  cycle through the values from−2 to 2 two times. From the second graph, the values of

 do the same thing. Choice II satisfies these conditions.

25. When  = −1, ( ) = (1 1). As  increases to 0,  and  both decrease to 0.

As  increases from 0 to 1,  increases from 0 to 1 and  decreases from 0 to

−1. As  increases beyond 1,  continues to increase and  continues to

decrease. For   −1,  and  are both positive and decreasing. We could

achieve greater accuracy by estimating - and -values for selected values of 

from the given graphs and plotting the corresponding points.

26. When  = −1, ( ) = (0 0). As  increases to 0,  increases from 0 to 1,

while  first decreases to −1 and then increases to 0. As  increases from 0 to 1,

 decreases from 1 to 0, while  first increases to 1 and then decreases to 0. We

could achieve greater accuracy by estimating - and -values for selected values

of  from the given graphs and plotting the corresponding points.

y

0
x1

_1

1

t=_1, 1 
(0, 0)

t=0 
(1, 0)

27. When  = −1, ( ) = (0 1). As  increases to 0,  increases from 0 to 1 and

 decreases from 1 to 0. As  increases from 0 to 1, the curve is retraced in the

opposite direction with  decreasing from 1 to 0 and  increasing from 0 to 1.

We could achieve greater accuracy by estimating - and -values for selected

values of  from the given graphs and plotting the corresponding points.
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868 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

28. (a)  = 4 −  + 1 = (4 + 1)−   0 [think of the graphs of  = 4 + 1 and  = ] and  = 2 ≥ 0, so these equations

are matched with graph V.

(b)  =
√
 ≥ 0.  = 2 − 2 = (− 2) is negative for 0    2, so these equations are matched with graph I.

(c)  = sin 2 has period 22 = . Note that

( + 2) = sin[ + 2 + sin 2( + 2)] = sin( + 2 + sin 2) = sin( + sin 2) = (), so  has period 2.

These equations match graph II since  cycles through the values −1 to 1 twice as  cycles through those values once.

(d)  = cos 5 has period 25 and  = sin 2 has period , so  will take on the values −1 to 1, and then 1 to −1, before 

takes on the values−1 to 1. Note that when  = 0, ( ) = (1 0). These equations are matched with graph VI

(e)  =  + sin 4,  = 2 + cos 3. As  becomes large,  and 2 become the dominant terms in the expressions for  and

, so the graph will look like the graph of  = 2, but with oscillations. These equations are matched with graph IV.

(f )  =
sin 2

4 + 2
,  =

cos 2

4 + 2
. As →∞,  and  both approach 0. These equations are matched with graph III.

29. Use  =  and  = − 2 sin with a -interval of [− ].

30. Use 1 = , 1 = 3 − 4 and 2 = 3 − 4, 2 =  with a -interval of

[−3 3]. There are 9 points of intersection; (0 0) is fairly obvious. The point

in quadrant I is approximately (22 22), and by symmetry, the point in

quadrant III is approximately (−22−22). The other six points are

approximately (∓19±05), (∓17±17), and (∓05±19).

31. (a)  = 1 + (2 − 1),  = 1 + (2 − 1), 0 ≤  ≤ 1. Clearly the curve passes through 1(1 1) when  = 0 and

through 2(2 2) when  = 1. For 0    1,  is strictly between 1 and 2 and  is strictly between 1 and 2. For

every value of ,  and  satisfy the relation  − 1 =
2 − 1

2 − 1

(− 1), which is the equation of the line through

1(1 1) and 2(2 2).

Finally, any point ( ) on that line satisfies
 − 1

2 − 1

=
− 1

2 − 1

; if we call that common value , then the given

parametric equations yield the point ( ); and any ( ) on the line between 1(1 1) and 2(2 2) yields a value of

 in [0 1]. So the given parametric equations exactly specify the line segment from 1(1 1) to 2(2 2).

(b)  = −2 + [3− (−2)] = −2 + 5 and  = 7 + (−1− 7) = 7− 8 for 0 ≤  ≤ 1.
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 869

32. For the side of the triangle from  to , use (1 1) = (1 1) and (2 2) = (4 2).

Hence, the equations are

= 1 + (2 − 1)  = 1 + (4− 1)  = 1 + 3,

 = 1 + (2 − 1)  = 1 + (2− 1)  = 1 + .

Graphing  = 1 + 3 and  = 1 +  with 0 ≤  ≤ 1 gives us the side of the

triangle from  to . Similarly, for the side  we use  = 4− 3 and  = 2 + 3, and for the side  we use  = 1

and  = 1 + 4.

33. The circle 2 + ( − 1)2 = 4 has center (0 1) and radius 2, so by Example 4 it can be represented by  = 2cos ,

 = 1 + 2 sin , 0 ≤  ≤ 2. This representation gives us the circle with a counterclockwise orientation starting at (2 1).

(a) To get a clockwise orientation, we could change the equations to  = 2cos ,  = 1− 2 sin , 0 ≤  ≤ 2.

(b) To get three times around in the counterclockwise direction, we use the original equations  = 2 cos ,  = 1 + 2 sin  with

the domain expanded to 0 ≤  ≤ 6.

(c) To start at (0 3) using the original equations, we must have 1 = 0; that is, 2 cos  = 0. Hence,  = 
2
. So we use

 = 2cos ,  = 1 + 2 sin , 
2
≤  ≤ 3

2
.

Alternatively, if we want  to start at 0, we could change the equations of the curve. For example, we could use

 = −2 sin ,  = 1 + 2 cos , 0 ≤  ≤ .

34. (a) Let 22 = sin2  and 22 = cos2  to obtain  =  sin  and

 =  cos  with 0 ≤  ≤ 2 as possible parametric equations for the ellipse

22 + 22 = 1.

(b) The equations are  = 3 sin  and  =  cos  for  ∈ {1 2 4 8}.

(c) As  increases, the ellipse stretches vertically.

35. Big circle: It’s centered at (2 2) with a radius of 2, so by Example 4, parametric equations are

 = 2 + 2 cos   = 2 + 2 sin  0 ≤  ≤ 2

Small circles: They are centered at (1 3) and (3 3) with a radius of 01. By Example 4, parametric equations are

(left)  = 1 + 01 cos   = 3 + 01 sin  0 ≤  ≤ 2

and (right)  = 3 + 01 cos   = 3 + 01 sin  0 ≤  ≤ 2

Semicircle: It’s the lower half of a circle centered at (2 2) with radius 1. By Example 4, parametric equations are

 = 2 + 1 cos   = 2 + 1 sin   ≤  ≤ 2

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last -interval to[0 2] in

order to match the others. We can do this by changing  to 05. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “−” in the -assignment, giving us

 = 2 + 1 cos(05)  = 2− 1 sin(05) 0 ≤  ≤ 2
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36. If you are using a calculator or computer that can overlay graphs (using multiple -intervals), the following is appropriate.

Left side:  = 1 and  goes from 15 to 4, so use

 = 1  =  15 ≤  ≤ 4

Right side:  = 10 and  goes from 15 to 4, so use

 = 10  =  15 ≤  ≤ 4

Bottom:  goes from 1 to 10 and  = 15, so use

 =   = 15 1 ≤  ≤ 10

Handle: It starts at (10 4) and ends at (13 7), so use

 = 10 +   = 4 +  0 ≤  ≤ 3

Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30◦ above the horizontal, so use

 = 3 + 1 cos   = 1 + 1 sin  5
6
≤  ≤ 13

6

Right wheel: Similar to the left wheel with center (8 1), so use

 = 8 + 1 cos   = 1 + 1 sin  5
6
≤  ≤ 13

6

If you are using a calculator or computer that cannot overlay graphs (using one -interval), the following is appropriate.

We’ll start by picking the -interval [0 25] since it easily matches the -values for the two sides. We now need to find

parametric equations for all graphs with 0 ≤  ≤ 25.

Left side:  = 1 and  goes from 15 to 4, so use

 = 1  = 15 +  0 ≤  ≤ 25

Right side:  = 10 and  goes from 15 to 4, so use

 = 10  = 15 +  0 ≤  ≤ 25

Bottom:  goes from 1 to 10 and  = 15, so use

 = 1 + 36  = 15 0 ≤  ≤ 25

To get the x-assignment, think of creating a linear function such that when  = 0,  = 1 and when  = 25,

 = 10. We can use the point-slope form of a line with (1 1) = (0 1) and (2 2) = (25 10).

− 1 =
10− 1

25− 0
(− 0) ⇒  = 1 + 36.

Handle: It starts at (10 4) and ends at (13 7), so use

 = 10 + 12  = 4 + 12 0 ≤  ≤ 25

(1 1) = (0 10) and (2 2) = (25 13) gives us − 10 =
13− 10

25− 0
(− 0) ⇒  = 10 + 12.

(1 1) = (0 4) and (2 2) = (25 7) gives us  − 4 =
7− 4

25− 0
(− 0) ⇒  = 4 + 12.
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Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30◦ above the horizontal, so use

 = 3 + 1 cos


8
15
+ 5

6


  = 1 + 1 sin


8
15
 + 5

6


 0 ≤  ≤ 25

(1 1) =

0 5

6


and (2 2) =


5
2
 13

6


gives us  − 5

6
=

13
6
− 5

6
5
2
− 0

(− 0) ⇒  = 5
6

+ 8
15
.

Right wheel: Similar to the left wheel with center (8 1), so use

 = 8 + 1 cos


8
15
+ 5

6


  = 1 + 1 sin


8
15
 + 5

6


 0 ≤  ≤ 25

37. (a)  = 3 ⇒  = 13, so  = 2 = 23.

We get the entire curve  = 23 traversed in a left to

right direction.

(b)  = 6 ⇒  = 16, so  = 4 = 46 = 23.

Since  = 6 ≥ 0, we only get the right half of the

curve  = 23.

(c)  = −3 = (−)3 [so − = 13],

 = −2 = (−)2 = (13)2 = 23.

If   0, then  and  are both larger than 1. If   0, then  and 

are between 0 and 1. Since   0 and   0, the curve never quite

reaches the origin.

38. (a)  = , so  = −2 = −2. We get the entire curve  = 12 traversed in a

left-to-right direction.

(b)  = cos ,  = sec2  =
1

cos2 
=

1

2
. Since sec  ≥ 1, we only get the

parts of the curve  = 12 with  ≥ 1. We get the first quadrant portion of

the curve when   0, that is, cos   0, and we get the second quadrant

portion of the curve when   0, that is, cos   0.

(c)  = ,  = −2 = ()−2 = −2. Since  and −2 are both positive, we

only get the first quadrant portion of the curve  = 12.
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39. The case 
2
    is illustrated.  has coordinates ( ) as in Example 7,

and has coordinates (  +  cos( − )) = ( (1− cos ))

[since cos( − ) = cos cos+ sin sin = − cos], so  has

coordinates ( −  sin( − ) (1− cos )) = (( − sin ) (1− cos ))

[since sin( − ) = sin cos− cos sin = sin]. Again we have the

parametric equations  = ( − sin ),  = (1− cos ).

40. The first two diagrams depict the case     3
2
,   . As in Example 7,  has coordinates ( ). Now (in the second

diagram) has coordinates (  +  cos( − )) = (  −  cos ), so a typical point  of the trochoid has coordinates

( +  sin( − )  −  cos ). That is,  has coordinates ( ), where  =  −  sin  and  =  −  cos . When

 = , these equations agree with those of the cycloid.

41. It is apparent that  = || and  = | | = | |. From the diagram,

 = || =  cos  and  = | | =  sin . Thus, the parametric equations are

 =  cos  and  =  sin . To eliminate  we rearrange: sin  =  ⇒

sin2  = ()
2 and cos  =  ⇒ cos2  = ()

2. Adding the two

equations: sin2  + cos2  = 1 = 22 + 22. Thus, we have an ellipse.

42.  has coordinates ( cos   sin ). Since  is perpendicular to ,∆ is a right triangle and  has coordinates

( sec  0). It follows that  has coordinates ( sec   sin ). Thus, the parametric equations are  =  sec ,  =  sin .

43.  = (2 cot  2), so the -coordinate of  is  = 2 cot . Let  = (0 2).

Then ∠ is a right angle and ∠ = , so || = 2 sin  and

 = ((2 sin ) cos  (2 sin ) sin ). Thus, the -coordinate of 

is  = 2 sin2 .

44. (a) Let  be the angle of inclination of segment  . Then || = 2

cos 
.

Let  = (2 0). Then by use of right triangle  we see that || = 2 cos .

Now

| |= || = ||− ||

= 2


1

cos 
− cos 


= 2

1− cos2 

cos 
= 2

sin2 

cos 
= 2 sin  tan 

So  has coordinates  = 2 sin  tan  · cos  = 2 sin2  and  = 2 sin  tan  · sin  = 2 sin2  tan .

(b)
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45. (a) There are 2 points of intersection:

(−3 0) and approximately (−21 14).

(b) A collision point occurs when 1 = 2 and 1 = 2 for the same . So solve the equations:

3 sin  = −3 + cos  (1)

2 cos  = 1 + sin  (2)

From (2), sin  = 2cos − 1. Substituting into (1), we get 3(2 cos − 1) = −3 + cos  ⇒ 5 cos  = 0 () ⇒

cos  = 0 ⇒  = 
2
or 3

2
. We check that  = 3

2
satisfies (1) and (2) but  = 

2
does not. So the only collision point

occurs when  = 3
2
, and this gives the point (−3 0). [We could check our work by graphing 1 and 2 together as

functions of  and, on another plot, 1 and 2 as functions of . If we do so, we see that the only value of  for which both

pairs of graphs intersect is  = 3
2
.]

(c) The circle is centered at (3 1) instead of (−3 1). There are still 2 intersection points: (3 0) and (21 14), but there are

no collision points, since () in part (b) becomes 5 cos  = 6 ⇒ cos  = 6
5
 1.

46. (a) If  = 30◦ and 0 = 500 ms, then the equations become  = (500 cos 30◦) = 250
√

3 and

 = (500 sin 30◦)− 1
2
(98)2 = 250− 492.  = 0 when  = 0 (when the gun is fired) and again when

 = 250
49
≈ 51 s. Then  =


250

√
3


250
49

 ≈ 22,092 m, so the bullet hits the ground about 22 km from the gun.

The formula for  is quadratic in . To find the maximum -value, we will complete the square:

 = −49

2 − 250

49



= −49

2 − 250

49
+


125
49

2
+ 1252

49
= −49


− 125

49

2
+ 1252

49
≤ 1252

49

with equality when  = 125
49

s, so the maximum height attained is 1252

49
≈ 3189 m.

(b) As  (0◦    90◦) increases up to 45◦, the projectile attains a

greater height and a greater range. As  increases past 45◦, the

projectile attains a greater height, but its range decreases.

(c)  = (0 cos) ⇒  =


0 cos
.

 = (0 sin)− 1
2
2 ⇒  = (0 sin)



0 cos
− 

2




0 cos

2

= (tan)−




22
0 cos2 


2,

which is the equation of a parabola (quadratic in ).
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47.  = 2  = 3 − . We use a graphing device to produce the graphs for various values of  with − ≤  ≤ . Note that all

the members of the family are symmetric about the -axis. For   0, the graph does not cross itself, but for  = 0 it has a

cusp at (0 0) and for   0 the graph crosses itself at  = , so the loop grows larger as  increases.

48.  = 2− 43  = −2 + 34. We use a graphing device to produce the graphs for various values of  with − ≤  ≤ .

Note that all the members of the family are symmetric about the -axis. When   0, the graph resembles that of a polynomial

of even degree, but when  = 0 there is a corner at the origin, and when   0, the graph crosses itself at the origin, and has

two cusps below the -axis. The size of the “swallowtail” increases as  increases.

49.  =  +  cos   = +  sin    0. From the first figure, we see that

curves roughly follow the line  = , and they start having loops when 

is between 14 and 16. The loops increase in size as  increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,

that is, we seek the values of  for which there exist parameter values  and  such that    and

(+  cos   +  sin ) = (+  cos +  sin).

In the diagram at the left,  denotes the point ( ),  the point ( ),

and  the point (+  cos  +  sin ) = (+  cos +  sin).

Since  =  = , the triangle  is isosceles. Therefore its base

angles,  = ∠ and  = ∠ are equal. Since  = − 
4
and

 = 2 − 3
4
−  = 5

4
− , the relation  =  implies that

+  = 3
2
(1).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 875

Since  = distance(( ) ( )) =


2(− )2 =
√

2 (− ), we see that

cos =
1
2



=

(− )
√

2


, so −  =

√
2  cos, that is,

−  =
√

2  cos

− 

4


(2). Now cos


− 

4


= sin



2
− − 

4


= sin


3
4
− 

,

so we can rewrite (2) as −  =
√

2  sin


3
4
− 

(20). Subtracting (20) from (1) and

dividing by 2, we obtain  = 3
4
−
√

2
2
 sin


3
4
− 

, or 3

4
−  = √

2
sin


3
4
− 

(3).

Since   0 and   , it follows from (20) that sin


3
4
− 

 0. Thus from (3) we see that   3

4
. [We have

implicitly assumed that 0     by the way we drew our diagram, but we lost no generality by doing so since replacing 

by  + 2 merely increases  and  by 2. The curve’s basic shape repeats every time we change  by 2.] Solving for  in

(3), we get  =

√
2


3
4
− 


sin


3
4
− 
 . Write  = 3

4
− . Then  =

√
2 

sin 
, where   0. Now sin    for   0, so  

√
2.


As  → 0+, that is, as → 

3
4

−
, →√

2

.

50. Consider the curves  = sin  + sin,  = cos  + cos, where  is a positive integer. For  = 1, we get a circle of

radius 2 centered at the origin. For   1, we get a curve lying on or inside that circle that traces out − 1 loops as 

ranges from 0 to 2.

Note: 2 + 2 = (sin + sin)2 + (cos  + cos)2

= sin2  + 2 sin  sin+ sin2 + cos2  + 2cos  cos+ cos2 

= (sin2  + cos2 ) + (sin2  + cos2 ) + 2(cos  cos+ sin  sin)

= 1 + 1 + 2 cos(− ) = 2 + 2 cos((1− )) ≤ 4 = 22,

with equality for  = 1. This shows that each curve lies on or inside the curve for  = 1, which is a circle of radius 2 centered

at the origin.

 = 1  = 2  = 3  = 5

51. Note that all the Lissajous figures are symmetric about the -axis. The parameters  and  simply stretch the graph in the

- and -directions respectively. For  =  =  = 1 the graph is simply a circle with radius 1. For  = 2 the graph crosses
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itself at the origin and there are loops above and below the -axis. In general, the figures have − 1 points of intersection,

all of which are on the -axis, and a total of  closed loops.

 =  = 1  = 2  = 3

52.  = cos ,  = sin − sin . If  = 1, then  = 0, and the curve is simply the line segment from (−1 0) to (1 0). The

graphs are shown for  = 2 3 4 and 5.

It is easy to see that all the curves lie in the rectangle [−1 1] by [−2 2]. When  is an integer, ( + 2) = () and

(+ 2) = (), so the curve is closed. When  is a positive integer greater than 1, the curve intersects the x-axis + 1 times

and has  loops (one of which degenerates to a tangency at the origin when  is an odd integer of the form 4 + 1).

As  increases, the curve’s loops become thinner, but stay in the region bounded by the semicircles  = ±1 +
√

1− 2


and the line segments from (−1−1) to (−1 1) and from (1−1) to (1 1). This is true because

|| = |sin − sin | ≤ |sin |+ |sin | ≤ √1− 2 + 1. This curve appears to fill the entire region when  is very large, as

shown in the figure for  = 1000.
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When  is a fraction, we get a variety of shapes with multiple loops, but always within the same region. For some fractional

values, such as  = 2359, the curve again appears to fill the region.

LABORATORY PROJECT Running Circles Around Circles

1. The center of the smaller circle has coordinates ((− )cos  (− )sin ).

Arc  on circle  has length  since it is equal in length to arc 

(the smaller circle rolls without slipping against the larger.)

Thus, ∠ =



 and ∠ =




 − , so  has coordinates

= (− )cos  +  cos(∠ ) = (− )cos  +  cos


− 






and  = (− )sin  −  sin(∠ ) = (− )sin  −  sin


− 





.

2. With  = 1 and  a positive integer greater than 2, we obtain a hypocycloid of 

cusps. Shown in the figure is the graph for  = 4. Let  = 4 and  = 1. Using the

sum identities to expand cos 3 and sin 3, we obtain

= 3 cos  + cos 3 = 3cos  +

4 cos3  − 3 cos 


= 4 cos3 

and  = 3 sin  − sin 3 = 3 sin  − 3 sin  − 4 sin3 


= 4 sin3 .

3. The graphs at the right are obtained with  = 1 and

 = 1
2
, 1

3
, 1

4
, and 1

10
with −2 ≤  ≤ 2. We

conclude that as the denominator  increases, the graph

gets smaller, but maintains the basic shape shown.

[continued]
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Letting  = 2 and  = 3, 5, and 7 with −2 ≤  ≤ 2 gives us the following:

So if  is held constant and  varies, we get a graph with  cusps (assuming  is in lowest form). When  = + 1, we

obtain a hypocycloid of  cusps. As  increases, we must expand the range of  in order to get a closed curve. The following

graphs have  = 3
2
, 5

4
, and 11

10
.

4. If  = 1, the equations for the hypocycloid are

 = (− 1) cos  + cos ((− 1) )  = (− 1) sin  − sin ((− 1) )

which is a hypocycloid of  cusps (from Problem 2). In general, if   1, we get a figure with cusps on the “outside ring” and

if   1, the cusps are on the “inside ring”. In any case, as the values of  get larger, we get a figure that looks more and more

like a washer. If we were to graph the hypocycloid for all values of , every point on the washer would eventually be arbitrarily

close to a point on the curve.

 =
√

2, −10 ≤  ≤ 10  = − 2, 0 ≤  ≤ 446

5. The center of the smaller circle has coordinates ((+ ) cos  (+ ) sin ).

Arc  has length  (as in Problem 1), so that ∠ =



, ∠ =  − 


,

and ∠ =  − 


−  =  −


+ 




 since ∠ = .

Thus, the coordinates of  are

= (+ ) cos  +  cos


 − + 





= (+ ) cos  −  cos


+ 





and  = (+ ) sin  −  sin


 − + 





= (+ ) sin  −  sin


+ 





.
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6. Let  = 1 and the equations become

 = (+ 1) cos  − cos((+ 1))  = (+ 1) sin  − sin((+ 1))

If  = 1, we have a cardioid. If  is a positive

integer greater than 1, we get the graph of an

“-leafed clover”, with cusps that are  units

from the origin. (Some of the pairs of figures are

not to scale.)

 = 3, −2 ≤  ≤ 2  = 10, −2 ≤  ≤ 2

If  =  with  = 1, we obtain a figure that

does not increase in size and requires

− ≤  ≤  to be a closed curve traced

exactly once.

 = 1
4
, −4 ≤  ≤ 4  = 1

7
, −7 ≤  ≤ 7

Next, we keep  constant and let  vary. As 

increases, so does the size of the figure. There is

an -pointed star in the middle.

 = 2
5
, −5 ≤  ≤ 5  = 7

5
, −5 ≤  ≤ 5

Now if  = + 1 we obtain figures similar to the

previous ones, but the size of the figure does not

increase.

 = 4
3
, −3 ≤  ≤ 3  = 7

6
, −6 ≤  ≤ 6

If  is irrational, we get washers that increase in

size as  increases.

 =
√

2, 0 ≤  ≤ 200  = − 2, 0 ≤  ≤ 446
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10.2 Calculus with Parametric Curves

1.  =


1 + 
,  =

√
1 +  ⇒ 


=

1

2
(1 + )−12 =

1

2
√

1 + 
,



=

(1 + )(1)− (1)

(1 + )2
=

1

(1 + )2
, and




=




=

1(2
√

1 +  )

1(1 + )2
=

(1 + )2

2
√

1 + 
=

1

2
(1 + )32.

2.  = ,  =  + sin  ⇒ 


= 1 + cos ,




=  +  = (+ 1), and




=




=

1 + cos 

( + 1)
.

3.  = 3 + 1,  = 4 + ;  = −1.



= 43 + 1,




= 32, and




=




=

43 + 1

32
. When  = −1, ( ) = (0 0)

and  = −33 = −1, so an equation of the tangent to the curve at the point corresponding to  = −1 is

 − 0 = −1(− 0), or  = −.

4.  =
√
,  = 2 − 2;  = 4.




= 2− 2,




=

1

2
√

, and




=




= (2− 2)2

√
 = 4(− 1)

√
. When  = 4,

( ) = (2 8) and  = 4(3)(2) = 24, so an equation of the tangent to the curve at the point corresponding to  = 4 is

 − 8 = 24(− 2), or  = 24− 40.

5.  =  cos ,  =  sin ;  = .



=  cos  + sin ,




= (− sin ) + cos , and




=




=

 cos  + sin 

− sin  + cos 
.

When  = , ( ) = (− 0) and  = −(−1) = , so an equation of the tangent to the curve at the point

corresponding to  =  is  − 0 = [− (−)], or  = + 2.

6.  =  sin,  = 2;  = 0.



= 22,




= ( cos) + (sin) = ( cos + sin), and




=




=

22

( cos + sin)
=

2

 cos + sin
. When  = 0, ( ) = (0 1) and  = 2, so an equation

of the tangent to the curve at the point corresponding to  = 0 is  − 1 = 2

(− 0), or  = 2


 + 1.

7. (a)  = 1 + ln ,  = 2 + 2; (1 3).



= 2




=

1


 and




=




=

2

1
= 22. At (1 3),

 = 1 + ln  = 1 ⇒ ln  = 0 ⇒  = 1 and



= 2, so an equation of the tangent is  − 3 = 2(− 1),

or  = 2+ 1.

(b)  = 1 + ln  ⇒ ln  = − 1 ⇒  = −1, so  = 2 + 2 = (−1)2 + 2 = 2−2 + 2, and 0 = 2−2 · 2.

At (1 3), 0 = 2(1)−2 · 2 = 2, so an equation of the tangent is  − 3 = 2(− 1), or  = 2+ 1.

8. (a)  = 1 +
√
,  = 

2

; (2 ).



= 

2 · 2, 


=
1

2
√

, and




=




=

2
2

1

2
√

 = 432

2

. At (2 ),

 = 1 +
√
 = 2 ⇒ √

 = 1 ⇒  = 1 and



= 4, so an equation of the tangent is  −  = 4(− 2),

or  = 4− 7.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 881

(b)  = 1 +
√
 ⇒ √

 = − 1 ⇒  = (− 1)2, so  = 
2

= (−1)4 , and 0 = (−1)4 · 4(− 1)3.

At (2 ), 0 =  · 4 = 4, so an equation of the tangent is  −  = 4(− 2), or  = 4− 7.

9.  = 2 − ,  = 2 +  + 1; (0 3).



=




=

2 + 1

2− 1
. To find the

value of  corresponding to the point (0 3), solve  = 0 ⇒
2 −  = 0 ⇒ (− 1) = 0 ⇒  = 0 or  = 1. Only  = 1 gives

 = 3. With  = 1,  = 3, and an equation of the tangent is

 − 3 = 3(− 0), or  = 3 + 3.

10.  = sin,  = 2 + ; (0 2).



=




=

2 + 1

 cos
. To find the

value of  corresponding to the point (0 2), solve  = 2 ⇒
2 + − 2 = 0 ⇒ ( + 2)(− 1) = 0 ⇒  = −2 or  = 1.

Either value gives  = −3, so an equation of the tangent is

 − 2 = − 3

(− 0), or  = − 3


 + 2.

11.  = 2 + 1,  = 2 +  ⇒ 


=




=

2 + 1

2
= 1 +

1

2
⇒ 2

2
=













=
−1(22)

2
= − 1

43
.

The curve is CU when
2

2
 0, that is, when   0.

12.  = 3 + 1,  = 2 −  ⇒ 


=




=

2− 1

32
=

2

3
− 1

32
⇒

2

2
=













=
− 2

32
+

2

33

32
=

2− 2

33

32
=

2(1− )

95
. The curve is CU when

2

2
 0, that is, when 0    1.

13.  = ,  = − ⇒ 


=




=
−− + −


=

−(1− )


= −2(1 − ) ⇒

2

2
=













=
−2(−1) + (1− )(−2−2)


=

−2(−1− 2 + 2)


= −3(2− 3). The curve is CU when

2

2
 0, that is, when   3

2
.

14.  = 2 + 1,  =  − 1 ⇒ 


=




=



2
⇒ 2

2
=













=

2 −  · 2
(2)2

2
=

2(− 1)

(2)3
=

(− 1)

43
.

The curve is CU when
2

2
 0, that is, when   0 or   1.
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15.  = − ln ,  =  + ln  [note that   0] ⇒ 


=




=

1 + 1

1− 1
=

 + 1

− 1
⇒

2

2
=













=

(− 1)(1)− ( + 1)(1)

(− 1)2

(− 1)
=

−2

(− 1)3
. The curve is CU when

2

2
 0, that is, when 0    1.

16.  = cos ,  = sin 2, 0     ⇒ 


=




=

2cos 2

− sin 
⇒

2

2
=













=

(− sin )(−4 sin 2)− (2 cos 2)(− cos )

(− sin )2

− sin 
=

(sin )(8 sin  cos ) + [2(1− 2 sin2 )](cos )

(− sin ) sin2 

=
(cos )(8 sin2  + 2− 4 sin2 )

(− sin ) sin2 
= −cos 

sin 
· 4 sin2  + 2

sin2 
[ (− cot ) · positive expression]

The curve is CU when
2

2
 0, that is, when − cot   0 ⇔ cot   0 ⇔ 

2
   .

17.  = 3 − 3,  = 2 − 3.



= 2, so




= 0 ⇔  = 0 ⇔

( ) = (0−3).



= 32 − 3 = 3(+ 1)(− 1), so




= 0 ⇔

 = −1 or 1 ⇔ ( ) = (2−2) or (−2−2). The curve has a horizontal

tangent at (0−3) and vertical tangents at (2−2) and (−2−2).

18.  = 3 − 3,  = 3 − 32.



= 32 − 6 = 3(− 2), so




= 0 ⇔

 = 0 or 2 ⇔ ( ) = (0 0) or (2−4).



= 32 − 3 = 3(+ 1)(− 1),

so



= 0 ⇔  = −1 or 1 ⇔ ( ) = (2−4) or (−2−2). The curve

has horizontal tangents at (0 0) and (2−4), and vertical tangents at (2−4)

and (−2−2).

19.  = cos ,  = cos 3. The whole curve is traced out for 0 ≤  ≤ .




= −3 sin 3, so




= 0 ⇔ sin 3 = 0 ⇔ 3 = 0, , 2, or 3 ⇔

 = 0, 
3
, 2

3
, or  ⇔ ( ) = (1 1),


1
2
−1


,
− 1

2
 1

, or (−1−1).




= − sin , so




= 0 ⇔ sin  = 0 ⇔  = 0 or  ⇔

( ) = (1 1) or (−1−1). Both



and




equal 0 when  = 0 and .

 

To find the slope when  = 0, we find lim
→0




= lim

→0

−3 sin 3

− sin 

H
= lim

→0

−9 cos 3

− cos 
= 9, which is the same slope when  = .

Thus, the curve has horizontal tangents at


1
2
−1


and

− 1
2
 1

, and there are no vertical tangents.
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20.  = sin ,  = cos . The whole curve is traced out for 0 ≤   2.




= − sin  cos , so




=  ⇔ sin  = 0 ⇔  = 0 or  ⇔

( ) = (1 ) or (1 1).



= cos  sin , so




= 0 ⇔ cos  = 0 ⇔

 = 
2
or 3

2
⇔ ( ) = ( 1) or (1 1). The curve has horizontal tangents

at (1 ) and (1 1), and vertical tangents at ( 1) and (1 1).

21. From the graph, it appears that the rightmost point on the curve  = − 6,  = 

is about (06 2). To find the exact coordinates, we find the value of  for which the

graph has a vertical tangent, that is, 0 =  = 1− 65 ⇔  = 1
5
√

6.

Hence, the rightmost point is
1

5
√

6− 1

6

5
√

6

 1

5√
6


=

5 · 6−65 6

−15 ≈ (058 201).

22. From the graph, it appears that the lowest point and the leftmost point on the curve

 = 4 − 2,  =  + 4 are (15−05) and (−12 12), respectively. To find the

exact coordinates, we solve  = 0 (horizontal tangents) and  = 0

(vertical tangents).




= 0 ⇔ 1 + 43 = 0 ⇔  = − 1

3
√

4
, so the lowest point is

1
3
√

256
+

2
3
√

4
− 1

3
√

4
+

1
3
√

256


=


9

3
√

256
− 3

3
√

256


≈ (142−047).




= 0 ⇔ 43 − 2 = 0 ⇔  =

1
3
√

2
, so the leftmost point is

1
3
√

16
− 2

3
√

2


1
3
√

2
+

1
3
√

16


=


− 3

3
√

16


3
3
√

16


≈ (−119 119).

23. We graph the curve  = 4 − 23 − 22,  = 3 −  in the viewing rectangle [−2 11] by [−05 05]. This rectangle

corresponds approximately to  ∈ [−1 08].

We estimate that the curve has horizontal tangents at about (−1−04) and (−017 039) and vertical tangents at

about (0 0) and (−019 037). We calculate



=




=

32 − 1

43 − 62 − 4
. The horizontal tangents occur when

 = 32 − 1 = 0 ⇔  = ± 1√
3
, so both horizontal tangents are shown in our graph. The vertical tangents occur when
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 = 2(22− 3− 2) = 0 ⇔ 2(2+ 1)(− 2) = 0 ⇔  = 0,− 1
2
or 2. It seems that we have missed one vertical

tangent, and indeed if we plot the curve on the -interval [−12 22] we see that there is another vertical tangent at (−8 6).

24. We graph the curve  = 4 + 43 − 82,  = 22 −  in the viewing rectangle [−37 02] by [−02 14]. It appears that there

is a horizontal tangent at about (−04−01), and vertical tangents at about (−3 1) and (0 0).

We calculate



=




=

4− 1

43 + 122 − 16
, so there is a horizontal tangent where  = 4− 1 = 0 ⇔  = 1

4
.

This point (the lowest point) is shown in the first graph. There are vertical tangents where  = 43 + 122 − 16 = 0 ⇔
4(2 + 3− 4) = 0 ⇔ 4( + 4)(− 1) = 0. We have missed one vertical tangent corresponding to  = −4, and if we

plot the graph for  ∈ [−5 3], we see that the curve has another vertical tangent line at approximately (−128 36).

25.  = cos ,  = sin  cos .  = − sin ,

 = − sin2 + cos2  = cos 2. ( ) = (0 0) ⇔ cos  = 0 ⇔  is

an odd multiple of 
2
. When  = 

2
,  = −1 and  = −1, so  = 1.

When  = 3
2
,  = 1 and  = −1. So  = −1. Thus,  =  and

 = − are both tangent to the curve at (0 0).

26.  = −2 cos ,  = sin + sin 2. From the graph, it appears that the curve

crosses itself at the point (1 0). If this is true, then  = 1 ⇔
−2 cos  = 1 ⇔ cos  = − 1

2
⇔  = 2

3
or 4

3
for 0 ≤  ≤ 2.

Substituting either value of  into  gives  = 0, confirming that (1 0) is the

point where the curve crosses itself.



=




=

cos  + 2 cos 2

2 sin 
.

When  =
2

3
,



=
−12 + 2(−12)

2(
√

32)
=
−32√

3
= −

√
3

2
, so an equation of the tangent line is  − 0 = −

√
3

2
(− 1),

or  = −
√

3

2
+

√
3

2
. Similarly, when  =

4

3
, an equation of the tangent line is  =

√
3

2
−

√
3

2
.

27.  =  −  sin ,  =  −  cos .

(a)



=  −  cos ,




=  sin , so




=

 sin 

 −  cos 
.

(b) If 0    , then | cos | ≤   , so  −  cos  ≥  −   0. This shows that  never vanishes,

so the trochoid can have no vertical tangent if   .
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28.  =  cos3 ,  =  sin3 .

(a)



= −3 cos2  sin ,




= 3 sin2  cos , so




= − sin 

cos 
= − tan .

(b) The tangent is horizontal ⇔  = 0 ⇔ tan  = 0 ⇔  =  ⇔ ( ) = (± 0).
The tangent is vertical ⇔ cos  = 0 ⇔  is an odd multiple of 

2
⇔ ( ) = (0±) 

(c)  = ±1 ⇔ tan  = ±1 ⇔  is an odd multiple of 
4
⇔ ( ) =


±
√

2
4
±

√
2

4



[All sign choices are valid.]

29.  = 32 + 1,  = 3 − 1 ⇒ 


=




=

32

6
=



2
. The tangent line has slope

1

2
when



2
=

1

2
⇔  = 1, so the

point is (4 0).

30.  = 32 + 1,  = 23 + 1,



= 6,




= 62, so




=

62

6
=  [even where  = 0].

So at the point corresponding to parameter value , an equation of the tangent line is  − (23 + 1) = [− (32 + 1)].

If this line is to pass through (4 3), we must have 3− (23 + 1) = [4− (32 + 1)] ⇔ 23 − 2 = 33 − 3 ⇔
3 − 3 + 2 = 0 ⇔ (− 1)2( + 2) = 0 ⇔  = 1 or −2. Hence, the desired equations are  − 3 = − 4, or

 = − 1, tangent to the curve at (4 3), and  − (−15) = −2(− 13), or  = −2+ 11, tangent to the curve at (13−15).

31. By symmetry of the ellipse about the - and -axes,

= 4
 
0
  = 4

 0

2
 sin  (− sin )  = 4

 2
0

sin2   = 4
 2
0

1
2
(1− cos 2) 

= 2

 − 1

2
sin 2

2
0

= 2


2


= 

32. The curve  = 2 − 2 = (− 2),  =
√
 intersects the -axis when  = 0, that is, when

 = 0 and  = 2. The corresponding values of  are 0 and
√

2. The shaded area is given by =
√

2

=0

( − )  =

 =2

=0

[0− ()] 
0
()  = −

 2

0

(
2 − 2)


1

2
√




= −  2

0


1
2
32 − 12


 = −


1
5
52 − 2

3
32

2
0

= −


1
5
· 252 − 2

3
· 232


= −212


4
5
− 4

3


= −√2

− 8
15


= 8

15

√
2

33. The curve  = 3 + 1,  = 2− 2 = (2− ) intersects the -axis when  = 0, that

is, when  = 0 and  = 2. The corresponding values of  are 1 and 9. The shaded area

is given by =9

=1

( − ) =

 =2

=0

[()− 0]
0
()  =

 2

0

(2− 
2
)(3

2
) 

= 3
 2

0
(23 − 4)  = 3


1
2
4 − 1

5
5
2
0

= 3

8− 32

5


= 24

5
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34. By symmetry,  = 4
 
0
  = 4

 0

2
 sin3 (−3 cos2  sin )  = 122

 2
0

sin4  cos2  . Now
sin4  cos2   =


sin2 


1
4

sin2 2

 = 1

8


(1− cos 2) sin2 2 

= 1
8

 
1
2
(1− cos 4)− sin2 2 cos 2


 = 1

16
 − 1

64
sin 4 − 1

48
sin3 2 +

so
 2
0

sin4  cos2   =


1
16
 − 1

64
sin 4 − 1

48
sin3 2

2
0

= 
32
. Thus,  = 122



32


= 3

8
2.

35.  =  −  sin ,  =  −  cos .

 =
 2

0
  =

 2

0
( −  cos )( −  cos )  =

 2

0
(2 − 2 cos  + 2 cos2 ) 

=

2 − 2 sin  + 1

2
2

 + 1

2
sin 2

2
0

= 22 + 2

36. (a) By symmetry, the area of R is twice the area inside R above the -axis. The top half of the loop is described by

 = 2,  = 3 − 3, −√3 ≤  ≤ 0, so, using the Substitution Rule with  = 3 − 3 and  = 2 , we find that

area = 2
 3

0
  = 2

 −√3

0
(3 − 3)2  = 2

−√3

0
(24 − 62)  = 2


2
5
5 − 23

−√3

0

= 2


2
5
(−312)5 − 2(−312)3


= 2


2
5

−9
√

3
− 2

−3
√

3


= 24
5

√
3

(b) Here we use the formula for disks and use the Substitution Rule as in part (a):

volume = 
 3

0
2  = 

 −√3

0
(3 − 3)22  = 2

 −√3

0
(6 − 64 + 92)  = 2


1
8
8 − 6 + 9

4
4
−√3

0

= 2


1
8
(−312)8 − (−312)6 + 9

4
(−312)4


= 2


81
8
− 27 + 81

4


= 27

4


(c) By symmetry, the -coordinate of the centroid is 0. To find the -coordinate, we note that it is the same as the -coordinate

of the centroid of the top half of R, the area of which is 1
2
· 24

5

√
3 = 12

5

√
3. So, using Formula 8.3.8 with  = 12

5

√
3,

we get

= 5

12
√

3

 3

0
  = 5

12
√

3

−√3

0
2(3 − 3)2  = 5

6
√

3


1
7
7 − 3

5
5
−√3

0

= 5

6
√

3


1
7
(−312)7 − 3

5
(−312)5


= 5

6
√

3

−27
7

√
3 + 27

5

√
3


= 9
7

So the coordinates of the centroid of R are ( ) =


9
7
 0

.

37.  =  + −,  =  − −, 0 ≤  ≤ 2.  = 1 − − and  = 1 + −, so

()2 + ()2 = (1− −)2 + (1 + −)2 = 1− 2− + −2 + 1 + 2− + −2 = 2 + 2−2.

Thus,  =
 



()2 + ()2  =

 2

0

√
2 + 2−2  ≈ 31416.

38.  = 2 − ,  = 4, 1 ≤  ≤ 4  = 2 − 1 and  = 43, so

()2 + ()2 = (2− 1)2 + (43)2 = 42 − 4+ 1 + 166.

Thus,  =
 



()2 + ()2  =

 4

1

√
166 + 42 − 4+ 1  ≈ 2553756.

39.  = − 2 sin ,  = 1 − 2 cos , 0 ≤  ≤ 4.  = 1− 2 cos  and  = 2 sin , so

()2 + ()2 = (1− 2 cos )2 + (2 sin )2 = 1− 4 cos  + 4cos2  + 4 sin2  = 5− 4 cos .

Thus,  =
 



()2 + ()2  =

 4

0

√
5− 4 cos   ≈ 267298.
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40.  =  +
√
,  =  −√, 0 ≤  ≤ 1.




= 1 +

1

2
√

and




= 1 − 1

2
√

, so






2

+






2

=


1 +

1

2
√


2

+


1− 1

2
√


2

= 1 +
1√


+
1

4
+ 1− 1√


+

1

4
= 2 +

1

2
.

Thus,  =

 




()2 + ()2  =

 1

0


2 +

1

2
 = lim

→0+

 1




2 +

1

2
 ≈ 20915.

41.  = 1 + 32,  = 4 + 23, 0 ≤  ≤ 1.  = 6 and  = 62, so ()2 + ()2 = 362 + 364.

Thus,  =

 1

0


362 + 364  =

 1

0

6


1 + 2  = 6

 2

1

√



1
2



[ = 1 + 2,  = 2 ]

= 3


2
3
32

2
1

= 2(232 − 1) = 2

2
√

2− 1


42.  =  − ,  = 42, 0 ≤  ≤ 2.  =  − 1 and  = 22, so

()2 + ()2 = ( − 1)2 + (22)2 = 2 − 2 + 1 + 4 = 2 + 2 + 1 = ( + 1)2. Thus,

 =

 2

0


( + 1)2  =

 2

0

 + 1
  =

 2

0

(

+ 1)  =




+ 
2
0

= (
2
+ 2)− (1 + 0) = 

2
+ 1.

43.  =  sin ,  =  cos , 0 ≤  ≤ 1.



=  cos  + sin  and




= − sin + cos , so





2

+






2

= 2 cos2  + 2 sin  cos + sin2  + 2 sin2 − 2 sin  cos  + cos2 

= 2(cos2 + sin2 ) + sin2  + cos2  = 2 + 1.

Thus,  =
 1

0

√
2 + 1 

21
=


1
2

√
2 + 1 + 1

2
ln

+

√
2 + 1

1
0

= 1
2

√
2 + 1

2
ln

1 +

√
2

.

44.  = 3cos − cos 3,  = 3 sin − sin 3, 0 ≤  ≤ .



= −3 sin + 3 sin 3 and




= 3 cos − 3 cos 3, so





2

+






2

= 9 sin2 − 18 sin  sin 3+ 9 sin2(3) + 9 cos2 − 18 cos  cos 3 + 9cos2(3)

= 9(cos2 + sin2 )− 18(cos  cos 3 + sin  sin 3) + 9[cos2(3) + sin2(3)]

= 9(1)− 18 cos(− 3) + 9(1) = 18− 18 cos(−2) = 18(1− cos 2)

= 18[1− (1− 2 sin2 )] = 36 sin2 .

Thus,  =
 
0

√
36 sin2   = 6

 
0
|sin |  = 6

 
0

sin   = −6

cos 


0

= −6 (−1− 1) = 12.

45.  =  cos ,  =  sin , 0 ≤  ≤ .



2
+





2
= [(cos − sin )]2 + [(sin  + cos )]2

= ()2(cos2 − 2 cos  sin + sin2 )

+ ()2(sin2  + 2 sin  cos + cos2 

= 2(2 cos2 + 2 sin2 ) = 22

Thus,  =
 
0

√
22  =

 
0

√
2   =

√
2



0

=
√

2 ( − 1).
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46.  = cos  + ln(tan 1
2
),  = sin , 4 ≤  ≤ 34.




= − sin  +

1
2

sec2(2)

tan(2)
= − sin  +

1

2 sin(2) cos(2)
= − sin  +

1

sin 
and




= cos , so






2

+






2

= sin2 − 2 +
1

sin2 
+ cos2  = 1− 2 + csc2  = cot2 . Thus,

=
 34

4
|cot |  = 2

 2
4

cot  

= 2

ln |sin |

2
4

= 2


ln 1− ln

1√
2


= 2


0 + ln

√
2


= 2


1
2

ln 2


= ln 2.

47. The figure shows the curve  = sin + sin 15,  = cos  for 0 ≤  ≤ 4.

 = cos  + 15 cos 15 and  = − sin , so

()2 + ()2 = cos2 + 3cos  cos 15+ 225 cos2 15 + sin2 .

Thus,  =
 4

0

√
1 + 3 cos  cos 15 + 225 cos2 15  ≈ 167102.

48.  = 3− 3,  = 32.  = 3− 32 and  = 6, so




2

+






2

= (3− 32)2 + (6)2 = (3 + 32)2

and the length of the loop is given by

 =

 √
3

−√3

(3 + 3
2
)  = 2

 √
3

0

(3 + 3
2
)  = 2


3 + 

3
√3

0

= 2

3
√

3 + 3
√

3


= 12
√

3

49.  =  − ,  =  + , −6 ≤  ≤ 6.



2
+





2
= (1− )2 + (1 + )2 = (1− 2 + 2) + (1 + 2 + 2) = 2 + 22, so  =

 6

−6

√
2 + 22 .

Set () =
√

2 + 22. Then by Simpson’s Rule with  = 6 and ∆ =
6−(−6)

6
= 2, we get

 ≈ 2
3
[(−6) + 4(−4) + 2(−2) + 4(0) + 2(2) + 4(4) + (6)] ≈ 6123053.

50.  = 2 cot  ⇒  = −2 csc2  and  = 2 sin2  ⇒  = 4 sin  cos  = 2 sin 2.

So  =
 2
4


42 csc4  + 42 sin2 2  = 2

 2
4


csc4  + sin2 2 . Using Simpson’s Rule with

 = 4, ∆ =
2−4

4
= 

16
, and () =


csc4  + sin2 2, we get

 ≈ 2 · 4 = (2) 
16·3





4


+ 4


5
16


+ 2


3
8


+ 4


7
16


+ 



2

 ≈ 22605.

51.  = sin2 ,  = cos2 , 0 ≤  ≤ 3.

()2 + ()2 = (2 sin  cos )2 + (−2 cos  sin )2 = 8 sin2  cos2  = 2 sin2 2 ⇒

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 889

Distance =
 3

0

√
2 |sin 2|  = 6

√
2
 2
0

sin 2  [by symmetry] = −3
√

2

cos 2

2
0

= −3
√

2 (−1− 1) = 6
√

2.

The full curve is traversed as  goes from 0 to 
2
, because the curve is the segment of  +  = 1 that lies in the first quadrant

(since ,  ≥ 0), and this segment is completely traversed as  goes from 0 to 
2
. Thus,  =

 2
0

sin 2  =
√

2, as above.

52.  = cos2 ,  = cos , 0 ≤  ≤ 4.




2
+





2
= (−2 cos  sin )2 + (− sin )2 = sin2  (4 cos2  + 1)

Distance =
 4

0
|sin |√4 cos2 + 1  = 4

 
0

sin 
√

4 cos2  + 1 

= −4
 −1

1

√
42 + 1  [ = cos ,  = − sin  ] = 4

 1

−1

√
42 + 1 

= 8
 1

0

√
42 + 1  = 8

 tan−1 2

0
sec  · 1

2
sec2   [2 = tan  2  = sec2  ]

= 4
 tan−1 2

0
sec3  

71
=

2 sec  tan  + 2 ln |sec  + tan |

tan−1 2

0
= 4

√
5 + 2 ln

√
5 + 2


Thus,  =

 
0
|sin |√4 cos2 + 1  =

√
5 + 1

2
ln
√

5 + 2

.

53.  =  sin ,  =  cos , 0 ≤  ≤ 2.



2
+





2
= ( cos )2 + (− sin )2 = 2 cos2  + 2 sin2  = 2(1− sin2 ) + 2 sin2 

= 2 − (2 − 2) sin2  = 2 − 2 sin2  = 2


1− 2

2
sin2 


= 2(1− 2 sin2 )

So  = 4
 2
0


2

1− 2 sin2 


 [by symmetry] = 4

 2
0


1− 2 sin2  .

54.  =  cos3 ,  =  sin3 .



2
+





2
= (−3 cos2  sin )2 + (3 sin2  cos )2

= 92 cos4  sin2  + 92 sin4  cos2 

= 92 sin2  cos2 (cos2  + sin2 ) = 92 sin2  cos2 .

The graph has four-fold symmetry and the curve in the first quadrant corresponds

to 0 ≤  ≤ 2. Thus,

 = 4
 2
0

3 sin  cos   [since   0 and sin  and cos  are positive for 0 ≤  ≤ 2]

= 12


1
2

sin2 
2
0

= 12


1
2
− 0


= 6

55. (a)  = 11 cos − 4 cos(112),  = 11 sin − 4 sin(112).

Notice that 0 ≤  ≤ 2 does not give the complete curve because

(0) 6= (2). In fact, we must take  ∈ [0 4] in order to obtain the

complete curve, since the first term in each of the parametric equations has

period 2 and the second has period 2
112

= 4
11
, and the least common

integer multiple of these two numbers is 4.
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(b) We use the CAS to find the derivatives  and , and then use Theorem 5 to find the arc length. Recent versions

of Maple express the integral
 4

0


()2 + ()2  as 88


2
√

2 

, where () is the elliptic integral 1

0

√
1− 22√
1− 2

 and  is the imaginary number
√−1.

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command

evalf(Int(sqrt(diff(x,t)̂ 2+diff(y,t)̂ 2),t=0..4*Pi)); to estimate the length, and find that the arc

length is approximately 29403. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11
 4

0


−4 cos  cos


11
2

− 4 sin  sin


11
2


+ 5 .

56. (a) It appears that as →∞, ( )→ 
1
2
 1

2


, and as →−∞, ( )→ − 1

2
− 1

2


.

(b) By the Fundamental Theorem of Calculus,  = cos


2
2

and

 = sin


2
2

, so by Theorem 5, the length of the curve from the origin

to the point with parameter value  is

=
 
0





2
+





2
 =

 
0


cos2



2
2


+ sin2


2
2



=
 
0

1  =  [or − if   0]

We have used  as the dummy variable so as not to confuse it with the upper limit of integration.

57.  =  sin ,  =  cos , 0 ≤  ≤ 2.  =  cos  + sin  and  = − sin + cos , so

()2 + ()2 = 2 cos2 + 2 sin  cos + sin2  + 2 sin2 − 2 sin  cos  + cos2 

= 2(cos2 + sin2 ) + sin2 + cos2  = 2 + 1

 =


2  =
 2
0

2 cos 
√
2 + 1  ≈ 47394.

58.  = sin ,  = sin 2, 0 ≤  ≤ 2.  = cos  and  = 2cos 2, so ()2 + ()2 = cos2  + 4 cos2 2.

 =


2  =
 2
0

2 sin 2
√

cos2  + 4 cos2 2  ≈ 80285.

59.  =  + ,  = −, 0 ≤  ≤ 1.

 = 1 +  and  = −−, so ()2 + ()2 = (1 + )2 + (−−)2 = 1 + 2 + 2 + −2.

 =


2  =
 1

0
2−

√
1 + 2 + 2 + −2  ≈ 106705.

60.  = 2 − 3,  = + 4, 0 ≤  ≤ 1.

()2 + ()2 = (2− 32)2 + (1 + 43)2 = 42 − 123 + 94 + 1 + 83 + 166, so

 =


2  =
 1

0
2(+ 4)

√
166 + 94 − 43 + 42 + 1  ≈ 127176.
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61.  = 3,  = 2, 0 ≤  ≤ 1.




2
+





2
=

32
2

+ (2)
2

= 94 + 42.

 =

 1

0

2





2
+





2
 =

 1

0

2
2


94 + 42  = 2

 1

0


2

2(92 + 4) 

= 2

 13

4


− 4

9

√



1
18

 

 = 92 + 4, 2 = (− 4)9,
 = 18 , so   = 1

18



=

2

9 · 18
 13

4

(
32 − 4

12
) 

= 
81


2
5
52 − 8

3
32

13
4

= 
81
· 2

15


352 − 2032

13
4

= 2
1215


3 · 132

√
13− 20 · 13√13

− (3 · 32− 20 · 8) = 2
1215


247

√
13 + 64


62.  = 22 + 1,  = 8

√
, 1 ≤  ≤ 3.





2

+






2

=


4− 1

2

2

+


4√


2

= 162 − 8


+

1

4
+

16


= 162 +

8


+

1

4
=


4 +

1

2

2

.

 =

 3

1

2





2
+





2
 =

 3

1

2

8
√



4 +
1

2

2

 = 16

 3

1


12

(4+ 
−2

) 

= 16

 3

1

(4
32

+ 
−32

)  = 16


8
5

52 − 2

−12
3
1

= 16


72
5

√
3− 2

3

√
3

− ( 8

5
− 2)


= 16


206
15

√
3 + 6

15


= 32

15


103
√

3 + 3


63.  =  cos3 ,  =  sin3 , 0 ≤  ≤ 
2
.




2
+





2
= (−3 cos2  sin )2 + (3 sin2  cos )2 = 92 sin2  cos2 .

 =
 2
0

2 ·  sin3  · 3 sin  cos   = 62
 2
0

sin4  cos   = 6
5
2


sin5 

2
0

= 6
5
2

64.  = 2cos  − cos 2,  = 2 sin  − sin 2 ⇒



2
+





2
= (−2 sin  + 2 sin 2)2 + (2 cos  − 2 cos 2)2

= 4[(sin2  − 2 sin  sin 2 + sin2 2) + (cos2  − 2 cos  cos 2 + cos2 2)]

= 4[1 + 1− 2(cos 2 cos  + sin 2 sin )] = 8[1− cos(2 − )] = 8(1− cos )

We plot the graph with parameter interval [0 2], and see that we should only integrate

between 0 and . (If the interval [0 2] were taken, the surface of revolution would be

generated twice.) Also note that  = 2 sin  − sin 2 = 2 sin (1− cos ). So

 =
 
0

2 · 2 sin (1− cos ) 2
√

2
√

1− cos  

= 8
√

2
 
0

(1− cos )
32

sin   = 8
√

2
 2

0

√
3 


 = 1− cos 
 = sin  


= 8

√
2


2
5


52

2
0

= 16
5

√
2(252) = 128

5


65.  = 32,  = 23, 0 ≤  ≤ 5 ⇒ 



2
+





2
= (6)2 + (62)2 = 362(1 + 2) ⇒

 =
 5

0
2


()2 + ()2  =

 5

0
2(32)6

√
1 + 2  = 18

 5

0
2
√

1 + 2 2 

= 18
 26

1
(− 1)

√



 = 1 + 2

 = 2 


= 18

 26

1
(32 − 12)  = 18


2
5
52 − 2

3
32

26
1

= 18


2
5
· 676√26− 2

3
· 26√26

−  2
5
− 2

3


= 24

5


949

√
26 + 1
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66.  =  − ,  = 42, 0 ≤  ≤ 1.




2
+





2
= ( − 1)2 + (22)2 = 2 + 2 + 1 = ( + 1)2.

 =
 1

0
2( − )


( − 1)2 + (22)2  =

 1

0
2( − )( + 1)

= 2


1
2
2 +  − (− 1) − 1

2
2
1
0

= (2 + 2− 6)

67. If  0 is continuous and  0() 6= 0 for  ≤  ≤ , then either  0()  0 for all  in [ ] or  0()  0 for all  in [ ]. Thus, 

is monotonic (in fact, strictly increasing or strictly decreasing) on [ ]. It follows that  has an inverse. Set  =  ◦ −1,

that is, define  by  () = (−1()). Then  = () ⇒ −1() = , so  = () = (−1()) =  ().

68. By Formula 8.2.5 with  =  (),  =
 


2 ()


1 + [ 0()]2 . But by Formula 10.2.1,

1 + [ 0()]2 = 1 +






2

= 1 +






2

=
()2 + ()2

()2
. Using the Substitution Rule with  = (),

where  = () and  = (), we have


since  =








 =

 



2  (())


()2 + ()2

()2



 =

 



2






2

+






2

, which is Formula 10.2.6.

69. (a)  = tan−1







⇒ 


=




tan−1







=

1

1 + ()2












. But




=




=

̇

̇
⇒











=






̇

̇


=

̈̇− ̈̇

̇2
⇒ 


=

1

1 + (̇̇)2


̈̇− ̈̇

̇2


=

̇̈ − ̈̇

̇2 + ̇2
. Using the Chain Rule, and the

fact that  =

 

0





2
+





2
 ⇒ 


=





2
+





2
=

̇2 + ̇2

12
, we have that




=




=


̇̈ − ̈̇

̇2 + ̇2


1

(̇2 + ̇2)12
=

̇̈ − ̈̇

(̇2 + ̇2)32
. So  =


 =

 ̇̈ − ̈̇

(̇2 + ̇2)32

 =
|̇̈ − ̈̇|

(̇2 + ̇2)32
.

(b)  =  and  = () ⇒ ̇ = 1, ̈ = 0 and ̇ =



, ̈ =

2

2
.

So  =

1 · (22)− 0 · ()


[1 + ()2]32
=

22


[1 + ()2]32
.

70. (a)  = 2 ⇒ 


= 2 ⇒ 2

2
= 2. So  =

22


[1 + ()2]32
=

2

(1 + 42)32
, and at (1 1),

 =
2

532
=

2

5
√

5
.

(b) 0 =



= −3(1 + 42)−52(8) = 0 ⇔  = 0 ⇒  = 0. This is a maximum since 0  0 for   0 and

0  0 for   0. So the parabola  = 2 has maximum curvature at the origin.

71.  =  − sin  ⇒ ̇ = 1− cos  ⇒ ̈ = sin , and  = 1− cos  ⇒ ̇ = sin  ⇒ ̈ = cos . Therefore,

 =

cos  − cos2  − sin2 


[(1− cos )2 + sin2 ]32
=

cos  − (cos2  + sin2 )


(1− 2 cos  + cos2  + sin2 )32
=

|cos  − 1|
(2− 2 cos )32

. The top of the arch is
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characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when  = (2− 1),

so take  = 1 and substitute  =  into the expression for :  =
|cos − 1|

(2− 2 cos)32
=

|−1− 1|
[2− 2(−1)]32

=
1

4
.

72. (a) Every straight line has parametrizations of the form  = + ,  = +, where ,  are arbitrary and ,  6= 0.

For example, a straight line passing through distinct points ( ) and ( ) can be described as the parametrized curve

 = + (− ),  = + (− ). Starting with  = + ,  =  +, we compute ̇ = , ̇ = , ̈ = ̈ = 0,

and  =
| · 0− · 0|
(2 +2)32

= 0.

(b) Parametric equations for a circle of radius  are  =  cos  and  =  sin . We can take the center to be the origin.

So ̇ = − sin  ⇒ ̈ = − cos  and ̇ =  cos  ⇒ ̈ = − sin . Therefore,

 =

2 sin2  + 2 cos2 


(2 sin2  + 2 cos2 )32
=

2

3
=

1


. And so for any  (and thus any point),  =

1


.

73. The coordinates of  are ( cos   sin ). Since  was unwound from

arc ,  has length . Also ∠ = ∠− ∠ = 1
2
 − ,

so  has coordinates  =  cos  +  cos


1
2
 − 


= (cos  +  sin ),

 =  sin  −  sin


1
2
 − 


= (sin  −  cos ).

74. If the cow walks with the rope taut, it traces out the portion of the

involute in Exercise 73 corresponding to the range 0 ≤  ≤ , arriving at

the point (− ) when  = . With the rope now fully extended, the

cow walks in a semicircle of radius , arriving at (−−). Finally,
the cow traces out another portion of the involute, namely the reflection

about the -axis of the initial involute path. (This corresponds to the

range− ≤  ≤ 0.) Referring to the figure, we see that the total grazing

area is 2(1 +3). 3 is one-quarter of the area of a circle of radius , so 3 = 1
4
()2 = 1

4
32. We will compute

1 +2 and then subtract 2 = 1
2
2 to obtain 1.

To find 1 +2, first note that the rightmost point of the involute is


2
 

. [To see this, note that  = 0 when

 = 0 or 
2
.  = 0 corresponds to the cusp at ( 0) and  = 

2
corresponds to



2
 

.] The leftmost point of the involute is

(− ). Thus, 1 +2 =
 2
=

 −  2
=0

  =
 0

=
 .

Now   = (sin  −  cos )  cos   = 2( sin  cos  − 2 cos2 ). Integrate:

(12)

  = − cos2  − 1

2


2 − 1


sin  cos  − 1

6
3 + 1

2
 + . This enables us to compute
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1 +2 = 2
− cos2  − 1

2
(2 − 1) sin  cos  − 1

6
3 + 1

2

0


= 2


0−


− − 3

6
+



2


= 2




2
+

3

6


Therefore, 1 = (1 +2)−2 = 1

6
32, so the grazing area is 2(1 +3) = 2


1
6
32 + 1

4
32


= 5

6
32.

LABORATORY PROJECT Bézier Curves

1. The parametric equations for a cubic Bézier curve are

 = 0(1− )3 + 31(1− )2 + 32
2(1− ) + 3

3

 = 0(1− )3 + 31(1− )2 + 32
2(1− ) + 3

3

where 0 ≤  ≤ 1. We are given the points 0(0 0) = (4 1), 1(1 1) = (28 48), 2(2 2) = (50 42), and

3(3 3) = (40 5). The curve is then given by

() = 4(1− )3 + 3 · 28(1− )2 + 3 · 502(1− ) + 403

() = 1(1− )3 + 3 · 48(1− )2 + 3 · 422(1− ) + 53

where 0 ≤  ≤ 1. The line segments are of the form  = 0 + (1 − 0),

 = 0 + (1 − 0):

01  = 4 + 24,  = 1 + 47

12  = 28 + 22,  = 48− 6

23  = 50− 10,  = 42− 37

2. It suffices to show that the slope of the tangent at 0 is the same as that of line segment 01, namely
1 − 0

1 − 0

.

We calculate the slope of the tangent to the Bézier curve:




=
−30(1− )2 + 31

−2(1− ) + (1− )2

+ 32

−2 + (2)(1− )

+ 33

2

−32
0(1− ) + 31[−2(1− ) + (1− )2] + 32[−2 + (2)(1− )] + 332

At point 0,  = 0, so the slope of the tangent is
−30 + 31

−30 + 31

=
1 − 0

1 − 0

. So the tangent to the curve at 0 passes

through 1. Similarly, the slope of the tangent at point 3 [where  = 1] is
−32 + 33

−32 + 33

=
3 − 2

3 − 2

, which is also the slope

of line 23.

3. It seems that if 1 were to the right of 2, a loop would appear.

We try setting 1 = (110 30), and the resulting curve does indeed have a loop.

4. Based on the behavior of the Bézier curve in Problems 1–3, we suspect that the

four control points should be in an exaggerated C shape. We try 0(10 12),

1(4 15), 2(4 5), and 3(10 8), and these produce a decent C. If you are using

a CAS, it may be necessary to instruct it to make the - and -scales the same so as

not to distort the figure (this is called a “constrained projection” in Maple.)

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 10.3 POLAR COORDINATES ¤ 895

5. We use the same 0 and 1 as in Problem 4, and use part of our C as the top of

an S. To prevent the center line from slanting up too much, we move 2 up to

(4 6) and 3 down and to the left, to (8 7). In order to have a smooth joint

between the top and bottom halves of the S (and a symmetric S), we determine

points 4, 5, and 6 by rotating points 2, 1, and 0 about the center of the

letter (point 3). The points are therefore 4(12 8), 5(12−1), and 6(6 2).

10.3 Polar Coordinates

1. (a)

1 

4


By adding 2 to 

4
, we obtain the point


1 9

4


, which satisfies the

  0 requirement. The direction opposite 
4
is 5

4
, so

−1 5
4


is a

point that satisfies the   0 requirement.

(b)
−2 3

2


 0:

−(−2) 3
2
− 


=

2 

2


 0:

−2 3
2

+ 2


=
−2 7

2



(c)

3−

3


 0:


3−

3
+ 2


=

3 5

3


 0:

−3−
3

+ 


=
−3 2

3



2. (a)

2 5

6


 0:


2 5

6
+ 2


=

2 17

6


 0:

−2 5
6
− 


=
−2−

6



(b)

1− 2

3


 0:


1− 2

3
+ 2


=

1 4

3


 0:

−1− 2
3

+ 


=
−1 

3



(c)
−1 5

4


 0:

−(−1) 5
4
− 


=

1 

4


 0:

−1 5
4
− 2


=
−1− 3

4
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3. (a)  = 2 cos 3
2

= 2(0) = 0 and  = 2 sin 3
2

= 2(−1) = −2 give us the

Cartesian coordinates (0−2).

(b)  =
√

2 cos


4
=
√

2


1√
2


= 1 and  =

√
2 sin



4
=
√

2


1√
2


= 1

give us the Cartesian coordinates (1 1).

(c)  = −1 cos

−

6


= −1

√
3

2


= −

√
3

2
and

 = −1 sin

−

6


= −1


−1

2


=

1

2
give us the Cartesian

coordinates


−
√

3

2

1

2


.

4. (a)  = 4 cos
4

3
= 4


−1

2


= −2 and

 = 4 sin
4

3
= 4


−
√

3

2


= −2

√
3 give us the Cartesian

coordinates
−2−2

√
3

.

(b)  = −2 cos
3

4
= −2


−
√

2

2


=
√

2 and

 = −2 sin
3

4
= −2

√
2

2


= −√2 give us the Cartesian

coordinates
√

2−√2

.

(c)  = −3 cos

−

3


= −3


1

2


= −3

2
and

 = −3 sin

−

3


= −3


−
√

3

2


=

3
√

3

2
give us the Cartesian

coordinates


−3

2

3
√

3

2


.

5. (a)  = −4 and  = 4 ⇒  =


(−4)2 + 42 = 4
√

2 and tan  = 4
−4

= −1 [ = −
4

+ ]. Since (−4 4) is in the

second quadrant, the polar coordinates are (i)

4
√

2 3
4


and (ii)

−4
√

2 7
4


.
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(b)  = 3 and  = 3
√

3 ⇒  =


32 +


3
√

3
2

=
√

9 + 27 = 6 and tan  =
3
√

3

3
=
√

3 [ = 
3

+ ].

Since

3 3
√

3

is in the first quadrant, the polar coordinates are (i)


6 

3


and (ii)

−6 4
3


.

6. (a)  =
√

3 and  = −1 ⇒  =

√
3
2

+ (−1)2 = 2 and tan  =
−1√

3
[ = −

6
+ ]. Since

√
3−1


is in the

fourth quadrant, the polar coordinates are (i)

2 11

6


and (ii)

−2 5
6


.

(b)  = −6 and  = 0 ⇒  =


(−6)2 + 02 = 6 and tan  = 0
−6

= 0 [ = ]. Since (−6 0) is on the negative

-axis, the polar coordinates are (i) (6 ) and (ii) (−6 0).

7.  ≥ 1. The curve  = 1 represents a circle with center

 and radius 1. So  ≥ 1 represents the region on or

outside the circle. Note that  can take on any value.

8. 0 ≤   2,  ≤  ≤ 32. This is the region inside the

circle  = 2 in the third quadrant.

9.  ≥ 0, 4 ≤  ≤ 34.

 =  represents a line through .

10. 1 ≤  ≤ 3, 6    56

11. 2    3, 5
3
≤  ≤ 7

3
12.  ≥ 1,  ≤  ≤ 2

13. Converting the polar coordinates

4 4

3


and


6 5

3


to Cartesian coordinates gives us


4 cos 4

3
 4 sin 4

3


=
−2−2

√
3


and

6 cos 5

3
 6 sin 5

3


=

3−3

√
3

. Now use the distance formula

=


(2 − 1)2 + (2 − 1)2 =


[3− (−2)]2 +

−3
√

3− −2
√

3
2

=


52 +

−√3
2

=
√

25 + 3 =
√

28 = 2
√

7
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14. The points (1 1) and (2 2) in Cartesian coordinates are (1 cos 1 1 sin 1) and (2 cos 2 2 sin 2), respectively.

The square of the distance between them is

(2 cos 2 − 1 cos 1)
2

+ (2 sin 2 − 1 sin 1)
2

=

2
2 cos2 2 − 212 cos 1 cos 2 + 2

1 cos2 1


+

2
2 sin2 2 − 212 sin 1 sin 2 + 21 sin2 1


= 2

1


sin2 1 + cos2 1


+ 22


sin2 2 + cos2 2

− 212(cos 1 cos 2 + sin 1 sin 2)

= 2
1 − 212 cos(1 − 2) + 2

2 ,

so the distance between them is

2
1 − 212 cos(1 − 2) + 2

2 .

15. 2 = 5 ⇔ 2 + 2 = 5, a circle of radius
√

5 centered at the origin.

16.  = 4 sec  ⇔ 

sec 
= 4 ⇔  cos  = 4 ⇔  = 4, a vertical line.

17.  = 5 cos  ⇒ 2 = 5 cos  ⇔ 2 + 2 = 5 ⇔ 2 − 5+ 25
4

+ 2 = 25
4

⇔ 
− 5

2

2
+ 2 = 25

4
,

a circle of radius 5
2
centered at


5
2
 0

. The first two equations are actually equivalent since 2 = 5 cos  ⇒

( − 5 cos ) = 0 ⇒  = 0 or  = 5 cos . But  = 5 cos  gives the point  = 0 (the pole) when  = 0. Thus, the

equation  = 5 cos  is equivalent to the compound condition ( = 0 or  = 5 cos ).

18.  =


3
⇒ tan  = tan



3
⇒ 


=
√

3 ⇔  =
√

3, a line through the origin.

19. 2 cos 2 = 1 ⇔ 2(cos2  − sin2 ) = 1 ⇔ ( cos )2 − ( sin )2 = 1 ⇔ 2 − 2 = 1, a hyperbola centered at

the origin with foci on the -axis.

20. 2 sin 2 = 1 ⇔ 2(2 sin  cos ) = 1 ⇔ 2( cos )( sin ) = 1 ⇔ 2 = 1 ⇔  = 1
2
, a hyperbola

centered at the origin with foci on the line  = .

21.  = 2 ⇔  sin  = 2 ⇔  =
2

sin 
⇔  = 2csc 

22.  =  ⇒ 


= 1 [ 6= 0] ⇒ tan  = 1 ⇒  = tan−1 1 ⇒  =



4
or  =

5

4
[either includes the pole]

23.  = 1 + 3 ⇔  sin  = 1 + 3 cos  ⇔  sin  − 3 cos  = 1 ⇔ (sin  − 3 cos ) = 1 ⇔

 =
1

sin  − 3 cos 

24. 42 =  ⇔ 4( sin )2 =  cos  ⇔ 42 sin2  −  cos  = 0 ⇔ (4 sin2  − cos ) = 0 ⇔  = 0 or

 =
cos 

4 sin2 
⇔  = 0 or  = 1

4
cot  csc .  = 0 is included in  = 1

4
cot  csc  when  = 

2
, so the curve is

represented by the single equation  = 1
4

cot  csc .

25. 2 + 2 = 2 ⇔ 2 = 2 cos  ⇔ 2 − 2 cos  = 0 ⇔ ( − 2 cos ) = 0 ⇔  = 0 or  = 2 cos .

 = 0 is included in  = 2 cos  when  = 
2

+ , so the curve is represented by the single equation  = 2 cos 
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26. 2 − 2 = 4 ⇔ ( cos )2 − ( sin )2 = 4 ⇔ 2 cos2  − 2 sin2  = 4 ⇔ 2(cos2  − sin2 ) = 4 ⇔
2 cos 2 = 4

27. (a) The description leads immediately to the polar equation  = 
6
, and the Cartesian equation  = tan



6


 = 1√

3
 is

slightly more difficult to derive.

(b) The easier description here is the Cartesian equation  = 3.

28. (a) Because its center is not at the origin, it is more easily described by its Cartesian equation, (− 2)2 + ( − 3)2 = 52.

(b) This circle is more easily given in polar coordinates:  = 4. The Cartesian equation is also simple: 2 + 2 = 16.

29.  = −2 sin 

30.  = 1− cos 

31.  = 2(1 + cos )

32.  = 1 + 2 cos 
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33.  = ,  ≥ 0

34.  = 2, −2 ≤  ≤ 2

35.  = 3 cos 3

36.  = − sin 5

37.  = 2 cos 4

38.  = 2 sin 6
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39.  = 1 + 3 cos 

40.  = 1 + 5 sin 

41. 2 = 9 sin 2

42. 2 = cos 4

43.  = 2 + sin 3
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44. 2 = 1 ⇔  = ±1
√
 for   0

45.  = sin(2)

46.  = cos(3)

47. For  = 0, , and 2,  has its minimum value of about 05. For  = 
2
and 3

2
,  attains its maximum value of 2.

We see that the graph has a similar shape for 0 ≤  ≤  and  ≤  ≤ 2.

48. The given graph has a maximum of 2 for  = 0, a minimum of 1 for  = 
4
,

and then a maximum of 2 for  = 
2
. This pattern is repeated 4 times for

0 ≤  ≤ 2.
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49.  =  cos  = (4 + 2 sec ) cos  = 4 cos  + 2. Now, →∞ ⇒

(4 + 2 sec )→∞ ⇒ → 

2

−
or → 

3
2

+
[since we need only

consider 0 ≤   2], so lim
→∞

 = lim
→2−

(4 cos  + 2) = 2. Also,

→ −∞ ⇒ (4 + 2 sec )→−∞ ⇒ → 

2

+
or → 

3
2

−
, so

lim
→−∞

 = lim
→2+

(4 cos  + 2) = 2. Therefore, lim
→±∞

 = 2 ⇒  = 2 is a vertical asymptote.

50.  =  sin  = 2 sin  − csc  sin  = 2 sin  − 1.

→∞ ⇒ (2− csc )→∞ ⇒
csc →−∞ ⇒ → + [since we need

only consider 0 ≤   2] and so

lim
→∞

 = lim
→+

2 sin  − 1 = −1.

Also  → −∞ ⇒ (2− csc ) → −∞ ⇒ csc  →∞ ⇒ → − and so lim
→−∞

 = lim
→−

2 sin  − 1 = −1.

Therefore lim
→±∞

 = −1 ⇒  = −1 is a horizontal asymptote.

51. To show that  = 1 is an asymptote we must prove lim
→±∞

 = 1.

 = () cos  = (sin  tan ) cos  = sin2 . Now, →∞ ⇒ sin  tan →∞ ⇒

→ 

2

−
, so lim

→∞
 = lim

→2−
sin2  = 1. Also, →−∞ ⇒ sin  tan →−∞ ⇒

→ 

2

+
, so lim

→−∞
 = lim

→2+
sin2  = 1. Therefore, lim

→±∞
 = 1 ⇒  = 1 is

a vertical asymptote. Also notice that  = sin2  ≥ 0 for all , and  = sin2  ≤ 1 for all . And  6= 1, since the curve is not

defined at odd multiples of 
2
. Therefore, the curve lies entirely within the vertical strip 0 ≤   1.

52. The equation is (2 + 2)3 = 422, but using polar coordinates we know that

2 + 2 = 2 and  =  cos  and  =  sin . Substituting into the given

equation: 6 = 42 cos2  2 sin2  ⇒ 2 = 4 cos2  sin2  ⇒

 = ±2 cos  sin  = ± sin 2.  = ± sin 2 is sketched at right.

53. (a) We see that the curve  = 1 +  sin  crosses itself at the origin, where  = 0 (in fact the inner loop corresponds to

negative -values,) so we solve the equation of the limaçon for  = 0 ⇔  sin  = −1 ⇔ sin  = −1. Now if

||  1, then this equation has no solution and hence there is no inner loop. But if   −1, then on the interval (0 2)

the equation has the two solutions  = sin−1(−1) and  =  − sin−1(−1), and if   1, the solutions are

 =  + sin−1(1) and  = 2 − sin−1(1). In each case,   0 for  between the two solutions, indicating a loop.

(b) For 0    1, the dimple (if it exists) is characterized by the fact that  has a local maximum at  = 3
2
. So we

determine for what -values
2

2
is negative at  = 3

2
, since by the Second Derivative Test this indicates a maximum:
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 =  sin  = sin  +  sin2  ⇒ 


= cos  + 2 sin  cos  = cos  +  sin 2 ⇒ 2

2
= − sin  + 2 cos 2.

At  = 3
2
, this is equal to −(−1) + 2(−1) = 1− 2, which is negative only for   1

2
. A similar argument shows that

for −1    0,  only has a local minimum at  = 
2
(indicating a dimple) for   −1

2
.

54. (a)  = ln , 1 ≤  ≤ 6.  increases as  increases and there are almost three full revolutions. The graph must be either III

or VI. As  increases,  grows slowly in VI and quickly in III. Since  = ln  grows slowly, its graph must be VI.

(b)  = 2, 0 ≤  ≤ 8. See part (a). This is graph III.

(c) The graph of  = cos 3 is a three-leaved rose, which is graph II.

(d) Since −1 ≤ cos 3 ≤ 1, 1 ≤ 2 + cos 3 ≤ 3, so  = 2 + cos 3 is never 0; that is, the curve never intersects the pole. The

graph must be I or IV. For 0 ≤  ≤ 2, the graph assumes its minimum -value of 1 three times, at  = 
3
, , and 5

3
, so it

must be graph IV.

(e)  = cos(2). For  = 0,  = 1, and as  increases to ,  decreases to 0. Only graph V satisfies those values.

(f )  = 2 + cos(32). As in part (d), this graph never intersects the pole, so it must be graph I.

55.  = 2 cos  ⇒  =  cos  = 2cos2 ,  =  sin  = 2 sin  cos  = sin 2 ⇒



=




=

2cos 2

2 · 2 cos (− sin )
=

cos 2

− sin 2
= − cot 2

When  =


3
,



= − cot


2 · 

3


= cot



3
=

1√
3
. [Another method: Use Equation 3.]

56.  = 2 + sin 3 ⇒  =  cos  = (2 + sin 3) cos ,  =  sin  = (2 + sin 3) sin  ⇒



=




=

(2 + sin 3) cos  + sin (3 cos 3)

(2 + sin 3)(− sin ) + cos (3 cos 3)

When  =


4
,



=


2 + sin 3

4


cos 

4
+ sin 

4


3 cos 3

4


2 + sin 3

4

− sin 
4


+ cos 

4


3 cos 3

4

 =


2 +

√
2

2

√
2

2
+
√

2
2
· 3

−
√

2
2



2 +

√
2

2


−
√

2
2


+
√

2
2
· 3

−
√

2
2


=

√
2 + 1

2
− 3

2

−√2− 1
2
− 3

2

=

√
2− 1

−√2− 2
, or, equivalently, 2− 3

2

√
2.

57.  = 1 ⇒  =  cos  = (cos ),  =  sin  = (sin ) ⇒




=




=

sin (−12) + (1) cos 

cos (−12)− (1) sin 
· 

2

2
=
− sin  +  cos 

− cos  −  sin 

When  = ,



=

−0 + (−1)

−(−1)− (0)
=
−
1

= −.

58.  = cos(3) ⇒  =  cos  = cos(3) cos ,  =  sin  = cos(3) sin  ⇒




=




=

cos(3) cos  + sin 
−1

3
sin(3)


cos(3) (− sin ) + cos 

−1
3

sin(3)


When  = ,



=

1
2

(−1) + (0)
−√36


1
2

(0) + (−1)
−√36

 =
−12√

36
= − 3√

3
= −√3.
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59.  = cos 2 ⇒  =  cos  = cos 2 cos ,  =  sin  = cos 2 sin  ⇒




=




=

cos 2 cos  + sin  (−2 sin 2)

cos 2 (− sin ) + cos  (−2 sin 2)

When  =


4
,



=

0
√

22


+
√

22

(−2)

0
−√22


+
√

22

(−2)

=
−√2

−√2
= 1.

60.  = 1 + 2 cos  ⇒  =  cos  = (1 + 2 cos ) cos ,  =  sin  = (1 + 2 cos ) sin  ⇒




=




=

(1 + 2 cos ) cos  + sin  (−2 sin )

(1 + 2 cos )(− sin ) + cos  (−2 sin )

When  =


3
,



=

2


1
2


+
√

32
−√3


2
−√32


+ 1

2

−√3
 · 2

2
=

2− 3

−2
√

3−√3
=

−1

−3
√

3
=

√
3

9
.

61.  = 3 cos  ⇒  =  cos  = 3cos  cos ,  =  sin  = 3 cos  sin  ⇒



= −3 sin2  + 3 cos2  = 3 cos 2 = 0 ⇒ 2 = 

2
or 3

2
⇔  = 

4
or 3

4
.

So the tangent is horizontal at


3√
2
 

4


and


− 3√

2
 3

4

 
same as


3√
2
−

4


.




= −6 sin  cos  = −3 sin 2 = 0 ⇒ 2 = 0 or  ⇔  = 0 or 
2
. So the tangent is vertical at (3 0) and


0 

2


.

62.  = 1− sin  ⇒  =  cos  = cos  (1− sin ),  =  sin  = sin  (1− sin ) ⇒



= sin  (− cos ) + (1− sin ) cos  = cos  (1− 2 sin ) = 0 ⇒ cos  = 0 or sin  = 1

2
⇒

 = 
6
, 

2
, 5

6
, or 3

2
⇒ horizontal tangent at


1
2
 

6


,


1
2
 5

6


, and


2 3

2


.




= cos  (− cos ) + (1− sin )(− sin ) = − cos2  − sin  + sin2  = 2 sin2  − sin  − 1

= (2 sin  + 1)(sin  − 1) = 0 ⇒

sin  = − 1
2
or 1 ⇒  = 7

6
, 11

6
, or 

2
⇒ vertical tangent at


3
2
 7

6





3
2
 11

6


, and


0 

2


.

Note that the tangent is vertical, not horizontal, when  = 
2
, since

lim
→(2)−




= lim

→(2)−

cos  (1− 2 sin )

(2 sin  + 1)(sin  − 1)
=∞ and lim

→(2)+




= −∞.

63.  = 1 + cos  ⇒  =  cos  = cos  (1 + cos ),  =  sin  = sin  (1 + cos ) ⇒



= (1 + cos ) cos  − sin2  = 2cos2  + cos  − 1 = (2 cos  − 1)(cos  + 1) = 0 ⇒ cos  = 1

2
or −1 ⇒

 = 
3
, , or 5

3
⇒ horizontal tangent at


3
2
 

3


, (0 ), and


3
2
 5

3


.




= −(1 + cos ) sin  − cos  sin  = − sin  (1 + 2 cos ) = 0 ⇒ sin  = 0 or cos  = −1
2
⇒

 = 0, , 2
3
, or 4

3
⇒ vertical tangent at (2 0),


1
2
 2

3


, and


1
2
 4

3


.

Note that the tangent is horizontal, not vertical when  = , since lim
→




= 0.

64.  =  ⇒  =  cos  =  cos ,  =  sin  =  sin  ⇒



=  sin  +  cos  = (sin  + cos ) = 0 ⇒ sin  = − cos  ⇒ tan  = −1 ⇒
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 = − 1
4
 +  [ any integer] ⇒ horizontal tangents at


(−14) 


− 1

4


.




=  cos  −  sin  =  (cos  − sin ) = 0 ⇒ sin  = cos  ⇒ tan  = 1 ⇒

 = 1
4
 +  [ any integer] ⇒ vertical tangents at


(+14), 


+ 1

4


.

65.  =  sin  +  cos  ⇒ 2 =  sin  +  cos  ⇒ 2 + 2 =  +  ⇒
2 −  +


1
2

2

+ 2 −  +


1
2

2

=


1
2

2

+


1
2

2 ⇒ 

− 1
2

2

+

 − 1

2

2

= 1
4
(2 + 2), and this is a circle

with center


1
2
 1

2


and radius 1

2

√
2 + 2.

66. These curves are circles which intersect at the origin and at


1√
2
 

4


. At the origin, the first circle has a horizontal

tangent and the second a vertical one, so the tangents are perpendicular here. For the first circle [ =  sin ],

 =  cos  sin  +  sin  cos  =  sin 2 =  at  = 
4
and  =  cos2  −  sin2  =  cos 2 = 0

at  = 
4
, so the tangent here is vertical. Similarly, for the second circle [ =  cos ],  =  cos 2 = 0 and

 = − sin 2 = − at  = 
4
, so the tangent is horizontal, and again the tangents are perpendicular.

67.  = 1 + 2 sin(2). The parameter interval is [0 4]. 68.  =


1− 08 sin2 . The parameter interval is [0 2].

69.  = sin  − 2 cos(4).

The parameter interval is [0 2].

70.  = |tan ||cot |.
The parameter interval [0 ] produces the heart-shaped valentine curve shown in the first window.

The complete curve, including the reflected heart, is produced by the parameter interval [0 2], but perhaps you’ll agree

that the first curve is more appropriate.
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71.  = 1 + cos999 . The parameter interval is [0 2]. 72.  = 2 + cos(94). The parameter interval is [0 8].

73. It appears that the graph of  = 1 + sin

 − 

6


is the same shape as

the graph of  = 1 + sin , but rotated counterclockwise about the

origin by 
6
. Similarly, the graph of  = 1 + sin


 − 

3


is rotated by


3
. In general, the graph of  = ( − ) is the same shape as that of

 = (), but rotated counterclockwise through  about the origin.

That is, for any point (0 0) on the curve  = (), the point

(0 0 + ) is on the curve  = ( − ), since 0 = (0) = ((0 + )− ).

74. From the graph, the highest points seem to have  ≈ 077. To find the exact

value, we solve  = 0.  =  sin  = sin  sin 2 ⇒
 = 2 sin  cos 2 + cos  sin 2

= 2 sin  (2 cos2  − 1) + cos  (2 sin  cos )

= 2 sin  (3 cos2  − 1)

In the first quadrant, this is 0 when cos  = 1√
3
⇔ sin  =


2
3
⇔

 = 2 sin2  cos  = 2 · 2
3
· 1√

3
= 4

9

√
3 ≈ 077.

75. Consider curves with polar equation  = 1 +  cos , where  is a real number. If  = 0, we get a circle of radius 1 centered at

the pole. For 0   ≤ 05, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 05    1,

the left side has a dimple shape. For  = 1, the dimple becomes a cusp. For   1, there is an internal loop. For  ≥ 0, the

rightmost point on the curve is (1 +  0). For   0, the curves are reflections through the vertical axis of the curves

with   0.

 = 025  = 075  = 1  = 2
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76. Consider the polar curves  = 1 + cos , where  is a positive integer. First, let

 be an even positive integer. The first figure shows that the curve has a peanut

shape for  = 2, but as  increases, the ends are squeezed. As  becomes large,

the curves look more and more like the unit circle, but with spikes to the points

(2 0) and (2 ).

The second figure shows  as a function of  in Cartesian coordinates for the same

values of . We can see that for large , the graph is similar to the graph of  = 1,

but with spikes to  = 2 for  = 0, , and 2. (Note that when 0  cos   1,

cos1000  is very small.)

Next, let  be an odd positive integer. The third figure shows that the curve is a

cardioid for  = 1, but as  increases, the heart shape becomes more pronounced.

As  becomes large, the curves again look more like the unit circle, but with an

outward spike to (2 0) and an inward spike to (0 ).

The fourth figure shows  as a function of  in Cartesian coordinates for the same

values of . We can see that for large , the graph is similar to the graph of  = 1,

but spikes to  = 2 for  = 0 and , and to  = 0 for  = .

77. tan = tan(− ) =
tan− tan 

1 + tan tan 
=




− tan 

1 +



tan 

=




− tan 

1 +



tan 

=




− 


tan 




+




tan 

=





sin  +  cos 


− tan 





cos  −  sin 






cos  −  sin 


+ tan 





sin  +  cos 

 =
 cos  +  · sin2 

cos 



cos  +




· sin2 

cos 

=
 cos2  +  sin2 




cos2  +




sin2 

=




78. (a)  =  ⇒  = , so by Exercise 77, tan =  = 1 ⇒
 = arctan 1 = 

4
.

(b) The Cartesian equation of the tangent line at (1 0) is  = − 1, and that of

the tangent line at (0 2) is  = 2 − .

(c) Let  be the tangent of the angle between the tangent and radial lines, that

is,  = tan. Then, by Exercise 77,  =



⇒ 


=

1


 ⇒

 =  (by Theorem 9.4.2).
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LABORATORY PROJECT Families of Polar Curves

1. (a)  = sin.

 = 2  = 3  = 4  = 5

From the graphs, it seems that when  is even, the number of loops in the curve (called a rose) is 2, and when  is odd,

the number of loops is simply . This is because in the case of  odd, every point on the graph is traversed twice, due to

the fact that

( + ) = sin[( + )] = sin cos + cos sin =


sin if  is even

− sin if  is odd

(b) The graph of  = |sin| has 2 loops whether  is odd or even, since ( + ) = ().

 = 2  = 3  = 4  = 5

2.  = 1 +  sin. We vary  while keeping  constant at 2. As  changes, the curves change in the same way as those in

Exercise 1: the number of loops increases. Note that if  is even, the smaller loops are outside the larger ones; if  is odd, they

are inside.

 = 2

 = 2  = 3  = 4  = 5
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Now we vary  while keeping  = 3. As  increases toward 0, the entire graph gets smaller (the graphs below are not to scale)

and the smaller loops shrink in relation to the large ones. At  = −1, the small loops disappear entirely, and for −1    1,

the graph is a simple, closed curve (at  = 0 it is a circle). As  continues to increase, the same changes are seen, but in reverse

order, since 1 + (−) sin = 1 +  sin( + ), so the graph for  = 0 is the same as that for  = −0, with a rotation
through . As →∞, the smaller loops get relatively closer in size to the large ones. Note that the distance between the

outermost points of corresponding inner and outer loops is always 2. Maple’s animate command (or Mathematica’s

Animate) is very useful for seeing the changes that occur as  varies.

 = 3

 = −4  = −14  = −1  = −08

 = −02  = 0  = 05  = 8

3.  =
1−  cos 

1 +  cos 
. We start with  = 0, since in this case the curve is simply the circle  = 1.

As  increases, the graph moves to the left, and its right side becomes flattened. As  increases through about 04, the right

side seems to grow a dimple, which upon closer investigation (with narrower -ranges) seems to appear at  ≈ 042 [the

actual value is
√

2− 1]. As → 1, this dimple becomes more pronounced, and the curve begins to stretch out horizontally,

until at  = 1 the denominator vanishes at  = , and the dimple becomes an actual cusp. For   1 we must choose our

parameter interval carefully, since  →∞ as 1 +  cos → 0 ⇔ → ± cos−1(−1). As  increases from 1, the curve

splits into two parts. The left part has a loop, which grows larger as  increases, and the right part grows broader vertically,

and its left tip develops a dimple when  ≈ 242 [actually,
√

2 + 1]. As  increases, the dimple grows more and more

pronounced. If   0, we get the same graph as we do for the corresponding positive -value, but with a rotation through 

about the pole, as happened when  was replaced with − in Exercise 2.
[continued]
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 = 0  = 03  = 041 || ≤ 05

 = 042,|| ≤ 05  = 09 || ≤ 05  = 1 || ≤ 01

 = 2

 = 241, | − | ≤ 02

 = 242, | − | ≤ 02

 = 4

4. Most graphing devices cannot plot implicit polar equations, so we must first find an explicit expression (or expressions) for 

in terms of , , and . We note that the given equation, 4 − 222 cos 2 + 4 − 4 = 0, is a quadratic in 2, so we use the

quadratic formula and find that

2 =
22 cos 2 ±


44 cos2 2 − 4(4 − 4)

2
= 2 cos 2 ±


4 − 4 sin2 2

so  = ±

2 cos 2 ±


4 − 4 sin2 2. So for each graph, we must plot four curves to be sure of plotting all the points

which satisfy the given equation. Note that all four functions have period .

We start with the case  =  = 1, and the resulting curve resembles the symbol for infinity. If we let  decrease, the curve

splits into two symmetric parts, and as  decreases further, the parts become smaller, further apart, and rounder. If instead we

let  increase from 1, the two lobes of the curve join together, and as  increases further they continue to merge, until at
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 ≈ 14, the graph no longer has dimples, and has an oval shape. As →∞, the oval becomes larger and rounder, since the

2 and 4 terms lose their significance. Note that the shape of the graph seems to depend only on the ratio , while the size

of the graph varies as  and  jointly increase.

( ) = (1 1) ( ) = (099 1) ( ) = (09 1)

( ) = (06 1) ( ) = (101 1) ( ) = (404 4)

( ) = (13 1)

( ) = (15 1) ( ) = (2 1) ( ) = (4 1)

10.4 Areas and Lengths in Polar Coordinates

1.  = −4, 2 ≤  ≤ .

 =

 

2

1
2

2
 =

 

2

1
2
(
−4

)
2
 =

 

2

1
2

−2

 = 1
2


−2

−2

2

= −1(
−2 − 

−4
) = 

−4 − 
−2

2.  = cos , 0 ≤  ≤ 6.

=

 6

0

1
2

2
 =

 6

0

1
2

cos
2
  = 1

2

 6

0

1
2
(1 + cos 2)  = 1

4


 + 1

2
sin 2

6
0

= 1
4



6

+ 1
2
· 1

2

√
3


= 
24

+ 1
16

√
3

3.  = sin  + cos , 0 ≤  ≤ .

=

 

0

1

2

2
 =

 

0

1

2
(sin  + cos )

2
 =

 

0

1

2
(sin

2
 + 2 sin  cos  + cos

2
)  =

 

0

1

2
(1 + sin 2) 

= 1
2


 − 1

2
cos 2


0

= 1
2


 − 1

2

− 0− 1
2


= 

2
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4.  = 1, 2 ≤  ≤ 2.

=

 2

2

1

2

2
 =

 2

2

1

2


1



2

 =

 2

2

1

2

−2

 =
1

2


−1



2
2

= 1
2

− 1
2

+ 2



= 1

2

− 1
2

+ 4
2


= 3

4

5. 2 = sin 2, 0 ≤  ≤ 2.

 =

 2

0

1
2

2
 =

 2

0

1
2

sin 2  =

− 1

4
cos 2

2
0

= −1
4
(cos − cos 0) = −1

4
(−1− 1) = 1

2

6.  = 2 + cos , 2 ≤  ≤ .

=

 

2

1
2

2
 =

 

2

1
2
(2 + cos )

2
 =

 

2

1
2
(4 + 4 cos  + cos

2
)  =

 

2

1
2
[4 + 4 cos  + 1

2
(1 + cos 2)] 

=

 

2


9
4

+ 2cos  + 1
4

cos 2

 =


9
4
 + 2 sin  + 1

8
sin 2


2

=


9
4

+ 0 + 0
−  9

8
+ 2 + 0


= 9

8
− 2

7.  = 4 + 3 sin , −
2
≤  ≤ 

2
.

=

 2

−2
1
2
((4 + 3 sin )

2
 = 1

2

 2

−2
(16 + 24 sin  + 9 sin

2
) 

= 1
2

 2

−2
(16 + 9 sin

2
)  [by Theorem 5.5.7(b) ]

= 1
2
· 2
 2

0


16 + 9 · 1

2
(1− cos 2)


 [by Theorem 5.5.7(a) ]

=

 2

0


41
2
− 9

2
cos 2


 =


41
2
 − 9

4
sin 2

2
0

=


41
4
− 0
− (0− 0) = 41

4

8.  =
√

ln , 1 ≤  ≤ 2.

=

 2

1

1
2

√
ln 

2

 =

 2

1

1
2

ln   =


1
2
 ln 

2
1
−
 2

1

1
2



 = ln ,  = 1

2


 = (1) ,  = 1
2



= [ ln(2)− 0]−


1
2

2
1

=  ln(2)−  + 1
2

9. The area is bounded by  = 2 sin  for  = 0 to  = .

=

 

0

1
2

2
 = 1

2

 

0

(2 sin )
2
 = 1

2

 

0

4 sin
2
 

= 2

 

0

1
2
(1− cos 2) =


 − 1

2
sin 2


0

= 

Also, note that this is a circle with radius 1, so its area is (1)2 = .

10. =

 2

0

1
2

2
 =

 2

0

1
2
(1− sin )

2


= 1
2

 2

0

(1− 2 sin  + sin
2
)  = 1

2

 2

0


1− 2 sin  + 1

2
(1− cos 2)




= 1
2

 2

0


3
2
− 2 sin  − 1

2
cos 2


 = 1

2


3
2
 + 2cos  − 1

4
sin 2

2
0

= 1
2
[(3 + 2)− (2)] = 3

2
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11. =

 2

0

1
2

2
 =

 2

0

1
2
(3 + 2 cos )

2
 = 1

2

 2

0

(9 + 12 cos  + 4cos
2
) 

= 1
2

 2

0


9 + 12 cos  + 4 · 1

2
(1 + cos 2)




= 1
2

 2

0

(11 + 12 cos  + 2cos 2)  = 1
2


11 + 12 sin  + sin 2

2
0

= 1
2
(22) = 11

12. =

 2

0

1
2

2
 =

 2

0

1
2
(2− cos )

2
 =

 2

0

1
2
(4− 4 cos  + cos

2
) 

=

 2

0

1
2


4− 4 cos  + 1

2
(1 + cos 2)


 =

 2

0


9
4
− 2 cos  + 1

4
cos 2




=


9
4
 − 2 sin  + 1

8
sin 2

2
0

=


9
2
− 0 + 0

− (0− 0 + 0) = 9
2

13. =

 2

0

1
2

2
 =

 2

0

1
2
(2 + sin 4)

2
 = 1

2

 2

0

(4 + 4 sin 4 + sin
2
4) 

= 1
2

 2

0


4 + 4 sin 4 + 1

2
(1− cos 8)




= 1
2

 2

0


9
2

+ 4 sin 4 − 1
2

cos 8

 = 1

2


9
2
 − cos 4 − 1

16
sin 8

2
0

= 1
2
[(9 − 1)− (−1)] = 9

2


14. =

 2

0

1
2

2
 =

 2

0

1
2
(3− 2 cos 4)

2
 = 1

2

 2

0

(9− 12 cos 4 + 4cos
2
4) 

= 1
2

 2

0


9− 12 cos 4 + 4 · 1

2
(1 + cos 8)




= 1
2

 2

0

(11− 12 cos 4 + 2 cos 8)  = 1
2


11 − 3 sin 4 + 1

4
sin 8

2
0

= 1
2
(22) = 11

15. =

 2

0

1
2

2
 =

 2

0

1
2


1 + cos2 5

2



= 1
2

 2

0

(1 + cos
2
5)  = 1

2

 2

0


1 + 1

2
(1 + cos 10)




= 1
2


3
2
 + 1

20
sin 10

2
0

= 1
2
(3) = 3

2
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16. =

 2

0

1
2

2
 =

 2

0

1
2
(1 + 5 sin 6)

2


= 1
2

 2

0

(1 + 10 sin 6 + 25 sin
2
6) 

= 1
2

 2

0


1 + 10 sin 6 + 25 · 1

2
(1− cos 12)




= 1
2

 2

0


27
2

+ 10 sin 6 − 25
2

cos 12

 = 1

2


27
2
 − 5

3
cos 6 − 25

24
sin 12

2
0

= 1
2


27 − 5

3

− −5
3


= 27

2


17. The curve passes through the pole when  = 0 ⇒ 4 cos 3 = 0 ⇒ cos 3 = 0 ⇒ 3 = 
2

+  ⇒

 = 
6

+ 
3
. The part of the shaded loop above the polar axis is traced out for

 = 0 to  = 6, so we’ll use −6 and 6 as our limits of integration.

=

 6

−6
1
2
(4 cos 3)

2
 = 2

 6

0

1
2
(16 cos

2
3) 

= 16

 6

0

1
2
(1 + cos 6)  = 8


 + 1

6
sin 6

6
0

= 8


6


= 4

3


18. The curve given by 2 = 4cos 2 passes through the pole when  = 0 ⇒ 4 cos 2 = 0 ⇒ cos 2 = 0 ⇒
2 = 

2
+  ⇒  = 

4
+ 

2
. The part of the shaded loop above the polar axis is traced out for  = 0 to  = 4,

so we’ll use −4 to 4 as our limits of integration.

=

 4

−4
1
2
(4 cos 2)  = 2

 4

0

2 cos 2  = 2

sin 2

4
0

= 2 sin 
2

= 2(1) = 2

19.  = 0 ⇒ sin 4 = 0 ⇒ 4 =  ⇒  = 
4
.

=

 4

0

1
2
(sin 4)

2
 = 1

2

 4

0

sin
2
4  = 1

2

 4

0

1
2
(1− cos 8) 

= 1
4


 − 1

8
sin 8

4
0

= 1
4



4


= 1

16


20.  = 0 ⇒ 2 sin 5 = 0 ⇒ sin 5 = 0 ⇒ 5 =  ⇒  = 
5
.

=

 5

0

1
2
(2 sin 5)

2
 = 1

2

 5

0

4 sin
2
5 

= 2

 5

0

1
2
(1− cos 10)  =


 − 1

10
sin 10

5
0

= 
5
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21. This is a limaçon, with inner loop traced

out between  = 7
6
and 11

6
[found by

solving  = 0].

= 2

 32

76

1
2
(1 + 2 sin )

2
 =

 32

76


1 + 4 sin  + 4 sin

2


 =

 32

76


1 + 4 sin  + 4 · 1

2
(1− cos 2)




=

 − 4 cos  + 2 − sin 2

32
76

=


9
2

−  7
2

+ 2
√

3−
√

3
2


=  − 3

√
3

2

22. To determine when the strophoid  = 2cos  − sec  passes through the pole, we solve

 = 0 ⇒ 2 cos  − 1

cos 
= 0 ⇒ 2 cos2  − 1 = 0 ⇒ cos2  =

1

2
⇒

cos  = ± 1√
2

⇒  = 
4
or  = 3

4
for 0 ≤  ≤  with  6= 

2
.

= 2

 4

0

1
2
(2 cos  − sec )

2
 =

 4

0

(4 cos
2
 − 4 + sec

2
) 

=

 4

0


4 · 1

2
(1 + cos 2)− 4 + sec

2


 =

 4

0

(−2 + 2 cos 2 + sec
2
) 

=
−2 + sin 2 + tan 

4
0

=
−

2
+ 1 + 1

− 0 = 2− 
2

23. 4 sin  = 2 ⇒ sin  = 1
2
⇒  = 

6
or 5

6
⇒

=

 56

6

1
2
[(4 sin )

2 − 2
2
]  = 2

 2

6

1
2
(16 sin

2
 − 4) 

=

 2

6


16 · 1

2
(1− cos 2)− 4


 =

 2

6

(4− 8 cos 2) 

=

4 − 4 sin 2

2
6

= (2 − 0)−  2
3
− 2
√

3


= 4
3

+ 2
√

3

24. 1− sin  = 1 ⇒ sin  = 0 ⇒  = 0 or  ⇒

=

 2



1
2


(1− sin )

2 − 1

 = 1

2

 2



(sin
2
 − 2 sin ) 

= 1
4

 2



(1− cos 2 − 4 sin )  = 1
4


 − 1

2
sin 2 + 4cos 

2


= 1
4
 + 2
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25. To find the area inside the leminiscate 2 = 8 cos 2 and outside the circle  = 2,

we first note that the two curves intersect when 2 = 8 cos 2 and  = 2,

that is, when cos 2 = 1
2
. For −   ≤ , cos 2 = 1

2
⇔ 2 = ±3

or ±53 ⇔  = ±6 or ±56. The figure shows that the desired area

is 4 times the area between the curves from 0 to 6. Thus,

= 4
 6
0


1
2
(8 cos 2)− 1

2
(2)2


 = 8

 6
0

(2 cos 2 − 1) 

= 8

sin 2 − 

6
0

= 8
√

32− 6


= 4
√

3− 43

26. 3 sin  = 1 + sin  ⇒ sin  = 1
2
⇒  = 

6
or 5

6
⇒

=

 56

6

1
2
[(3 sin )

2 − (1 + sin )
2
] 

= 2

 2

6

1
2
(9 sin

2
 − 1− 2 sin  − sin

2
) 

=

 2

6

(8 sin
2
 − 1− 2 sin ) 

=

 2

6


8 · 1

2
(1− cos 2)− 1− 2 sin 


 =

 2

6

(3− 4 cos 2 − 2 sin ) 

=

3 − 2 sin 2 + 2cos 

2
6

=


3
2
− 0 + 0

− 
2
−√3 +

√
3


= 

27. 3 cos  = 1 + cos  ⇔ cos  = 1
2
⇒  = 

3
or −

3
.

= 2
 3
0

1
2
[(3 cos )2 − (1 + cos )2] 

=
 3
0

(8 cos2  − 2 cos  − 1)  =
 3
0

[4(1 + cos 2)− 2 cos  − 1] 

=
 3
0

(3 + 4 cos 2 − 2 cos )  =

3 + 2 sin 2 − 2 sin 

3
0

=  +
√

3−√3 = 

28. 3 sin  = 2− sin  ⇒ 4 sin  = 2 ⇒ sin  = 1
2
⇒  = 

6
or 5

6
.

= 2
 2
6

1
2
[(3 sin )2 − (2− sin )2] 

=
 2
6

(9 sin2  − 4 + 4 sin  − sin2 ] 

=
 2
6

(8 sin2  + 4 sin  − 4) 

= 4
 2
6


2 · 1

2
(1− cos 2) + sin  − 1




= 4
 2
6

(sin  − cos 2)  = 4
−cos  − 1

2
sin 2

2
6

= 4

(0− 0)−


−
√

3
2
−
√

3
4


= 4


3
√

3
4


= 3

√
3
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29. 3 sin  = 3cos  ⇒ 3 sin 

3 cos 
= 1 ⇒ tan  = 1 ⇒  = 

4
⇒

= 2

 4

0

1
2
(3 sin )

2
 =

 4

0

9 sin
2
  =

 4

0

9 · 1
2
(1− cos 2) 

=

 4

0


9
2
− 9

2
cos 2


 =


9
2
 − 9

4
sin 2

4
0

=


9
8
− 9

4

− (0− 0)

= 9
8
− 9

4

30. = 4
 2
0

1
2
(1− cos )2  = 2

 2
0

(1− 2 cos  + cos2 ) 

= 2
 2
0


1− 2 cos  + 1

2
(1 + cos 2)




= 2
 2
0


3
2
− 2 cos  + 1

2
cos 2


 =

 2
0

(3− 4 cos  + cos 2) 

=

3 − 4 sin  + 1

2
sin 2

2
0

= 3
2
− 4

31. sin 2 = cos 2 ⇒ sin 2

cos 2
= 1 ⇒ tan 2 = 1 ⇒ 2 = 

4
⇒

 = 
8
⇒

= 8 · 2
 8

0

1
2

sin
2
2  = 8

 8

0

1
2
(1− cos 4) 

= 4

 − 1

4
sin 4

8
0

= 4


8
− 1

4
· 1 = 

2
− 1

32. 3 + 2 cos  = 3 + 2 sin  ⇒ cos  = sin  ⇒  = 
4
or 5

4
.

= 2
 54

4

1
2
(3 + 2 cos )2  =

 54

4
(9 + 12 cos  + 4cos2 ) 

=
 54

4


9 + 12 cos  + 4 · 1

2
(1 + cos 2)




=
 54

4
(11 + 12 cos  + 2cos 2)  =


11 + 12 sin  + sin 2

54
4

=


55
4
− 6

√
2 + 1

−  11
4

+ 6
√

2 + 1


= 11 − 12
√

2

33. From the figure, we see that the shaded region is 4 times the shaded region

from  = 0 to  = 4. 2 = 2 sin 2 and  = 1 ⇒
2 sin 2 = 12 ⇒ sin 2 = 1

2
⇒ 2 = 

6
⇒  = 

12
.

= 4

 12

0

1
2
(2 sin 2)  + 4

 4

12

1
2
(1)

2


=

 12

0

4 sin 2  +

 4

12

2  =

−2 cos 2

12
0

+

2
4
12

=
−√3 + 2


+


2
− 

6


= −√3 + 2 + 

3
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34. Let  = tan−1 (). Then

 =
 
0

1
2
( sin )2  +

 2


1
2
( cos )2 

= 1
4
2

 − 1

2
sin 2


0

+ 1
4
2

 + 1

2
sin 2

2


= 1
4
(2 − 2) + 1

8
2 − 1

4
(2 + 2)(sin cos)

= 1
4
(2 − 2) tan−1() + 1

8
2 − 1

4


35. The darker shaded region (from  = 0 to  = 23) represents 1
2
of the desired area plus 1

2
of the area of the inner loop.

From this area, we’ll subtract 1
2
of the area of the inner loop (the lighter shaded region from  = 23 to  = ), and then

double that difference to obtain the desired area.

 = 2
 23

0

1
2


1
2

+ cos 
2

 −  
23

1
2


1
2

+ cos 
2




=
 23

0


1
4

+ cos  + cos2 

 −  

23


1
4

+ cos  + cos2 



=
 23

0


1
4

+ cos  + 1
2
(1 + cos 2)




−  
23


1
4

+ cos  + 1
2
(1 + cos 2)




=




4
+ sin  +



2
+

sin 2

4

23
0

−



4
+ sin  +



2
+

sin 2

4


23

=


6

+
√

3
2

+ 
3
−
√

3
8


− 

4
+ 

2


+


6

+
√

3
2

+ 
3
−
√

3
8


= 

4
+ 3

4

√
3 = 1

4


 + 3

√
3


36.  = 0 ⇒ 1 + 2 cos 3 = 0 ⇒ cos 3 = − 1
2
⇒ 3 = 2

3
, 4

3
[for

0 ≤ 3 ≤ 2] ⇒  = 2
9
, 4

9
. The darker shaded region (from  = 0 to

 = 29) represents 1
2
of the desired area plus 1

2
of the area of the inner

loop. From this area, we’ll subtract 1
2
of the area of the inner loop (the lighter

shaded region from  = 29 to  = 3), and then double that difference to

obtain the desired area.

 = 2
 29

0

1
2
(1 + 2 cos 3)2  −  3

29

1
2
(1 + 2 cos 3)2 


Now 2 = (1 + 2 cos 3)2 = 1 + 4 cos 3 + 4 cos2 3 = 1 + 4 cos 3 + 4 · 1

2
(1 + cos 6)

= 1 + 4 cos 3 + 2 + 2 cos 6 = 3 + 4 cos 3 + 2 cos 6

and

2 = 3 + 4

3
sin 3 + 1

3
sin 6 + , so

 =

3 + 4

3
sin 3 + 1

3
sin 6

29
0

− 3 + 4
3

sin 3 + 1
3

sin 6
3
29

=


2
3

+ 4
3
·
√

3
2

+ 1
3
· −
√

3
2


− 0

−

( + 0 + 0)−


2
3

+ 4
3
·
√

3
2

+ 1
3
· −

√
3

2


= 4

3
+ 4

3

√
3− 1

3

√
3−  = 

3
+
√

3
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37. The pole is a point of intersection. sin  = 1− sin  ⇒ 2 sin  = 1 ⇒

sin  = 1
2
⇒  = 

6
or 5

6
. So the other points of intersection are

1
2
 

6


and


1
2
 5

6


.

38. The pole is a point of intersection. 1 + cos  = 1− sin  ⇒

cos  = − sin  ⇒ cos 

sin 
= −1 ⇒ cot  = −1 ⇒  = 3

4

or 7
4
. So the other points of intersection are


1− 1

2

√
2 3

4


and

1 + 1
2

√
2 7

4


.

39. 2 sin 2 = 1 ⇒ sin 2 = 1
2
⇒ 2 = 

6
, 5

6
, 13

6
, or 17

6
.

By symmetry, the eight points of intersection are given by

(1 ), where  = 
12
, 5

12
, 13

12
, and 17

12
, and

(−1 ), where  = 7
12
, 11

12
, 19

12
, and 23

12
.

[There are many ways to describe these points.]

40. Clearly the pole lies on both curves. sin 3 = cos 3 ⇒ tan 3 = 1 ⇒
3 = 

4
+  [ any integer] ⇒  = 

12
+ 

3
 ⇒

 = 
12
, 5

12
, or 3

4
, so the three remaining intersection points are

1√
2
 

12


,

− 1√

2
 5

12


, and


1√
2
 3

4


.

41. The pole is a point of intersection. sin  = sin 2 = 2 sin  cos  ⇔
sin  (1− 2 cos ) = 0 ⇔ sin  = 0 or cos  = 1

2
⇒

 = 0, , 
3
, or −

3
⇒ the other intersection points are

√
3

2
 

3


and

√
3

2
 2

3


[by symmetry].

42. Clearly the pole is a point of intersection. sin 2 = cos 2 ⇒
tan 2 = 1 ⇒ 2 = 

4
+ 2 [since sin 2 and cos 2 must be

positive in the equations] ⇒  = 
8

+  ⇒  = 
8
or 9

8
.

So the curves also intersect at


1
4√

2
 

8


and


1
4√

2
 9

8


.
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43.

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the -values

of the intersection points to be  ≈ 088786 ≈ 089 and  −  ≈ 225. (The first of these values may be more easily

estimated by plotting  = 1 + sin and  = 2 in rectangular coordinates; see the second graph.) By symmetry, the total

area contained is twice the area contained in the first quadrant, that is,

= 2

 

0

1
2
(2)

2
 + 2

 2



1
2
(1 + sin )

2
 =

 

0

4
2
 +

 2




1 + 2 sin  + 1

2
(1− cos 2)




=


4
3
3

0

+

 − 2 cos  +


1
2
 − 1

4
sin 2

2


= 4
3
3 +



2

+ 
4

− − 2 cos+ 1
2
− 1

4
sin 2

 ≈ 34645

44. We need to find the shaded area  in the figure. The horizontal line

representing the front of the stage has equation  = 4 ⇔
 sin  = 4 ⇒  = 4 sin . This line intersects the curve

 = 8 + 8 sin  when 8 + 8 sin  =
4

sin 
⇒

8 sin  + 8 sin2  = 4 ⇒ 2 sin2  + 2 sin  − 1 = 0 ⇒

sin  =
−2±√4 + 8

4
=
−2± 2

√
3

4
=
−1 +

√
3

2
[the other value is less than−1] ⇒  = sin−1

√
3− 1

2


.

This angle is about 215◦ and is denoted by  in the figure.

= 2
 2


1
2
(8 + 8 sin )2  − 2

 2


1
2
(4 csc )2  = 64

 2


(1 + 2 sin  + sin2 )  − 16
 2


csc2  

= 64
 2



1 + 2 sin  + 1

2
− 1

2
cos 2


 + 16

 2


(− csc2 )  = 64


3
2
 − 2 cos  − 1

4
sin 2

2


+ 16

cot 

2


= 16

6 − 8 cos  − sin 2 + cot 




= 16[(3 − 0− 0 + 0)− (6− 8 cos− sin 2+ cot)]

= 48 − 96+ 128 cos+ 16 sin 2− 16 cot

From the figure, 2 +
√

3− 1
2

= 22 ⇒ 2 = 4− 3− 2
√

3 + 1
 ⇒

2 = 2
√

3 =
√

12, so  =


2
√

3 =
4
√

12. Using the trigonometric relationships

for a right triangle and the identity sin 2 = 2 sin cos, we continue:

= 48 − 96+ 128 ·
4
√

12

2
+ 16 · 2 ·

√
3− 1

2
·

4
√

12

2
− 16 ·

4
√

12√
3− 1

·
√

3 + 1√
3 + 1

= 48 − 96+ 64
4
√

12 + 8
4
√

12
√

3− 1
− 8

4
√

12
√

3 + 1


= 48 + 48
4
√

12− 96 sin−1

√
3− 1

2


≈ 20416 m2
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45. =

 




2 + ()2  =

 

0


(2 cos )2 + (−2 sin )2 

=

 

0


4(cos2  + sin2 )  =

 

0

√
4  =


2

0

= 2

As a check, note that the curve is a circle of radius 1, so its circumference is 2(1) = 2.

46. =

 




2 + ()2  =

 2

0


(5)2 + (5 ln 5)2  =

 2

0


52[1 + (ln 5)2] 

=


1 + (ln 5)2
 2

0

√
52  =


1 + (ln 5)2

 2

0

5

 =


1 + (ln 5)2


5

ln 5

2
0

=


1 + (ln 5)2


52

ln 5
− 1

ln 5


=


1 + (ln 5)2

ln 5
(52 − 1)

47.  =

 




2 + ()2  =

 2

0


(2)2 + (2)2  =

 2

0


4 + 42 

=

 2

0


2(2 + 4)  =

 2

0



2 + 4 

Now let  = 2 + 4, so that  = 2 

  = 1

2



and

 2

0



2 + 4  =

 42+4

4

1
2

√
 = 1

2
· 2

3




32
4(2+1)

4
= 1

3
[4

32
(

2
+ 1)

32 − 4
32

] = 8
3
[(

2
+ 1)

32 − 1]

48. =

 




2 + ()2  =

 2

0


[2(1 + cos )]2 + (−2 sin )2  =

 2

0


4 + 8 cos  + 4 cos2  + 4 sin2  

=

 2

0

√
8 + 8 cos   =

√
8

 2

0

√
1 + cos   =

√
8

 2

0


2 · 1

2
(1 + cos ) 

=
√

8

 2

0


2 cos2



2
 =

√
8
√

2

 2

0

cos 2
  = 4 · 2

 

0

cos


2
 [by symmetry]

= 8


2 sin



2


0

= 8(2) = 16

49. The curve  = cos4(4) is completely traced with 0 ≤  ≤ 4.

2 + ()2 = [cos4(4)]2 +

4 cos3(4) · (− sin(4)) · 1

4

2
= cos8(4) + cos6(4) sin2(4)

= cos6(4)[cos2(4) + sin2(4)] = cos6(4)

 =
 4

0


cos6(4)  =

 4

0

cos3(4) 
= 2

 2

0
cos3(4)  [since cos3(4) ≥ 0 for 0 ≤  ≤ 2] = 8

 2
0

cos3 

 = 1

4



= 8
 2
0

(1− sin2 ) cos = 8
 1

0
(1− 2) 


 = sin

 = cos


= 8


− 1

3
3
1
0

= 8

1− 1

3


= 16

3
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50. The curve  = cos2(2) is completely traced with 0 ≤  ≤ 2.

2 + ()2 = [cos2(2)]2 +

2 cos(2) · (− sin(2)) · 1

2

2
= cos4(2) + cos2 (2) sin2(2)

= cos2(2)[cos2(2) + sin2(2)]

= cos2(2)

 =
 2

0


cos2(2)  =

 2

0
|cos(2)|  = 2

 
0

cos(2)  [since cos(2) ≥ 0 for 0 ≤  ≤ ]

= 4
 2
0

cos

 = 1

2



= 4

sin

2
0

= 4(1− 0) = 4

51. One loop of the curve  = cos 2 is traced with −4 ≤  ≤ 4.

2 +






2

= cos2 2 + (−2 sin 2)2 = cos2 2 + 4 sin2 2 = 1 + 3 sin2 2 ⇒

 =

 4

−4


1 + 3 sin2 2  ≈ 24221.

52. 2 +






2

= tan2  + (sec2 )2 ⇒  =

 3

6


tan2  + sec4   ≈ 12789

53. The curve  = sin(6 sin ) is completely traced with 0 ≤  ≤ .  = sin(6 sin ) ⇒



= cos(6 sin ) · 6 cos , so 2 +






2

= sin2(6 sin ) + 36 cos2  cos2(6 sin ) ⇒

 =

 

0


sin2(6 sin ) + 36 cos2  cos2(6 sin )  ≈ 80091.

54. The curve  = sin(4) is completely traced with 0 ≤  ≤ 8.  = sin(4) ⇒ 


= 1

4
cos(4), so

2 +






2

= sin2(4) + 1
16

cos2(4) ⇒  =

 8

0


sin2(4) + 1

16
cos2(4)  ≈ 171568.

55. (a) From (10.2.6),
 =

 


2


()2 + ()2 

=
 


2

2 + ()2  [from the derivation of Equation 10.4.5]

=
 


2 sin 


2 + ()

2


(b) The curve 2 = cos 2 goes through the pole when cos 2 = 0 ⇒
2 = 

2
⇒  = 

4
. We’ll rotate the curve from  = 0 to  = 

4
and double

this value to obtain the total surface area generated.

2 = cos 2 ⇒ 2



= −2 sin 2 ⇒






2

=
sin2 2

2
=

sin2 2

cos 2
.

 = 2

 4

0

2
√

cos 2 sin 


cos 2 +


sin2 2


cos 2  = 4

 4

0

√
cos 2 sin 


cos2 2 + sin2 2

cos 2


= 4

 4

0

√
cos 2 sin 

1√
cos 2

 = 4

 4

0

sin   = 4
− cos 

4
0

= −4
√

2
2
− 1


= 2

2−

√
2
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56. (a) Rotation around  = 
2
is the same as rotation around the -axis, that is,  =

 


2 where

 =


()2 + ()2  for a parametric equation, and for the special case of a polar equation,  =  cos  and

 =


()2 + ()2  =

2 + ()2  [see the derivation of Equation 10.4.5]. Therefore, for a polar

equation rotated around  = 
2
,  =

 


2 cos 

2 + ()2 .

(b) As in the solution for Exercise 55(b), we can double the surface area generated by rotating the curve from  = 0 to  = 
4

to obtain the total surface area.

 = 2

 4

0

2
√

cos 2 cos 


cos 2 + (sin2 2)cos 2  = 4

 4

0

√
cos 2 cos 


cos2 2 + sin2 2

cos 2


= 4

 4

0

√
cos 2 cos 

1√
cos 2

 = 4

 4

0

cos   = 4

sin 

4
0

= 4

√
2

2
− 0


= 2

√
2

10.5 Conic Sections

1. 2 = 6 and 2 = 4 ⇒ 4 = 6 ⇒  = 3
2
.

The vertex is (0 0), the focus is

0 3

2


, and the directrix

is  = − 3
2
.

2. 22 = 5 ⇒ 2 = 5
2
. 4 = 5

2
⇒  = 5

8
.

The vertex is (0 0), the focus is


5
8
 0

, and the directrix

is  = − 5
8
.

3. 2 = −2 ⇒ 2 = −2. 4 = −2 ⇒  = − 1
2
.

The vertex is (0 0), the focus is
− 1

2
 0

, and the

directrix is  = 1
2
.

4. 32 + 8 = 0 ⇒ 32 = −8 ⇒ 2 = − 8
3
.

4 = − 8
3
⇒  = − 2

3
. The vertex is (0 0), the focus

is

0− 2

3


, and the directrix is  = 2

3
.
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5. (+ 2)
2

= 8 ( − 3). 4 = 8, so  = 2. The vertex is

(−2 3), the focus is (−2 5), and the directrix is

 = 1.

6. ( − 2)2 = 2+ 1 = 2

 + 1

2


. 4 = 2, so  = 1

2
. The

vertex is
−1

2
 2

, the focus is (0 2), and the directrix is

 = −1.

7. 2 + 6 + 2+ 1 = 0 ⇔ 2 + 6 = −2− 1

⇔ 2 + 6 + 9 = −2 + 8 ⇔
( + 3)2 = −2(− 4). 4 = −2, so  = −1

2
.

The vertex is (4−3), the focus is


7
2
−3


, and the

directrix is  = 9
2
.

8. 22 − 16− 3 + 38 = 0 ⇔ 22 − 16 = 3 − 38

⇔ 2(2 − 8 + 16) = 3 − 38 + 32 ⇔
2(− 4)2 = 3 − 6 ⇔ (− 4)2 = 3

2
( − 2).

4 = 3
2
, so  = 3

8
. The vertex is (4 2), the focus is


4 19

8


,

and the directrix is  = 13
8
.

9. The equation has the form 2 = 4, where   0. Since the parabola passes through (−1 1), we have 12 = 4(−1), so

4 = −1 and an equation is 2 = − or  = −2. 4 = −1, so  = − 1
4
and the focus is

− 1
4
 0

while the directrix

is  = 1
4
.

10. The vertex is (2−2), so the equation is of the form (− 2)
2

= 4( + 2), where   0. The point (0 0) is on the parabola,

so 4 = 4(2) and 4 = 2. Thus, an equation is (− 2)
2

= 2( + 2). 4 = 2, so  = 1
2
and the focus is


2− 3

2


while the

directrix is  = − 5
2
.

11.
2

2
+

2

4
= 1 ⇒  =

√
4 = 2,  =

√
2,

 =
√
2 − 2 =

√
4− 2 =

√
2. The ellipse is centered

at (0 0), with vertices at (0±2). The foci are

0±√2


.

12.
2

36
+

2

8
= 1 ⇒  =

√
36 = 6,  =

√
8,

 =
√
2 − 2 =

√
36− 8 =

√
28 = 2

√
7. The ellipse is

centered at (0 0), with vertices at (±6 0). The foci are

(±2
√

7 0).
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13. 2 + 92 = 9 ⇔ 2

9
+

2

1
= 1 ⇒  =

√
9 = 3,

 =
√

1 = 1,  =
√
2 − 2 =

√
9− 1 =

√
8 = 2

√
2.

The ellipse is centered at (0 0), with vertices (±3 0).

The foci are (±2
√

2 0).

14. 1002 + 362 = 225 ⇔ 2

225
100

+
2

225
36

= 1 ⇔

2

9
4

+
2

25
4

= 1 ⇒  =


25
4

= 5
2
,  =


9
4

= 3
2
,

 =
√
2 − 2 =


25
4
− 9

4
= 2. The ellipse is centered

at (0 0), with vertices

0± 5

2


. The foci are (0±2).

15. 92 − 18 + 42 = 27 ⇔
9(2 − 2 + 1) + 42 = 27 + 9 ⇔

9(− 1)2 + 42 = 36 ⇔ (− 1)2

4
+

2

9
= 1 ⇒

 = 3,  = 2,  =
√

5 ⇒ center (1 0),

vertices (1±3), foci

1±√5



16. 2 + 32 + 2− 12 + 10 = 0 ⇔
2 + 2+ 1 + 3(2 − 4 + 4) = −10 + 1 + 12 ⇔

(+ 1)
2
+ 3( − 2)2 = 3 ⇔

(+ 1)
2

3
+

( − 2)2

1
= 1 ⇒  =

√
3,  = 1,

 =
√

2 ⇒ center (−1 2), vertices
−1±√3 2


,

foci
−1±√2 2



17. The center is (0 0),  = 3, and  = 2, so an equation is
2

4
+

2

9
= 1.  =

√
2 − 2 =

√
5, so the foci are


0±√5


.

18. The ellipse is centered at (2 1), with  = 3 and  = 2. An equation is
(− 2)

2

9
+

( − 1)
2

4
= 1.  =

√
2 − 2 =

√
5, so

the foci are

2±√5 1


.
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19.
2

25
− 2

9
= 1 ⇒  = 5,  = 3,  =

√
25 + 9 =

√
34 ⇒

center (0 0), vertices (0±5), foci

0±√34


, asymptotes  = ± 5

3
.

Note: It is helpful to draw a 2-by-2 rectangle whose center is the center of

the hyperbola. The asymptotes are the extended diagonals of the rectangle.

20.
2

36
− 2

64
= 1 ⇒  = 6,  = 8,  =

√
36 + 64 = 10 ⇒

center (0 0), vertices (±6 0), foci (±10 0), asymptotes  = ±8
6
 = ± 4

3


21. 2 − 2 = 100 ⇔ 2

100
− 2

100
= 1 ⇒  =  = 10,

 =
√

100 + 100 = 10
√

2 ⇒ center (0 0), vertices (±10 0),

foci
±10

√
2 0

, asymptotes  = ± 10

10
 = ±

  

22. 2 − 162 = 16 ⇔ 2

16
− 2

1
= 1 ⇒  = 4,  = 1,

 =
√

16 + 1 =
√

17 ⇒ center (0 0), vertices (0±4),

foci

0±√17


, asymptotes  = ±4

1
 = ±4

23. 2 − 2 + 2 = 2 ⇔ 2 − (2 − 2 + 1) = 2− 1 ⇔

2

1
− ( − 1)2

1
= 1 ⇒  =  = 1,  =

√
1 + 1 =

√
2 ⇒

center (0 1), vertices (±1 1), foci
±√2 1


,

asymptotes  − 1 = ± 1
1
 = ±.
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24. 92 − 42 − 36 − 8 = 4 ⇔
9(2 − 4 + 4)− 4(2 + 2+ 1) = 4 + 36− 4 ⇔

9( − 2)2 − 4(+ 1)2 = 36 ⇔ ( − 2)2

4
− (+ 1)2

9
= 1 ⇒

 = 2  = 3,  =
√

4 + 9 =
√

13 ⇒ center (−1 2), vertices

(−1 2± 2), foci
−1 2±√13


, asymptotes  − 2 = ± 2

3
(+ 1).

25. 42 = 2 + 4 ⇔ 42 − 2 = 4 ⇔ 2

1
− 2

4
= 1. This is an equation of a hyperbola with vertices (±1 0).

The foci are at
±√1 + 4 0


=
±√5 0


.

26. 42 =  + 4 ⇔ 2 = 1
4
( + 4). This is an equation of a parabola with 4 = 1

4
, so  = 1

16
. The vertex is (0−4) and the

focus is

0−4 + 1

16


=

0− 63

16


.

27. 2 = 4 − 22 ⇔ 2 + 22 − 4 = 0 ⇔ 2 + 2(2 − 2 + 1) = 2 ⇔ 2 + 2( − 1)2 = 2 ⇔
2

2
+

( − 1)2

1
= 1. This is an equation of an ellipse with vertices at

±√2 1

. The foci are at

±√2− 1 1


= (±1 1).

28. 2 − 2 = 2 − 2 ⇔ 2 − 2 + 2 = 2 ⇔ 2 − (2 − 2+ 1) = 2− 1 ⇔ 2

1
− (− 1)2

1
= 1. This is an

equation of a hyperbola with vertices (1±1). The foci are at

1±√1 + 1


=

1±√2


.

29. 32 − 6− 2 = 1 ⇔ 32 − 6 = 2 + 1 ⇔ 3(2 − 2 + 1) = 2 + 1 + 3 ⇔ 3(− 1)2 = 2 + 4 ⇔
(− 1)2 = 2

3
( + 2). This is an equation of a parabola with 4 = 2

3
, so  = 1

6
. The vertex is (1−2) and the focus is

1−2 + 1
6


=

1− 11

6


.

30. 2 − 2+ 22 − 8 + 7 = 0 ⇔ (2 − 2+ 1) + 2(2 − 4 + 4) = −7 + 1 + 8 ⇔ (− 1)2 + 2( − 2)2 = 2 ⇔
(− 1)2

2
+

( − 2)2

1
= 1. This is an equation of an ellipse with vertices at


1±√2 2


. The foci are at

1±√2− 1 2


= (1± 1 2).

31. The parabola with vertex (0 0) and focus (1 0) opens to the right and has  = 1, so its equation is 2 = 4, or 2 = 4.

32. The parabola with focus (0 0) and directrix  = 6 has vertex (0 3) and opens downward, so  = −3 and its equation is

(− 0)2 = 4( − 3), or 2 = −12( − 3).

33. The distance from the focus (−4 0) to the directrix  = 2 is 2− (−4) = 6, so the distance from the focus to the vertex is

1
2
(6) = 3 and the vertex is (−1 0). Since the focus is to the left of the vertex,  = −3. An equation is 2 = 4(+ 1) ⇒

2 = −12(+ 1).

34. The parabola with vertex (2 3) and focus (2−1) opens downward and has  = −1− 3 = −4, so its equation is

(− 2)2 = 4( − 3), or (− 2)2 = −16( − 3).
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35. The parabola with vertex (3−1) having a horizontal axis has equation [ − (−1)]2 = 4(− 3). Since it passes through

(−15 2), (2 + 1)2 = 4(−15− 3) ⇒ 9 = 4(−18) ⇒ 4 = − 1
2
. An equation is ( + 1)2 = − 1

2
(− 3).

36. The parabola with vertical axis and passing through (0 4) has equation  = 2 + + 4. It also passes through (1 3) and

(−2−6), so 
3 = + + 4

−6 = 4− 2+ 4
⇒

 −1 = + 

−10 = 4− 2
⇒

−1 = + 

−5 = 2− 

Adding the last two equations gives us 3 = −6, or  = −2. Since  +  = −1, we have  = 1, and an equation is

 = −22 + + 4.

37. The ellipse with foci (±2 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with  = 5 and  = 2,

so 2 = 2 − 2 = 25− 4 = 21. An equation is
2

25
+

2

21
= 1.

38. The ellipse with foci

0±√2


and vertices (0±2) has center (0 0) and a vertical major axis, with  = 2 and  =

√
2,

so 2 = 2 − 2 = 4− 2 = 2. An equation is
2

2
+

2

4
= 1.

39. Since the vertices are (0 0) and (0 8), the ellipse has center (0 4) with a vertical axis and  = 4. The foci at (0 2) and (0 6)

are 2 units from the center, so  = 2 and  =
√
2 − 2 =

√
42 − 22 =

√
12. An equation is

(− 0)2

2
+

( − 4)2

2
= 1 ⇒

2

12
+

( − 4)2

16
= 1.

40. Since the foci are (0−1) and (8−1), the ellipse has center (4−1) with a horizontal axis and  = 4.

The vertex (9−1) is 5 units from the center, so  = 5 and  =
√
2 − 2 =

√
52 − 42 =

√
9. An equation is

(− 4)2

2
+

( + 1)2

2
= 1 ⇒ (− 4)2

25
+

( + 1)2

9
= 1.

41. An equation of an ellipse with center (−1 4) and vertex (−1 0) is
(+ 1)2

2
+

( − 4)2

42
= 1. The focus (−1 6) is 2 units

from the center, so  = 2. Thus, 2 + 22 = 42 ⇒ 2 = 12, and the equation is
(+ 1)2

12
+

( − 4)2

16
= 1.

42. Foci 1(−4 0) and 2(4 0) ⇒  = 4 and an equation is
2

2
+

2

2
= 1. The ellipse passes through  (−4 18), so

2 = |1|+ |2| ⇒ 2 = 18 +


82 + (18)2 ⇒ 2 = 18 + 82 ⇒  = 5.

2 = 2 − 2 = 25− 16 = 9 and the equation is
2

25
+

2

9
= 1.

43. An equation of a hyperbola with vertices (±3 0) is
2

32
− 2

2
= 1. Foci (±5 0) ⇒  = 5 and 32 + 2 = 52 ⇒

2 = 25− 9 = 16, so the equation is
2

9
− 2

16
= 1.
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44. An equation of a hyperbola with vertices (0±2) is
2

22
− 2

2
= 1. Foci (0±5) ⇒  = 5 and 22 + 2 = 52 ⇒

2 = 25− 4 = 21, so the equation is
2

4
− 2

21
= 1.

45. The center of a hyperbola with vertices (−3−4) and (−3 6) is (−3 1), so  = 5 and an equation is

( − 1)2

52
− (+ 3)2

2
= 1. Foci (−3−7) and (−3 9) ⇒  = 8, so 52 + 2 = 82 ⇒ 2 = 64− 25 = 39 and the

equation is
( − 1)2

25
− (+ 3)2

39
= 1.

46. The center of a hyperbola with vertices (−1 2) and (7 2) is (3 2), so  = 4 and an equation is
(− 3)2

42
− ( − 2)2

2
= 1.

Foci (−2 2) and (8 2) ⇒  = 5, so 42 + 2 = 52 ⇒ 2 = 25− 16 = 9 and the equation is

(− 3)2

16
− ( − 2)2

9
= 1.

47. The center of a hyperbola with vertices (±3 0) is (0 0), so  = 3 and an equation is
2

32
− 2

2
= 1.

Asymptotes  = ±2 ⇒ 


= 2 ⇒  = 2(3) = 6 and the equation is

2

9
− 2

36
= 1.

48. The center of a hyperbola with foci (2 0) and (2 8) is (2 4), so  = 4 and an equation is
( − 4)2

2
− (− 2)2

2
= 1.

The asymptote  = 3 + 1
2
 has slope 1

2
, so




=

1

2
⇒  = 2 and 2 + 2 = 2 ⇒ 2 + (2)2 = 42 ⇒

52 = 16 ⇒ 2 = 16
5
and so 2 = 16− 16

5
= 64

5
. Thus, an equation is

( − 4)2

165
− (− 2)2

645
= 1.

49. In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance

−  from it) while the farthest point is the other vertex (at a distance of  + ). So for this lunar orbit,

(− ) + (+ ) = 2 = (1728 + 110) + (1728 + 314), or  = 1940; and (+ )− (− ) = 2 = 314− 110,

or  = 102. Thus, 2 = 2 − 2 = 3,753,196, and the equation is
2

3,763,600
+

2

3,753,196
= 1.

50. (a) Choose  to be the origin, with -axis through  and  . Then  is ( 0),  is ( 5), so substituting  into the

equation 2 = 4 gives 25 = 42 so  = 5
2
and 2 = 10.

(b)  = 11 ⇒  =
√

110 ⇒ || = 2
√

110

51. (a) Set up the coordinate system so that  is (−200 0) and  is (200 0).

||− || = (1200)(980) = 1,176,000 ft = 2450
11

mi = 2 ⇒  = 1225
11

, and  = 200 so

2 = 2 − 2 =
3,339,375

121
⇒ 1212

1,500,625
− 1212

3,339,375
= 1.
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(b) Due north of  ⇒  = 200 ⇒ (121)(200)2

1,500,625
− 1212

3,339,375
= 1 ⇒  =

133,575
539

≈ 248 mi

52. |1|− |2| = ±2 ⇔


(+ )2 + 2 −


(− )2 + 2 = ±2 ⇔
( + )2 + 2 =


(− )2 + 2 ± 2 ⇔ (+ )2 + 2 = (− )2 + 2 + 42 ± 4


(− )2 + 2 ⇔

4− 42 = ±4


(− )2 + 2 ⇔ 22 − 22 + 4 = 2(2 − 2 + 2 + 2) ⇔

(2 − 2)2 − 22 = 2(2 − 2) ⇔ 22 − 22 = 22 [where 2 = 2 − 2] ⇔ 2

2
− 2

2
= 1

53. The function whose graph is the upper branch of this hyperbola is concave upward. The function is

 = () = 


1 +

2

2
=





√
2 + 2, so 0 =




(2 + 2)−12 and

00 =





(2 + 2)−12 − 2(2 + 2)−32


= (2 + 2)−32  0 for all , and so  is concave upward.

54. We can follow exactly the same sequence of steps as in the derivation of Formula 4, except we use the points (1 1) and

(−1−1) in the distance formula (first equation of that derivation) so


(− 1)2 + ( − 1)2 +


( + 1)2 + ( + 1)2 = 4

will lead (after moving the second term to the right, squaring, and simplifying) to 2


(+ 1)2 + ( + 1)2 = +  + 4,

which, after squaring and simplifying again, leads to 32 − 2 + 32 = 8.

55. (a) If   16, then  − 16  0, and
2


+

2

 − 16
= 1 is an ellipse since it is the sum of two squares on the left side.

(b) If 0    16, then  − 16  0, and
2


+

2

 − 16
= 1 is a hyperbola since it is the difference of two squares on the

left side.

(c) If   0, then  − 16  0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.

(d) In case (a), 2 = , 2 =  − 16, and 2 = 2 − 2 = 16, so the foci are at (±4 0). In case (b),  − 16  0, so 2 = ,

2 = 16− , and 2 = 2 + 2 = 16, and so again the foci are at (±4 0).

56. (a) 2 = 4 ⇒ 20 = 4 ⇒ 0 =
2


, so the tangent line is

 − 0 =
2

0

(− 0) ⇒ 0 − 2
0 = 2(− 0) ⇔

0 − 40 = 2− 20 ⇒ 0 = 2(+ 0).

(b) The -intercept is−0.

57. 2 = 4 ⇒ 2 = 40 ⇒ 0 =


2
, so the tangent line at (0 0) is  − 2

0

4
=

0

2
(− 0). This line passes

through the point (−) on the directrix, so −− 2
0

4
=

0

2
(− 0) ⇒ −42 − 2

0 = 20 − 22
0 ⇔
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2
0 − 20 − 42 = 0 ⇔ 2

0 − 20 + 2 = 2 + 42 ⇔
(0 − )2 = 2 + 42 ⇔ 0 = ±


2 + 42. The slopes of the tangent

lines at  = ±

2 + 42 are

±

2 + 42

2
, so the product of the two

slopes is

+

2 + 42

2
· −


2 + 42

2
=

2 − (2 + 42)

42
=
−42

42
= −1,

showing that the tangent lines are perpendicular.

58. Without a loss of generality, let the ellipse, hyperbola, and foci be as shown in the figure.

The curves intersect (eliminate 2) ⇒

2


2

2
− 2

2


+ 2


2

2
+

2

2


= 2 + 2 ⇒

22

2
+

22

2
= 2 + 2 ⇒ 2


2

2
+

2

2


= 2 + 2 ⇒

2 =
2 + 2

22 + 22

22

=
22(2 + 2)

22 + 22
.

Similarly, 2 =
22(2 −2)

22 + 22
.

Next we find the slopes of the tangent lines of the curves:
2

2
+

2

2
= 1 ⇒ 2

2
+

20

2
= 0 ⇒ 0

2
= − 

2
⇒

0 = − 2

2




and

2

2
− 2

2
= 1 ⇒ 2

2
− 20

2
= 0 ⇒ 0

2
=



2
⇒ 0 =

2

2




. The product of the slopes

at (0 0) is 0 0 = −222
0

222
0

= −
22


22(2 + 2)

22 + 22


22


22(2 −2)

22 + 22

 = −2 + 2

2 −2
. Since 2 − 2 = 2 and 2 +2 = 2,

we have 2 − 2 = 2 +2 ⇒ 2 −2 = 2 +2, so the product of the slopes is −1, and hence, the tangent lines at

each point of intersection are perpendicular.

59. 92 + 42 = 36 ⇔ 2

4
+

2

9
= 1. We use the parametrization  = 2 cos ,  = 3 sin , 0 ≤  ≤ 2. The circumference

is given by

=
 2

0


()2 + ()2  =

 2

0


(−2 sin )2 + (3 cos )2 

=
 2

0


4 sin2  + 9cos2   =

 2

0

√
4 + 5 cos2  

Now use Simpson’s Rule with  = 8,∆ =
2 − 0

8
=



4
, and () =

√
4 + 5 cos2  to get

 ≈ 8 =
4

3


(0) + 4



4


+ 2



2


+ 4


3
4


+ 2() + 4


5
4


+ 2


3
2


+ 4


7
4


+ (2)

 ≈ 159.

60. The length of the major axis is 2, so  = 1
2
(118× 1010) = 59× 109. The length of the minor axis is 2, so

 = 1
2
(114× 1010) = 57× 109. An equation of the ellipse is

2

2
+

2

2
= 1, or converting into parametric equations,
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 =  cos  and  =  sin . So

 = 4
 2
0


()2 + ()2  = 4

 2
0


2 sin2  + 2 cos2  

Using Simpson’s Rule with  = 10,∆ =
2− 0

10
= 

20
, and () =


2 sin2  + 2 cos2 , we get

 ≈ 4 · 10 = 4 · 
20 · 3


(0) + 4



20


+ 2


2
20


+ · · ·+ 2


8
20


+ 4


9
20


+ 



2

 ≈ 364× 1010 km

61.
2

2
− 2

2
= 1 ⇒ 2

2
=

2 − 2

2
⇒  = ± 



√
2 − 2.

= 2

 








2 − 2 

39
=

2






2


2 − 2 − 2

2
ln
 +


2 − 2

 


=






√
2 − 2 − 2 ln

+
√
2 − 2

+ 2 ln || 
Since 2 + 2 = 2 2 − 2 = 2, and

√
2 − 2 = .

=





− 2 ln(+ ) + 2 ln 


=






+ 2(ln − ln(+ ))


= 2+  ln[(+ )], where 2 = 2 + 2.

62. (a)
2

2
+

2

2
= 1 ⇒ 2

2
=

2 − 2

2
⇒  = ± 



√
2 − 2.

 =

 

−








2 − 2

2

 = 2
2

2

 

0

(
2 − 

2
) 

=
22

2


2− 1

3
3

0

=
22

2


23

3


=

4

3
2

(b)
2

2
+

2

2
= 1 ⇒ 2

2
=

2 − 2

2
⇒  = ±




2 − 2.

 =

 

−





2 − 2

2

 = 2
2

2

 

0

(
2 − 

2
) 

=
22

2


2 − 1

3
3

0

=
22

2


23

3


=

4

3
2

63. 92 + 42 = 36 ⇔ 2

4
+

2

9
= 1 ⇒  = 3,  = 2. By symmetry,  = 0. By Example 2 in Section 7.3, the area of the

top half of the ellipse is 1
2
() = 3. Solve 92 + 42 = 36 for  to get an equation for the top half of the ellipse:

92 + 42 = 36 ⇔ 42 = 36− 92 ⇔ 2 = 9
4
(4− 2) ⇒  = 3

2

√
4− 2. Now

 =
1



 



1

2
[()]

2
 =

1

3

 2

−2

1

2


3

2


4− 2

2

 =
3

8

 2

−2

(4− 
2
) 

=
3

8
· 2
 2

0

(4− 
2
)  =

3

4


4− 1

3


3

2
0

=
3

4


16

3


=

4



so the centroid is (0 4).
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64. (a) Consider the ellipse
2

2
+

2

2
= 1 with   , so that the major axis is the -axis. Let the ellipse be parametrized by

 =  cos ,  =  sin , 0 ≤  ≤ 2. Then




2

+






2

= 2 sin2  + 2 cos2  = 2(1− cos2 ) + 2 cos2  = 2 + (2 − 2) cos2  = 2 − 2 cos2 ,

where 2 = 2 − 2. Using symmetry and rotating the ellipse about the major axis gives us surface area

 =


2  = 2

 2

0

2( sin )

2 − 2 cos2   = 4

 0




2 − 2


−1




 
 =  cos 

 = − sin  



=
4



 

0


2 − 2 

30
=

4






2


2 − 2 +

2

2
sin
−1




0

=
2






2 − 2 + 

2
sin
−1
 



=

2




+ 2 sin−1

 



(b) As in part (a),





2

+






2

= 2 sin2  + 2 cos2  = 2 sin2  + 2(1− sin2 ) = 2 + (2 − 2) sin2  = 2 + 2 sin2 .

Rotating about the minor axis gives us

 =


2 = 2

 2

0

2( cos )

2 + 2 sin2   = 4

 

0


2 + 2


1




 
 =  sin 

 =  cos  


21
=

4






2

√
2 + 2 +

2

2
ln

+

√
2 + 2


0

=
2





√
2 + 2 + 2 ln


+

√
2 + 2

− 2 ln 


=
2




+ 2 ln

+ 





65. Differentiating implicitly,
2

2
+

2

2
= 1 ⇒ 2

2
+

20

2
= 0 ⇒ 0 = − 2

2
[ 6= 0]. Thus, the slope of the tangent

line at  is − 21

21

. The slope of 1 is
1

1 + 
and of 2 is

1

1 − 
. By the formula in Problem 21 on text page 273,

we have

tan=

1

1 + 
+

21

21

1− 211

21(1 + )

=
22

1 + 21(1 + )

21(1 + )− 211

=
22 + 21

211 + 21


using 221 + 221 = 22,

and 2 − 2 = 2



=
2

1 + 2


1(1 + 2)

=
2

1

and tan =

− 21

21

− 1

1 − 

1− 211

21(1 − )

=
−22

1 − 21(1 − )

21 (1 − )− 211

=
−22 + 21

211 − 21

=
2

1 − 2


1(1 − 2)

=
2

1

Thus,  = .

66. The slopes of the line segments 1 and 2 are
1

1 + 
and

1

1 − 
, where  is (1 1). Differentiating implicitly,

2

2
− 20

2
= 0 ⇒ 0 =

2

2
⇒ the slope of the tangent at  is

21

21

, so by the formula in Problem 21 on text
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page 273,

tan =

21

21

− 1

1 + 

1 +
211

21(1 + )

=
21(1 + )− 22

1

21(1 + ) + 211

=
2(1 + 2)

1(1 + 2)


using 21

2 − 21
2 = 1,

and 2 + 2 = 2


=

2

1

and tan =

− 21

21

+
1

1 − 

1 +
211

21(1 − )

=
−21(1 − ) + 22

1

21(1 − ) + 211

=
2(1 − 2)

1(1 − 2)
=

2

1

So  = .

10.6 Conic Sections in Polar Coordinates

1. The directrix  = 4 is to the right of the focus at the origin, so we use the form with “+  cos ” in the denominator.

(See Theorem 6 and Figure 2.) An equation of the ellipse is  =


1 +  cos 
=

1
2
· 4

1 + 1
2

cos 
=

4

2 + cos 
.

2. The directrix  = −3 is to the left of the focus at the origin, so we use the form with “−  cos ” in the denominator.

 = 1 for a parabola, so an equation is  =


1−  cos 
=

1 · 3
1− 1 cos 

=
3

1− cos 
.

3. The directrix  = 2 is above the focus at the origin, so we use the form with “+  sin ” in the denominator. An equation of

the hyperbola is  =


1 +  sin 
=

15(2)

1 + 15 sin 
=

6

2 + 3 sin 
.

4. The directrix  = 3 is to the right of the focus at the origin, so we use the form with “+  cos ” in the denominator. An

equation of the hyperbola is  =


1 +  cos 
=

3 · 3
1 + 3 cos 

=
9

1 + 3 cos 
.

5. The vertex (2 ) is to the left of the focus at the origin, so we use the form with “− cos ” in the denominator. An equation

of the ellipse is  =


1−  cos 
. Using eccentricity  =

2

3
with  =  and  = 2, we get 2 =

2
3


1− 2
3
(−1)

⇒

2 =
2

5
⇒  = 5, so we have  =

2
3
(5)

1− 2
3

cos 
=

10

3− 2 cos 
.

6. The directrix  = 4 csc  (equivalent to  sin  = 4 or  = 4) is above the focus at the origin, so we will use the form with

“+ sin ” in the denominator. The distance from the focus to the directrix is  = 4, so an equation of the ellipse is

 =


1 +  sin 
=

(06)(4)

1 + 06 sin 
· 5

5
=

12

5 + 3 sin 
.

7. The vertex

3 

2


is 3 units above the focus at the origin, so the directrix is 6 units above the focus ( = 6), and we use the

form “+ sin ” in the denominator.  = 1 for a parabola, so an equation is  =


1 +  sin 
=

1(6)

1 + 1 sin 
=

6

1 + sin 
.
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8. The directrix  = −2 sec  (equivalent to  cos  = −2 or  = −2) is left of the focus at the origin, so we will use the form

with “− cos ” in the denominator. The distance from the focus to the directrix is  = 2, so an equation of the hyperbola

is  =


1−  cos 
=

2(2)

1− 2 cos 
=

4

1− 2 cos 
.

9.  =
4

5− 4 sin 
· 15

15
=

45

1− 4
5

sin 
, where  = 4

5
and  = 4

5
⇒  = 1.

(a) Eccentricity=  = 4
5

(b) Since  = 4
5
 1, the conic is an ellipse.

(c) Since “−  sin ” appears in the denominator, the directrix is below the focus

at the origin,  = || = 1, so an equation of the directrix is  = −1.

(d) The vertices are

4 

2


and


4
9
 3

2


.

10.  =
1

2 + sin 
· 12

12
=

12

1 + 1
2

sin 
, where  =

1

2
and  =

1

2
⇒  = 1.

(a) Eccentricity=  =
1

2

(b) Since  =
1

2
 1, the conic is an ellipse.

(c) Since “+ sin ” appears in the denominator, the directrix is above the focus at

the origin,  = || = 1, so an equation of the directrix is  = 1.

(d) The vertices are


1
3
 

2


and


1 3

2


.

11.  =
2

3 + 3 sin 
· 13

13
=

23

1 + 1 sin 
, where  = 1 and  = 2

3
⇒  = 2

3
.

(a) Eccentricity=  = 1

(b) Since  = 1, the conic is a parabola.

(c) Since “+  sin ” appears in the denominator, the directrix is above the focus

at the origin.  = || = 2
3
, so an equation of the directrix is  = 2

3
.

(d) The vertex is at


1
3
 

2


, midway between the focus and directrix.

12.  =
5

2− 4 cos 
· 12

12
=

52

1− 2 cos 
, where  = 2 and  =

5

2
⇒  =

5

4
.

(a) Eccentricity=  = 2

(b) Since  = 2  1, the conic is a hyperbola.

(c) Since “− cos ” appears in the denominator, the directrix is to the left the

focus at the origin.  = || = 5
4
, so an equation of the directrix is  = −5

4
.

(d) The vertices are
−5

2
 0

and


5
6
 

, so the center is midway between them,

that is,


5
3
 

.
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13.  =
9

6 + 2 cos 
· 16

16
=

32

1 + 1
3

cos 
, where  = 1

3
and  = 3

2
⇒  = 9

2
.

(a) Eccentricity=  = 1
3

(b) Since  = 1
3
 1, the conic is an ellipse.

(c) Since “+ cos  ” appears in the denominator, the directrix is to the right of

the focus at the origin.  = || = 9
2
, so an equation of the directrix is

 = 9
2
.

(d) The vertices are


9
8
 0

and


9
4
 

, so the center is midway between them,

that is,


9
16
 

.

14.  =
1

3− 3 sin 
· 13

13
=

13

1− 1 sin 
, where  = 1 and  =

1

3
⇒  =

1

3

(a) Eccentricity=  = 1

(b) Since  = 1, the conic is a parabola.

(c) Since “− sin ” appears in the denominator, the directrix is below the focus

at the origin,  = || = 1
3
, so an equation of the directrix is  = −1

3
.

(d) The vertex is at


1
6
 3

2


, midway between the focus and the directrix.

15.  =
3

4− 8 cos 
· 14

14
=

34

1− 2 cos 
, where  = 2 and  = 3

4
⇒  = 3

8
.

(a) Eccentricity=  = 2

(b) Since  = 2  1, the conic is a hyperbola.

(c) Since “− cos  ” appears in the denominator, the directrix is to the left of

the focus at the origin.  = || = 3
8
, so an equation of the directrix is

 = −3
8
.

(d) The vertices are
−3

4
 0

and


1
4
 

, so the center is midway between them,

that is,


1
2
 

.

16.  =
4

2 + 3 cos 
· 12

12
=

2

1 + 3
2

cos 
, where  =

3

2
and  = 2 ⇒  =

4

3
.

(a) Eccentricity=  =
3

2

(b) Since  =
3

2
 1, the conic is a hyperbola.

(c) Since “+ cos ” appears in the denominator, the directrix is to the right of

the focus at the origin.  = || = 4
3
, so an equation of the directrix is

 = 4
3
.

(d) The vertices are


4
5
 0

and (−4 ), so the center is midway between them,

that is,


8
5
 0

.
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17. (a)  =
1

1− 2 sin 
, where  = 2 and  = 1 ⇒  = 1

2
. The eccentricity

 = 2  1, so the conic is a hyperbola. Since “− sin  ” appears in the

denominator, the directrix is below the focus at the origin.  = || = 1
2
,

so an equation of the directrix is  = − 1
2
. The vertices are

−1 
2


and

1
3
 3

2


, so the center is midway between them, that is,


2
3
 3

2


.

(b) By the discussion that precedes Example 4, the equation

is  =
1

1− 2 sin

 − 3

4

 .

18.  =
4

5 + 6 cos 
=

45

1 + 6
5

cos 
, so  = 6

5
and  = 4

5
⇒  = 2

3
.

An equation of the directrix is  = 2
3
⇒  cos  = 2

3
⇒  =

2

3 cos 
.

If the hyperbola is rotated about its focus (the origin) through an angle 3,

its equation is the same as that of the original, with  replaced by  − 
3

(see Example 4), so  =
4

5 + 6 cos

 − 

3

 .
19. For   1 the curve is an ellipse. It is nearly circular when  is close to 0. As 

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At  = 1, the curve becomes a parabola with focus at the origin.

20. (a) The value of  does not seem to affect the shape of the conic (a parabola) at

all, just its size, position, and orientation (for   0 it opens upward, for

  0 it opens downward).
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(b) We consider only positive values of . When 0    1, the conic is an

ellipse. As → 0+, the graph approaches perfect roundness and zero size.

As  increases, the ellipse becomes more elongated, until at  = 1 it turns

into a parabola. For   1, the conic is a hyperbola, which moves

downward and gets broader as  continues to increase.

 = 01

 = 05  = 09  = 1

 = 11  = 15  = 10

21. | | =  || ⇒  = [−  cos( − )] = (+  cos ) ⇒

(1−  cos ) =  ⇒  =


1−  cos 

22. | | =  || ⇒  = [−  sin ] ⇒ (1 +  sin ) =  ⇒

 =


1 +  sin 

23. | | =  || ⇒  = [−  sin( − )] = (+  sin ) ⇒

(1−  sin ) =  ⇒  =


1−  sin 
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24. The parabolas intersect at the two points where


1 + cos 
=



1− cos 
⇒ cos  =

− 

+ 
⇒  =

+ 

2
.

For the first parabola,



=

 sin 

(1 + cos )
2
, so




=

() sin  +  cos 

() cos  −  sin 
=

 sin2  +  cos (1 + cos )

 sin  cos  −  sin (1 + cos )
=

1 + cos 

− sin 

and similarly for the second,



=

1− cos 

sin 
=

sin 

1 + cos 
. Since the product of these slopes is−1, the parabolas intersect

at right angles.

25. We are given  = 0093 and  = 228× 108. By (7), we have

 =
(1− 2)

1 +  cos 
=

228× 108[1− (0093)2]

1 + 0093 cos 
≈ 226× 108

1 + 0093 cos 

26. We are given  = 0048 and 2 = 156× 109 ⇒  = 78× 108. By (7), we have

 =
(1− 2)

1 +  cos 
=

78× 108[1− (0048)2]

1 + 0048 cos 
≈ 778× 108

1 + 0048 cos 

27. Here 2 = length of major axis = 3618 AU ⇒  = 1809 AU and  = 097. By (7), the equation of the orbit is

 =
1809[1− (097)2]

1 + 097 cos 
≈ 107

1 + 097 cos 
. By (8), the maximum distance from the comet to the sun is

1809(1 + 097) ≈ 3564 AU or about 3314 billion miles.

28. Here 2 = length of major axis = 3565 AU ⇒  = 17825 AU and  = 09951. By (7), the equation of the orbit

is  =
17825[1− (09951)2]

1 + 09951 cos 
≈ 17426

1 + 09951 cos 
. By (8), the minimum distance from the comet to the sun is

17825(1− 09951) ≈ 08734 AU or about 81 million miles.

29. The minimum distance is at perihelion, where 46× 107 =  = (1− ) = (1− 0206) = (0794) ⇒
 = 46 × 1070794. So the maximum distance, which is at aphelion, is

 = (1 + ) =

46× 1070794


(1206) ≈ 70× 107 km.

30. At perihelion,  = (1− ) = 443× 109, and at aphelion,  = (1 + ) = 737× 109. Adding, we get 2 = 1180× 109,

so  = 590× 109 km. Therefore 1 +  = (1 + ) = 737
590

≈ 1249 and  ≈ 0249.

31. From Exercise 29, we have  = 0206 and (1− ) = 46× 107 km. Thus,  = 46× 1070794. From (7), we can write the

equation of Mercury’s orbit as  = 
1− 2

1 +  cos 
. So since




=

(1− 2) sin 

(1 +  cos )2
⇒

2 +






2

=
2(1− 2)2

(1 +  cos )2
+

2(1− 2)2 2 sin2 

(1 +  cos )4
=

2(1− 2)2

(1 +  cos )4
(1 + 2 cos  + 2)
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the length of the orbit is

 =

 2

0


2 + ()2  = (1− 

2
)

 2

0

√
1 + 2 + 2 cos 

(1 +  cos )2
 ≈ 36× 10

8 km

This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius 

is 2 ≈ 36× 108 km.

1. False. Consider the curve defined by  = () = (− 1)3 and  = () = (− 1)2. Then 0() = 2(− 1), so 0(1) = 0,

but its graph has a vertical tangent when  = 1. Note: The statement is true if  0(1) 6= 0 when 0(1) = 0.

2. False. If  = () and  = () are twice differentiable, then
2

2
=











=















.

3. False. For example, if () = cos  and () = sin  for 0 ≤  ≤ 4, then the curve is a circle of radius 1, hence its length

is 2, but
 4

0


[ 0()]2 + [0()]2  =

 4

0


(− sin )2 + (cos )2  =

 4

0
1  = 4, since as  increases

from 0 to 4, the circle is traversed twice.

4. False. If ( ) = (1 ), then ( ) = (−1 0), so tan−1() = tan−1 0 = 0 6= . The statement is true for points in

quadrants I and IV.

5. True. The curve  = 1− sin 2 is unchanged if we rotate it through 180◦ about  because

1− sin 2( + ) = 1− sin(2 + 2) = 1− sin 2. So it’s unchanged if we replace  by −. (See the discussion
after Example 8 in Section 10.3.) In other words, it’s the same curve as  = −(1− sin 2) = sin 2 − 1.

6. True. The polar equation  = 2, the Cartesian equation 2 + 2 = 4, and the parametric equations  = 2 sin 3,

 = 2cos 3 [0 ≤  ≤ 2] all describe the circle of radius 2 centered at the origin.

7. False. The first pair of equations gives the portion of the parabola  = 2 with  ≥ 0, whereas the second pair of equations

traces out the whole parabola  = 2.

8. True. 2 = 2 + 3 ⇔ ( − 1)
2

= 3+ 1 = 3

+ 1

3


= 4


3
4


+ 1

3


, which is the equation of a parabola with

vertex (− 1
3
 1) and focus

− 1
3

+ 3
4
 1

, opening to the right.

9. True. By rotating and translating the parabola, we can assume it has an equation of the form  = 2, where   0.

The tangent at the point

 2


is the line  − 2 = 2(− ); i.e.,  = 2− 2. This tangent meets

the parabola at the points

 2


where 2 = 2− 2. This equation is equivalent to 2 = 2− 2

[since   0]. But 2 = 2− 2 ⇔ 2 − 2+ 2 = 0 ⇔ (− )
2

= 0 ⇔  =  ⇔
 2


=

 2


. This shows that each tangent meets the parabola at exactly one point.
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10. True. Consider a hyperbola with focus at the origin, oriented so that its polar equation is  =


1 +  cos 
, where   1.

The directrix is  = , but along the hyperbola we have  =  cos  =
 cos 

1 +  cos 
= 


 cos 

1 +  cos 


6= .

10 Review

1.  = 2 + 4,  = 2− , −4 ≤  ≤ 1.  = 2− , so

 = (2− )
2
+ 4(2− ) = 4− 4 + 2 + 8− 4 = 2 − 8 + 12 ⇔

+ 4 = 2 − 8 + 16 = ( − 4)2. This is part of a parabola with vertex

(−4 4), opening to the right.

2.  = 1 + 2,  = .

 = 1 + 2 = 1 + ()2 = 1 + 2,   0.

3.  = sec  =
1

cos 
=

1


. Since 0 ≤  ≤ 2, 0   ≤ 1 and  ≥ 1.

This is part of the hyperbola  = 1.

4.  = 2cos ,  = 1 + sin , cos2  + sin2  = 1 ⇒
2

2

+ ( − 1)
2

= 1 ⇒ 2

4
+ ( − 1)

2
= 1. This is an ellipse,

centered at (0 1), with semimajor axis of length 2 and semiminor axis of

length 1.

5. Three different sets of parametric equations for the curve  =
√
 are

(i)  = ,  =
√


(ii)  = 4,  = 2

(iii)  = tan2 ,  = tan , 0 ≤   2

There are many other sets of equations that also give this curve.
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6. For   −1,   0 and   0 with  decreasing and  increasing. When

 = −1, ( ) = (0 0). When −1    0, we have −1    0 and

0    12. When  = 0, ( ) = (−1 0). When 0    1,

−1    0 and − 1
2
   0. When  = 1, ( ) = (0 0) again.

When   1, both  and  are positive and increasing.

7. (a) The Cartesian coordinates are  = 4cos 2
3

= 4
− 1

2


= −2 and

 = 4 sin 2
3

= 4
√

3
2


= 2

√
3, that is, the point

−2 2
√

3

.

(b) Given  = −3 and  = 3, we have  =


(−3)2 + 32 =
√

18 = 3
√

2. Also, tan  =



⇒ tan  =

3

−3
, and since

(−3 3) is in the second quadrant,  = 3
4
. Thus, one set of polar coordinates for (−3 3) is


3
√

2 3
4


, and two others are

3
√

2 11
4


and

−3
√

2 7
4


.

8. 1 ≤   2, 
6
≤  ≤ 5

6

9.  = 1 + sin . This cardioid is

symmetric about the  = 2

axis.

10.  = sin 4. This is an

eight-leaved rose.
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11.  = cos 3. This is a

three-leaved rose. The curve is

traced twice.

12.  = 3 + cos 3. The curve is

symmetric about the horizontal

axis.

13.  = 1 + cos 2. The curve is

symmetric about the pole and

both the horizontal and vertical

axes.

14.  = 2 cos (2)  The curve is

symmetric about the pole and

both the horizontal and vertical
axes.

15.  =
3

1 + 2 sin 
⇒  = 2  1, so the conic is a hyperbola.  = 3 ⇒

 = 3
2
and the form “+2 sin ” imply that the directrix is above the focus at

the origin and has equation  = 3
2
. The vertices are


1 

2


and

−3 3
2


.

16.  =
3

2− 2 cos 
· 12

12
=

32

1− 1 cos 
⇒  = 1, so the conic is a

parabola.  = 3
2
⇒  = 3

2
and the form “−2 cos ” imply that the

directrix is to the left of the focus at the origin and has equation  = − 3
2
.

The vertex is


3
4
 

.
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17. +  = 2 ⇔  cos  +  sin  = 2 ⇔ (cos  + sin ) = 2 ⇔  =
2

cos  + sin 

18. 2 + 2 = 2 ⇒ 2 = 2 ⇒  =
√

2. [ = −√2 gives the same curve.]

19.  = (sin ). As → ±∞,  → 0.

As → 0, → 1. In the first figure,

there are an infinite number of

-intercepts at  = ,  a nonzero

integer. These correspond to pole

points in the second figure.

20.  =
2

4− 3 cos 
=

12

1− 3
4

cos 
⇒  = 3

4
and  = 2

3
. The equation of

the directrix is  = − 2
3
⇒  = −2(3 cos ). To obtain the equation

of the rotated ellipse, we replace  in the original equation with  − 2
3
,

and get  =
2

4− 3 cos

 − 2

3

 .
21.  = ln ,  = 1 + 2;  = 1.




= 2 and




=

1


, so




=




=

2

1
= 22.

When  = 1, ( ) = (0 2) and  = 2.

22.  = 3 + 6 + 1,  = 2− 2;  = −1.



=




=

2− 2

32 + 6
. When  = −1, ( ) = (−6−3) and




=

4

9
.

23.  = − ⇒  =  sin  = − sin  and  =  cos  = − cos  ⇒



=




=




sin  +  cos 



cos  −  sin 
=
−− sin  + − cos 

−− cos  − − sin 
· −



− =
sin  − cos 

cos  + sin 
.

When  = ,



=

0− (−1)

−1 + 0
=

1

−1
= −1.

24.  = 3 + cos 3 ⇒ 


=




=




sin  +  cos 



cos  −  sin 
=
−3 sin 3 sin  + (3 + cos 3) cos 

−3 sin 3 cos  − (3 + cos 3) sin 
.

When  = 2,



=

(−3)(−1)(1) + (3 + 0) · 0
(−3)(−1)(0)− (3 + 0) · 1 =

3

−3
= −1.

25.  =  + sin ,  = − cos  ⇒ 


=




=

1 + sin 

1 + cos 
⇒

2

2
=













=

(1 + cos ) cos − (1 + sin )(− sin )

(1 + cos )2

1 + cos 
=

cos  + cos2 + sin  + sin2 

(1 + cos )3
=

1 + cos  + sin 

(1 + cos )3

26.  = 1 + 2,  = − 3.



= 1− 32 and




= 2, so




=




=

1− 32

2
= 1

2
−1 − 3

2
.

2

2
=

()


=
− 1

2
−2 − 3

2

2
= −1

4
−3 − 3

4
−1 = − 1

43


1 + 32


= −32 + 1

43
.
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27. We graph the curve  = 3 − 3,  = 2 + + 1 for −22 ≤  ≤ 12.

By zooming in or using a cursor, we find that the lowest point is about

(14 075). To find the exact values, we find the -value at which

 = 2 + 1 = 0 ⇔  = − 1
2
⇔ ( ) =


11
8
 3

4




28. We estimate the coordinates of the point of intersection to be (−2 3). In fact this is exact, since both  = −2 and  = 1 give

the point (−2 3). So the area enclosed by the loop is =1

=−2
 =

 1

−2
(2 +  + 1)(32 − 3)  =

 1

−2
(34 + 33 − 3− 3) 

=


3
5
5 + 3

4
4 − 3

2
2 − 3

1
−2

=


3
5

+ 3
4
− 3

2
− 3
− −96

5
+ 12− 6− (−6)


= 81

20

29.  = 2 cos −  cos 2 ⇒ 


= −2 sin + 2 sin 2 = 2 sin (2 cos − 1) = 0 ⇔

sin  = 0 or cos  = 1
2
⇒  = 0, 

3
, , or 5

3
.

 = 2 sin −  sin 2 ⇒ 


= 2 cos − 2 cos 2 = 2


1 + cos − 2 cos2 


= 2(1− cos )(1 + 2 cos ) = 0 ⇒

 = 0, 2
3
, or 4

3
.

Thus the graph has vertical tangents where  = 
3
,  and 5

3
, and horizontal tangents where  = 2

3
and 4

3
. To determine

what the slope is where  = 0, we use l’Hospital’s Rule to evaluate lim
→0




= 0, so there is a horizontal tangent there.

  

0  0


3

3
2


√
3

2


2
3

− 1
2
 3

√
3

2


 −3 0

4
3

− 1
2
 − 3

√
3

2


5
3

3
2
 −

√
3

2


30. From Exercise 29,  = 2 cos −  cos 2,  = 2 sin −  sin 2 ⇒
= 2

 0


(2 sin −  sin 2)(−2 sin + 2 sin 2)  = 42

 
0

(2 sin2 + sin2 2− 3 sin  sin 2) 

= 42
 
0


(1− cos 2) + 1

2
(1− cos 4)− 6 sin2  cos 


 = 42


− 1

2
sin 2+ 1

2
− 1

8
sin 4− 2 sin3 


0

= 42


3
2


 = 62

31. The curve 2 = 9 cos 5 has 10 “petals.” For instance, for − 
10
≤  ≤ 

10
, there are two petals, one with   0 and one

with   0.

 = 10
 10
−10

1
2
2  = 5

 10
−10 9 cos 5  = 5 · 9 · 2  10

0
cos 5  = 18


sin 5

10
0

= 18

32.  = 1− 3 sin . The inner loop is traced out as  goes from  = sin−1


1
3


to  − , so

=
 −


1
2
2  =

 2


(1− 3 sin )2  =
 2



1− 6 sin  + 9

2
(1− cos 2)




=

11
2
 + 6cos  − 9

4
sin 2

2


= 11
4
 − 11

2
sin−1


1
3

− 3
√

2
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33. The curves intersect when 4 cos  = 2 ⇒ cos  = 1
2
⇒  = ±

3

for − ≤  ≤ . The points of intersection are

2 

3


and


2−

3


.

34. The two curves clearly both contain the pole. For other points of intersection, cot  = 2cos( + 2) or

−2 cos(+  + 2), both of which reduce to cot  = 2cos  ⇔ cos  = 2 sin  cos  ⇔ cos (1− 2 sin ) = 0 ⇒
cos  = 0 or sin  = 1

2
⇒  = 

6
, 

2
, 5

6
or 3

2
⇒ intersection points are


0 

2


,
√

3 
6


, and

√
3 11

6


.

35. The curves intersect where 2 sin  = sin  + cos  ⇒
sin  = cos  ⇒  = 

4
, and also at the origin (at which  = 3

4

on the second curve).

=
 4
0

1
2
(2 sin )2  +

 34

4

1
2
(sin  + cos )2 

=
 4
0

(1− cos 2)  + 1
2

 34

4
(1 + sin 2) 

=

 − 1

2
sin 2

4
0

+


1
2
 − 1

4
cos 2

34
4

= 1
2
( − 1)

36.  = 2
 6
−2

1
2


(2 + cos 2)2 − (2 + sin )2




=
 6
−2


4 cos 2 + cos2 2 − 4 sin  − sin2 




=

2 sin 2 + 1

2
 + 1

8
sin 4 + 4 cos  − 1

2
 + 1

4
sin 2

6
−2

= 51
16

√
3

37.  = 32,  = 23.

=
 2

0


()2 + ()2  =

 2

0


(6)2 + (62)2  =

 2

0

√
362 + 364  =

 2

0

√
362

√
1 + 2 

=
 2

0
6 ||√1 + 2  = 6

 2

0

√

1 + 2  = 6
 5

1
12


1
2

 

 = 1 + 2,  = 2 


= 6 · 1
2
· 2

3


32

5
1

= 2(532 − 1) = 2

5
√

5− 1


38.  = 2 + 3,  = cosh 3 ⇒ ()2 + ()2 = 32 + (3 sinh 3)2 = 9(1 + sinh2 3) = 9 cosh2 3, so

 =
 1

0

√
9 cosh2 3  =

 1

0
|3 cosh 3|  =

 1

0
3 cosh 3  =


sinh 3

1
0

= sinh 3− sinh 0 = sinh 3.

39.  =
 2




2 + ()2  =

 2




(1)2 + (−12)2  =

 2




2 + 1

2


24
=


−

2 + 1


+ ln


 +


2 + 1

2



=

√
2 + 1


−
√

42 + 1

2
+ ln


2 +

√
42 + 1

 +
√
2 + 1



=
2
√
2 + 1−√42 + 1

2
+ ln


2 +

√
42 + 1

 +
√
2 + 1
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40.  =
 
0


2 + ()2  =

 
0


sin6


1
3



+ sin4


1
3


cos2


1
3




=
 
0

sin2


1
3


 =


1
2


 − 3

2
sin


2
3



0
= 1

2
 − 3

8

√
3

41.  = 4
√
,  =

3

3
+

1

22
, 1 ≤  ≤ 4 ⇒

 =
 4

1
2


()2 + ()2  =

 4

1
2


1
3
3 + 1

2
−2


2
√

2

+ (2 − −3)2 

= 2
 4

1


1
3
3 + 1

2
−2


(2 + −3)2  = 2
 4

1


1
3
5 + 5

6
+ 1

2
−5

 = 2


1
18
6 + 5

6
− 1

8
−4
4
1

= 471,295
1024



42.  = 2 + 3,  = cosh 3 ⇒ ()2 + ()2 = 32 + (3 sinh 3)2 = 9(1 + sinh2 3) = 9 cosh2 3, so

 =
 1

0
2  =

 1

0
2 cosh 3

√
9 cosh2 3  =

 1

0
2 cosh 3 |3 cosh 3|  =

 1

0
2 cosh 3 · 3 cosh 3 

= 6
 1

0
cosh2 3  = 6

 1

0
1
2
(1 + cosh 6)  = 3


 + 1

6
sinh 6

1
0

= 3

1 + 1

6
sinh 6


= 3 + 

2
sinh 6

43. For all  except −1, the curve is asymptotic to the line  = 1. For

  −1, the curve bulges to the right near  = 0. As  increases, the

bulge becomes smaller, until at  = −1 the curve is the straight line  = 1.

As  continues to increase, the curve bulges to the left, until at  = 0 there

is a cusp at the origin. For   0, there is a loop to the left of the origin,

whose size and roundness increase as  increases. Note that the -intercept

of the curve is always −

44. For  close to 0, the graph of  = |sin 2| consists of four thin petals. As  increases, the petals get wider, until as →∞,

each petal occupies almost its entire quarter-circle.

 = 001  = 01  = 1

 = 5  = 10  = 25
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45.
2

9
+

2

8
= 1 is an ellipse with center (0 0).

 = 3,  = 2
√

2,  = 1 ⇒
foci (±1 0), vertices (±3 0).

46. 42 − 2 = 16 ⇔ 2

4
− 2

16
= 1 is a hyperbola

with center (0 0), vertices (±2 0),  = 2,  = 4,

 =
√

16 + 4 = 2
√

5, foci
±2

√
5 0

and

asymptotes  = ±2.

47. 62 + − 36 + 55 = 0 ⇔
6(2 − 6 + 9) = −(+ 1) ⇔
( − 3)2 = −1

6
(+ 1), a parabola with vertex (−1 3),

opening to the left,  = − 1
24

⇒ focus
− 25

24
 3

and

directrix  = − 23
24
.

48. 252 + 42 + 50− 16 = 59 ⇔
25( + 1)2 + 4( − 2)2 = 100 ⇔
1
4
(+ 1)2 + 1

25
( − 2)2 = 1 is an ellipse centered at

(−1 2) with foci on the line  = −1, vertices (−1 7)

and (−1−3);  = 5,  = 2 ⇒  =
√

21 ⇒
foci

−1 2±√21

.

49. The ellipse with foci (±4 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with  = 5 and  = 4,

so 2 = 2 − 2 = 52 − 42 = 9. An equation is
2

25
+

2

9
= 1.

50. The distance from the focus (2 1) to the directrix  = −4 is 2− (−4) = 6, so the distance from the focus to the vertex

is 1
2
(6) = 3 and the vertex is (−1 1). Since the focus is to the right of the vertex,  = 3. An equation is

( − 1)2 = 4 · 3[− (−1)], or ( − 1)2 = 12(+ 1).

51. The center of a hyperbola with foci (0±4) is (0 0), so  = 4 and an equation is
2

2
− 2

2
= 1.

The asymptote  = 3 has slope 3, so



=

3

1
⇒  = 3 and 2 + 2 = 2 ⇒ (3)2 + 2 = 42 ⇒

102 = 16 ⇒ 2 = 8
5
and so 2 = 16− 8

5
= 72

5
. Thus, an equation is

2

725
− 2

85
= 1, or

52

72
− 52

8
= 1.

52. Center is (3 0), and  = 8
2

= 4,  = 2 ⇔  =
√

42 − 22 =
√

12 ⇒

an equation of the ellipse is
(− 3)

2

12
+

2

16
= 1.
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53. 2 +  = 100 ⇔ 2 = −( − 100) has its vertex at (0 100), so one of the vertices of the ellipse is (0 100). Another

form of the equation of a parabola is 2 = 4( − 100) so 4( − 100) = −( − 100) ⇒ 4 = −1 ⇒  = − 1
4
.

Therefore the shared focus is found at

0 399

4


so 2 = 399

4
− 0 ⇒  = 399

8
and the center of the ellipse is


0 399

8


. So

 = 100− 399
8

= 401
8

and 2 = 2 − 2 =
4012 − 3992

82
= 25. So the equation of the ellipse is

2

2
+


 − 399

8

2
2

= 1 ⇒

2

25
+


 − 399

8

2
401
8

2 = 1, or
2

25
+

(8 − 399)2

160,801
= 1.

54.
2

2
+

2

2
= 1 ⇒ 2

2
+

2

2



= 0 ⇒ 


= − 2

2




. Therefore




=  ⇔  = − 2

2




. Combining this

condition with
2

2
+

2

2
= 1, we find that  = ± 2√

22 + 2
. In other words, the two points on the ellipse where the

tangent has slope are


± 2√

22 + 2
∓ 2√

22 + 2


. The tangent lines at these points have the equations

 ± 2√
22 + 2

= 


∓ 2√

22 + 2


or  = ∓ 22

√
22 + 2

∓ 2√
22 + 2

= ∓√22 + 2.

55. Directrix  = 4 ⇒  = 4, so  = 1
3
⇒  =



1 +  cos 
=

4

3 + cos 
.

56. See the end of the proof of Theorem 10.6.1. If   1, then 1− 2  0 and Equations 10.6.4 become 2 =
22

(2 − 1)2
and

2 =
22

2 − 1
, so

2

2
= 2 − 1. The asymptotes  = ± 


 have slopes± 


= ±√2 − 1, so the angles they make with the

polar axis are ± tan−1
√

2 − 1


= cos−1(±1).

57. In polar coordinates, an equation for the circle is  = 2 sin . Thus, the coordinates of are  =  cos  = 2 sin  cos 

and  =  sin  = 2 sin2 . The coordinates of  are  = 2 cot  and  = 2. Since  is the midpoint of , we use the

midpoint formula to get  = (sin  cos  + cot ) and  = (1 + sin2 ).

58. (a) If ( ) lies on the curve, then there is some parameter value 1 such that
31

1 + 31
=  and

321
1 + 31

= . If 1 = 0,

the point is (0 0), which lies on the line  = . If 1 6= 0, then the point corresponding to  =
1

1
is given by

 =
3(11)

1 + (11)3
=

321
31 + 1

= ,  =
3(11)

2

1 + (11)3
=

31

31 + 1
= . So ( ) also lies on the curve. [Another way to see

this is to do part (e) first; the result is immediate.] The curve intersects the line  =  when
3

1 + 3
=

32

1 + 3
⇒

 = 2 ⇒  = 0 or 1, so the points are (0 0) and


3
2
 3

2


.
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(b)



=

(1 + 3)(6)− 32(32)

(1 + 3)2
=

6− 34

(1 + 3)2
= 0 when 6− 34 = 3(2− 3) = 0 ⇒  = 0 or  =

3
√

2, so there are

horizontal tangents at (0 0) and

3
√

2
3
√

4

. Using the symmetry from part (a), we see that there are vertical tangents at

(0 0) and

3
√

4
3
√

2

.

(c) Notice that as → −1+, we have → −∞ and  →∞. As → −1−, we have →∞ and  → −∞. Also

 − (−− 1) =  + + 1 =
3 + 32 + (1 + 3)

1 + 3
=

(+ 1)3

1 + 3
=

( + 1)2

2 −  + 1
→ 0 as → −1. So  = −− 1 is a

slant asymptote.

(d)



=

(1 + 3)(3)− 3(32)

(1 + 3)2
=

3− 63

(1 + 3)2
and from part (b) we have




=

6− 34

(1 + 3)2
. So




=




=

(2− 3)

1− 23
.

Also
2

2
=













=
2(1 + 3)4

3(1− 23)3
 0 ⇔  

1
3
√

2
.

So the curve is concave upward there and has a minimum point at (0 0)

and a maximum point at

3
√

2
3
√

4

. Using this together with the

information from parts (a), (b), and (c), we sketch the curve.

(e) 3 + 3 =


3

1 + 3

3

+


32

1 + 3

3

=
273 + 276

(1 + 3)3
=

273(1 + 3)

(1 + 3)3
=

273

(1 + 3)2

and 3 = 3


3

1 + 3


32

1 + 3


=

273

(1 + 3)2
, so 3 + 3 = 3.

(f ) We start with the equation from part (e) and substitute  =  cos ,  =  sin . Then 3 + 3 = 3 ⇒

3 cos3  + 3 sin3  = 32 cos  sin . For  6= 0, this gives  =
3cos  sin 

cos3  + sin3 
. Dividing numerator and denominator

by cos3 , we obtain  =

3


1

cos 


sin 

cos 

1 +
sin3 

cos3 

=
3 sec  tan 

1 + tan3 
.

(g) The loop corresponds to  ∈ 0 
2


, so its area is

=

 2

0

2

2
 =

1

2

 2

0


3 sec  tan 

1 + tan3 

2

 =
9

2

 2

0

sec2  tan2 

(1 + tan3 )2
 =

9

2

 ∞

0

2 

(1 + 3)2
[let  = tan ]

= lim
→∞

9
2

−1
3
(1 + 3)−1


0

= 3
2

(h) By symmetry, the area between the folium and the line  = −− 1 is equal to the enclosed area in the third quadrant,

plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is 1
2
, and since  = −− 1 ⇒

 sin  = − cos  − 1 ⇒  = − 1

sin  + cos 
, the area in the fourth quadrant is

1

2

 −4

−2


− 1

sin  + cos 

2

−


3 sec  tan 

1 + tan3 

2



CAS
=

1

2
. Therefore, the total area is 1

2
+ 2


1
2


= 3

2
.
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PROBLEMS PLUS

1. See the figure. The circle with center (−1 0) and radius
√

2 has equation

(+ 1)2 + 2 = 2 and describes the circular arc from (0−1) to (0 1).

Converting the equation to polar coordinates gives us

( cos  + 1)2 + ( sin )2 = 2 ⇒
2 cos2  + 2 cos  + 1 + 2 sin2  = 2 ⇒
2(cos2  + sin2 ) + 2 cos  = 1 ⇒ 2 + 2 cos  = 1. Using the

quadratic formula to solve for  gives us

 =
−2 cos  ±√4 cos2  + 4

2
= − cos  +

√
cos2  + 1 for   0.

The darkest shaded region is 1
8
of the entire shaded region , so 1

8
 =

 4

0

1
2

2
 = 1

2

 4

0

(1− 2 cos )  ⇒

1
4
=

 4

0


1− 2 cos 


− cos  +


cos2  + 1


 =

 4

0


1 + 2 cos

2
 − 2 cos 


cos2  + 1




=

 4

0


1 + 2 · 1

2
(1 + cos 2)− 2 cos 


(1− sin2 ) + 1




=

 4

0

(2 + cos 2)  − 2

 4

0

cos 


2− sin2  

=

2 + 1

2
sin 2

4
0

− 2

 1
√

2

0


2− 2 


 = sin 

 = cos  


=




2
+

1

2


− (0 + 0)− 2




2

√
2− 2 + sin−1 √

2

1√2

0


Formula 30,
 =
√
2


=



2
+

1

2
− 2


1

2
√

2
·
√

3√
2

+


6


=



2
+

1

2
− 1

2

√
3− 

3
=



6
+

1

2
− 1

2

√
3.

Thus,  = 4




6
+

1

2
− 1

2

√
3


=

2

3
+ 2− 2

√
3.

2. (a) The curve 4 + 4 = 2 + 2 is symmetric about both axes and about the line  =  (since interchanging 

and  does not change the equation) so we need only consider  ≥  ≥ 0 to begin with. Implicit differentiation gives

43 + 430 = 2+ 20 ⇒ 0 =
(1− 22)

(22 − 1)
⇒ 0 = 0 when  = 0 and when  = ± 1√

2
. If  = 0, then

4 = 2 ⇒ 2(2 − 1) = 0 ⇒  = 0 or ±1. The point (0 0) can’t be a highest or lowest point because it is

isolated. [If −1    1 and −1    1, then 4  2 and 4  2 ⇒ 4 + 4  2 + 2, except for (0 0).]

If  = 1√
2
, then 2 = 1

2
, 4 = 1

4
, so 1

4
+ 4 = 1

2
+ 2 ⇒ 44 − 42 − 1 = 0 ⇒ 2 = 4±√16+16

8
= 1±√2

2
.

But 2  0, so 2 = 1 +
√

2
2

⇒  = ±


1
2


1 +

√
2

. Near the point (0 1), the denominator of 0 is positive and the

numerator changes from negative to positive as  increases through 0, so (0 1) is a local minimum point. At
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1√
2



1 +

√
2

2


, 0 changes from positive to negative, so that point gives a maximum. By symmetry, the highest points

on the curve are


± 1√

2



1 +

√
2

2


and the lowest points are


± 1√

2
−


1 +
√

2
2


.

(b) We use the information from part (a), together with symmetry with respect to the

axes and the lines  = ±, to sketch the curve.

(c) In polar coordinates, 4 + 4 = 2 + 2 becomes 4 cos4  + 4 sin4  = 2 or

2 =
1

cos4  + sin4 
. By the symmetry shown in part (b), the area enclosed by

the curve is  = 8

 4

0

1

2

2
 = 4

 4

0



cos4  + sin4 

CAS
=
√

2.

3. In terms of  and , we have  =  cos  = (1 +  sin ) cos  = cos  +  sin  cos  = cos  + 1
2
 sin 2 and

 =  sin  = (1 +  sin ) sin  = sin  +  sin2 . Now−1 ≤ sin  ≤ 1 ⇒ −1 ≤ sin  +  sin2  ≤ 1 +  ≤ 2, so

−1 ≤  ≤ 2. Furthermore,  = 2 when  = 1 and  = 
2
, while  = −1 for  = 0 and  = 3

2
. Therefore, we need a viewing

rectangle with −1 ≤  ≤ 2.

To find the -values, look at the equation  = cos  + 1
2
 sin 2 and use the fact that sin 2 ≥ 0 for 0 ≤  ≤ 

2
and

sin 2 ≤ 0 for −
2
≤  ≤ 0. [Because  = 1 +  sin  is symmetric about the -axis, we only need to consider

−
2
≤  ≤ 

2
.] So for −

2
≤  ≤ 0,  has a maximum value when  = 0 and then  = cos  has a maximum value

of 1 at  = 0. Thus, the maximum value of  must occur on

0 

2


with  = 1. Then  = cos  + 1

2
sin 2 ⇒




= − sin  + cos 2 = − sin  + 1− 2 sin2  ⇒ 


= −(2 sin  − 1)(sin  + 1) = 0 when sin  = −1 or 1
2

[but sin  6= −1 for 0 ≤  ≤ 
2
]. If sin  = 1

2
, then  = 

6
and

 = cos 
6

+ 1
2

sin 
3

= 3
4

√
3. Thus, the maximum value of  is 3

4

√
3, and,

by symmetry, the minimum value is − 3
4

√
3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

 = 1 +  sin , where 0 ≤  ≤ 1, is
−3

4

√
3 3

4

√
3
× [−1 2].

4. (a) Let us find the polar equation of the path of the bug that starts in the upper

right corner of the square. If the polar coordinates of this bug, at a

particular moment, are ( ), then the polar coordinates of the bug that it is

crawling toward must be

  + 

2


. (The next bug must be the same

distance from the origin and the angle between the lines joining the bugs to

the pole must be 
2
.) The Cartesian coordinates of the first bug are

( cos   sin ) and for the second bug we have

 =  cos

 + 

2


= − sin ,  =  sin


 + 

2


=  cos . So the slope of the line joining the bugs is
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 cos  −  sin 

− sin  −  cos 
=

sin  − cos 

sin  + cos 
. This must be equal to the slope of the tangent line at ( ), so by

Equation 10.3.3 we have
() sin  +  cos 

() cos  −  sin 
=

sin  − cos 

sin  + cos 
. Solving for




, we get




sin2  +




sin  cos  +  sin  cos  +  cos2  =




sin  cos  − 


cos2  −  sin2  +  sin  cos  ⇒






sin2  + cos2 


+ 

cos2  + sin2 


= 0 ⇒ 


= −. Solving this differential equation as a separable

equation (as in Section 9.3), or using Theorem 9.4.2 with  = −1, we get  = −. To determine  we use the fact that,

at its starting position,  = 
4
and  = 1√

2
, so 1√

2
 = −4 ⇒  = 1√

2
4. Therefore, a polar equation of the

bug’s path is  = 1√
2
4− or  = 1√

2
(4)− .

(b) The distance traveled by this bug is  =
∞
4


2 + ()2, where




=

√
2
4(−−) and so

2 + ()2 = 1
2
22−2 + 1

2
22−2 = 22−2 . Thus

=
∞
4

4−  = 4 lim
→∞

 
4

−  = 4 lim
→∞

−−
4

= 4 lim
→∞


−4 − −


= 4−4 = 

5. Without loss of generality, assume the hyperbola has equation
2

2
− 2

2
= 1. Use implicit differentiation to get

2

2
− 2 0

2
= 0, so 0 =

2

2
. The tangent line at the point ( ) on the hyperbola has equation  −  =

2

2
(− ).

The tangent line intersects the asymptote  =



 when




−  =

2

2
(− ) ⇒ − 22 = 2− 22 ⇒

− 2 = 22 − 22 ⇒  =
22 − 22

(− )
=

+ 


and the -value is





+ 


=

+ 


.

Similarly, the tangent line intersects  = − 


 at


− 



− 




. The midpoint of these intersection points is


1

2


+ 


+

− 





1

2


+ 


+

− 




=


1

2

2



1

2

2




= ( ), the point of tangency.

Note: If  = 0, then at (± 0), the tangent line is  = ±, and the points of intersection are clearly equidistant from the point

of tangency.

6. (a) Since the smaller circle rolls without slipping around , the amount of arc

traversed on  (2 in the figure) must equal the amount of arc of the smaller

circle that has been in contact with . Since the smaller circle has radius ,

it must have turned through an angle of 2 = 2. In addition to turning

through an angle 2, the little circle has rolled through an angle  against .

Thus,  has turned through an angle of 3 as shown in the figure. (If the little

circle had turned through an angle of 2 with its center pinned to the -axis,
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then  would have turned only 2 instead of 3. The movement of the little circle around  adds  to the angle.) From the

figure, we see that the center of the small circle has coordinates (3 cos  3 sin ). Thus,  has coordinates ( ), where

 =  cos 3 + 3 cos  and  =  sin 3 + 3 sin .

(b)

 = 1
5
  = 2

5
  = 3

5
  = 4

5


(c) The diagram gives an alternate description of

point  on the epitrochoid.  moves around

a circle of radius , and  rotates one-third as

fast with respect to at a distance of 3.

Place an equilateral triangle with sides of

length 3
√

3 so that its centroid is at  and

one vertex is at . (The distance from the centroid to a vertex is 1√
3
times the length of a side of the equilateral triangle.)

As  increases by 2
3
, the point travels once around the circle of radius , returning to its original position. At the

same time,  (and the rest of the triangle) rotate through an angle of 2
3
about , so  ’s position is occupied by another

vertex. In this way, we see that the epitrochoid traced out by  is simultaneously traced out by the other two vertices as

well. The whole equilateral triangle sits inside the epitrochoid (touching it only with its vertices) and each vertex traces out

the curve once while the centroid moves around the circle three times.

(d) We view the epitrochoid as being traced out in the same way as in part (c), by a rotor for which the distance from its center

to each vertex is 3, so it has radius 6. To show that the rotor fits inside the epitrochoid, it suffices to show that for any

position of the tracing point  , there are no points on the opposite side of the rotor which are outside the epitrochoid. But

the most likely case of intersection is when  is on the -axis, so as long as the diameter of the rotor

which is 3

√
3 

is

less than the distance between the -intercepts, the rotor will fit. The -intercepts occur when  = 
2
or  = 3

2
⇒

 = −+ 3 or  = − 3, so the distance between the intercepts is (−+ 3)− (− 3) = 6 − 2, and the rotor will

fit if 3
√

3  ≤ 6 − 2 ⇔ 2 ≤ 6 − 3
√

3  ⇔  ≤ 3
2


2 −√3


.
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2 Derivatives
2.1 Derivatives and Rates of Change

SUGGESTED TIME AND EMPHASIS

1–2 classes Essential material

POINTS TO STRESS

1. The slope of the tangent line as the limit of the slopes of secant lines (visually, numerically, algebraically).

2. Physical examples of instantaneous rates of change (velocity, reaction rate, marginal cost, and so on) and

their units.

3. The derivative notations f  a  lim
h0

f a  h f a

h
and f  a  lim

xa

f x f a

x  a
.

4. Using f to write an equation of the tangent line to a curve at a given point.

5. Using f  as an approximate rate of change when working with discrete data.

QUIZ QUESTIONS

 TEXT QUESTION Why is it necessary to take a limit when computing the slope of the tangent line?

ANSWER There are several possible answers here. Examples include the following:

 By definition, the slope of the tangent line is the limit of the slopes of secant lines.

 You don’t know where to draw the tangent line unless you pick two points very close together.

The idea is to get them thinking about this question.

 DRILL QUESTION For the function g whose graph is given, arrange the following numbers in increasing order

and explain your reasoning:

0 g 2 g 0 g 2 g 4

1_1 2 3 4 x

y
y=g(x)

0

ANSWER g 0  0  g 4  g 2  g 2
73
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CHAPTER 2 DERIVATIVES

MATERIALS FOR LECTURE

 Review the geometry of the tangent line, and the concept of “locally linear”. Estimate the slope of the

line tangent to y  x3  x at 1 2 by looking at the slopes of the lines between x  09 and x  11,

x  099 and x  101, and so forth. Illustrate these secant lines on a graph of the function, redrawing the

figure when necessary to illustrate the “zooming in” process.
y
3

2

1

1 2 3 x0

y

0

1.9

2

2.1

2.2

0.9 1 1.1 1.2 x 0

y

x0.8 1 1.2 1.4

1.8

2

2.2

2.4

Similarly examine y  1
x21

at 0 1.

y

_1 _0.5 0 0.5 1 x

0.5

1.5

2

1

y

0.6

0.8

1.2

1.4

1

_0.4 _0.2 0 0.2 0.4

y

_0.1 _0.05 0 0.05 0.1 x

0.9

1

1.1

 If “A Jittery Function” was covered in Section 1.7, look at f x 


0 if x is rational
x2 if x is irrational

Poll the

class: Is there a tangent line at x  0? Then examine what happens if you look at the limits of the secant

lines.

 Have students estimate the slope of the tangent line to y  sin x at various points. Foreshadow the concept

of concavity by asking them some open-ended questions such as the following: What happens to the

function when the slope of the tangent is increasing? Decreasing? Zero? Slowly changing?
 Discuss how physical situations can be translated into statements about derivatives. For example, the

budget deficit can be viewed as the derivative of the national debt. Describe the units of derivatives in

real world situations. The budget deficit, for example, is measured in billions of dollars per year. Another

example: if s d represents the sales figures for a magazine given d dollars of advertising, where s is the

number of magazines sold, then s d is in magazines per dollar spent. Describe enough examples to make

the pattern evident.
 Note that the text shows that if f x  x2  8x  9, then f  a  2a  8. Thus, f  55  102 and

f  100  192. Demonstrate that these quantities cannot be easily estimated from a graph of the function.

Foreshadow the treatment of a as a variable in Section 2.2.

 If a function models discrete data and the quantities involved are orders of magnitude larger than 1, we

can use the approximation f  x  f x  1 f x. (That is, we can use h  1 in the limit definition

of the derivative.) For example, let f t be the total population of the world, where t is measured in years

since 1800. Then f 211 is the world population in 2011, f 212 is the total population in 2012, and

f  211 is approximately the change in population from 2011 to 2012. In business, if f n is the total

cost of producing n objects, f  n approximates the cost of producing the n  1th object.
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SECTION 2.1 DERIVATIVES AND RATES OF CHANGE

WORKSHOP/DISCUSSION

 “Thumbnail” derivative estimates: graph a function on the board and have the class call out rough values

of the derivative. Is it larger than 1? About 1? Between 0 and 1? About 0? Between 1 and 0? About

1? Smaller than 1? This is good preparation for Group Work 2 (“Oiling Up Your Calculators”).

 Draw a function like the following, and first estimate slopes of secant lines between x  a and x  b,

and between x  b and x  c. Then order the five quantities f  a, f  b, f  c, m P Q , and mQ R in

decreasing order. [Answer: f  b  m P Q  mQ R  f  c  f  a.]

x

y

cba

P
Q

R

 Start the following problem with the students: A car is travelling down a highway away from its starting

location with distance function d t  8

t3  6t2  12t


, where t is in hours, and d is in miles.

1. How far has the car travelled after 1, 2, and 3 hours?

2. What is the average velocity over the intervals [0 1], [1 2], and [2 3]?

 Consider a car’s velocity function described by the graph below.

0

v

A B C D t

1. Ask the students to determine when the car was stopped.

2. Ask the students when the car was accelerating (that is, when the velocity was increasing). When was

the car decelerating?

3. Ask the students to describe what is happening at times A, C , and D in terms of both velocity and

acceleration. What is happening at time B?

 Estimate the slope of the tangent line to y  sin x at x  1 by looking at the following table of values.

x sin x
sin x  sin 1

x  1
0 0 0841471
05 04794 0724091
09 07833 0581441
099 08360 0544501
0999 08409 0540723
10001 08415 0540260
1001 08420 0539881
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CHAPTER 2 DERIVATIVES

 Demonstrate some sample computations similar to Example 4, such as finding the derivative of

f t  1 t at t  3, or of g x  x  x2 at x  1.

GROUP WORK 1: FOLLOW THAT CAR

Start this problem by giving the students the function d t  8

t3  6t2  12t


and having them sketch its

graph. Ask them how far the car has traveled after 1, 2, and 3 hours, and then show them how to compute the

average velocity for [0 1], [1 2], and [2 3].

ANSWERS

1.

20

40

60

1 20 x

y 2. It appears to stop at t  2.

3. 8 mih, 2 mih, 008 mih

4. 0 mih. This is where the car stops.

GROUP WORK 2: OILING UP YOUR CALCULATORS

As long as the students have the ability to graph a function on their calculators and to estimate the slope

of a curve at a point, they don’t need to have been exposed to the exponential function to do this activity.

The exponential function and the number e will be covered in Chapter 6, and this exercise is a good initial

introduction to the concept.

ANSWERS

1. If the students do this numerically, they should be able to get some pretty good estimates of

ln 3  1098612. If they use graphs, they should be able to get 11 as an estimate.

2. 07 is a good estimate from a graph.

3. As a increases, the slope of the curve at x  0 is increasing, as can be seen below.

0

1

2

1 x_1

3
y

0

1

2

1 x_1

3
y

0

1

2

1 x_1

3
y

0

1

2

1 x_1

3
y

4. The slope is less than 1 at a  2 and greater than 1 at a  3. Now apply the Intermediate Value Theorem.

5. The students are estimating e and should get 272 at a minimum level of accuracy.

GROUP WORK 3: CONNECT THE DOTS

Closure is particularly important on this activity. At this point in the course, many students will have the

impression that all reasonable estimates are equally valid, so it is crucial that students discuss Problem 4. If
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SECTION 2.1 DERIVATIVES AND RATES OF CHANGE

there is student interest, this table can generate a rich discussion. Can A ever be negative? What would that

mean in real terms? What would

A
 mean in real terms in this instance?

ANSWERS

1. A 3500  006 %$ It is likely to be an overestimate, because the function lies below its tangent line

near p  3500.

2. After spending $3500, consumer approval is increasing at the rate of about 006 % for every additional

dollar spent.

3. Percent per dollar

4. A $3550  006 %$. This is a better estimate because the same figures now give a two-sided

approximation of the limit of the difference quotient.

HOMEWORK PROBLEMS

CORE EXERCISES 3, 5, 9, 11, 14, 22, 23, 33, 40, 48

SAMPLE ASSIGNMENT 3, 5, 9, 11, 14, 17, 22, 23, 33, 40, 48, 53, 59

EXERCISE D A N G
3  
5 
9 
11 
14  
17 
22 
23 
33  
40 
48 
53  
59 
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GROUP WORK 1, SECTION 2.1
Follow that Car

Here, we continue with the analysis of the distance d t  8

t3  6t2  12t


of a car, where d is in miles

and t is in hours.

1. Draw a graph of d t from t  0 to t  3.

2. Does the car ever stop?

3. What is the average velocity over [1 3]? over [15 25]? over [19 21]?

4. Estimate the instantaneous velocity at t  2. Give a physical interpretation of your answer.
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GROUP WORK 2, SECTION 2.1
Oiling Up Your Calculators

1. Use your calculator to graph y  3x . Estimate the slope of the line tangent to this curve at x  0 using a

method of your choosing.

2. Use your calculator to graph y  2x . Estimate the slope of the line tangent to this curve at x  0 using a

method of your choosing.

3. It is a fact that, as a increases, the slope of the line tangent to y  ax at x  0 also increases in a

continuous way. Geometrically, why should this be the case?

4. Prove that there is a special value of a for which the slope of the line tangent to y  ax at x  0 is 1.

5. By trial and error, find an estimate of this special value of a, accurate to two decimal places.
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GROUP WORK 3, SECTION 2.1
Connect the Dots

A company does a study on the effect of production value p of an advertisement on its consumer approval

rating A. After interviewing eight focus groups, they come up with the following data:

Production Value Consumer Approval
$1000 32%
$2000 33%
$3000 46%
$3500 55%
$3600 61%
$3800 65%
$4000 69%
$5000 70%

Assume that A p gives the consumer approval percentage as a function of p.

1. Estimate A $3500. Is this likely to be an overestimate or an underestimate?

2. Interpret your answer to Problem 1 in real terms. What does your estimate of A $3500 tell you?

3. What are the units of A p?

4. Estimate A $3550. Is your estimate better or worse than your estimate of A $3500? Why?
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WRITING PROJECT Early Methods for Finding Tangents
The history of calculus is a fascinating and too-often neglected subject. Most people who study history never

see calculus, and vice versa. We recommend assigning this section as extra credit to any motivated class, and

possibly as a required group project, especially for a class consisting of students who are not science or math

majors.

The students will need clear instructions detailing what their final result should look like. For example,

recommend a page or two about Fermat’s or Barrow’s life and career, followed by two or three technical

pages describing the alternate method of finding tangent lines as in the project’s directions, and completed by

a final half page of meaningful conclusion.
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2.2 The Derivative as a Function

SUGGESTED TIME AND EMPHASIS

2 classes Essential material

POINTS TO STRESS

1. The concept of a differentiable function interpreted visually, algebraically, and descriptively.

2. Obtaining the derivative function f  by first considering the derivative at a point x , and then treating x as

a variable.

3. How a function can fail to be differentiable.

4. Sketching the derivative function given a graph of the original function.

5. Second and higher derivatives

QUIZ QUESTIONS

TEXT QUESTION The previous section discussed the derivative f  a for some function f . This section discusses

the derivative f  x for some function f . What is the difference, and why is it significant enough to merit

separate sections?

ANSWER a is considered a constant, x is considered a variable. So f  a is a number (the slope of the tangent

line) and f  x is a function.

DRILL QUESTION Consider the graph of f x  3


x . Is this function defined at x  0? Continuous at x  0?

Differentiable at x  0? Why?

_2

_1

0

1

2
y

_10 _5 5 10 x

ANSWER It is defined and continuous, but not differentiable because it has a vertical tangent.

MATERIALS FOR LECTURE

 Ask the class this question: “If you were in a car, blindfolded, ears plugged, all five senses neutralized, what

quantities would you still be able to perceive?” (Answers: They could feel the second derivative of motion,

acceleration. They could also feel the third derivative of motion, “jerk”.) Many students incorrectly add

velocity to this list. Stress that acceleration is perceived as a force (hence F  ma) and that “jerk” causes

the uncomfortable sensation when the car stops suddenly.

 Review definitions of differentiability, continuity, and the existence of a limit.

 Sketch f  from a graphical representation of f x  x2  4
, noting where f  does not exist. Then

sketch


f 


from the graph of f . Point out that differentiability implies continuity, and not vice versa.
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SECTION 2.2 THE DERIVATIVE AS A FUNCTION

 Examine graphs of f and f  aligned vertically as shown. If

you wish to foreshadow f , add its graph below.

Discuss what it means for f  to be positive, negative or zero.

Then discuss what it means for f  to be increasing,

decreasing or constant.

x

x

x

y

y

y

f

f»

f»»

 If the group work “A Jittery Function” was covered in Section 1.7, then examine the differentiability of

f x 


0 if x is rational

x2 if x is irrational
at x  0 and elsewhere, if you have not already done so.

 Show that if f x  x4 x2 x  1, then f 5 x  0. Conclude that if f x is a polynomial of degree

m, then f m1 x  0.

WORKSHOP/DISCUSSION

 Estimate derivatives from the graph of f x  sin x . Do this at various points, and plot the results on the

blackboard. See if the class can recognize the graph as a graph of the cosine curve.

 Given the graph of f below, have students determine where f has a horizontal tangent, where f  is positive,

where f  is negative, where f  is increasing (this may require some additional discussion), and where f 

is decreasing. Then have them sketch the graph of f .

x

y

TEC has more exercises of this type using a wide variety of functions.

ANSWER There is a horizontal tangent near x  0. f  is positive to the right of 0, negative to the left. f  is

increasing between the x-intercepts, and decreasing outside of them.

x

y

f

f»

 Compute f  x and g x if f x  x2x2 and g x  x2x4. Point out that f  x  g x and

discuss why the constant term is not important. Next, compute h x if h x  x22x2. Point out that
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CHAPTER 2 DERIVATIVES

the graph of h x is just the graph of f  x shifted up one unit, so the linear term just shifts derivatives.

TEC contains more explorations on how the coefficients in polynomials and other functions affect first and

second derivatives.

 Consider the function f x  x  Show that it is not differentiable at 0 in two ways: by inspection

(it has a cusp); and by computing the left- and right-hand limits of f  x at x  0 ( lim
x0

f  x  ,

lim
x0

f  x  ).

 TEC TEC can be used to develop students’ ability to look at the graph of a function and visualize the

graph of that function’s derivative. The key feature of this module is that it allows the students to mark

various features of the derivative directly on the graph of the function (for example, where the derivative is

positive or negative). Then, after using this information and sketching a graph of the derivative, they can

view the actual graph of the derivative and check their work.

GROUP WORK 1: TANGENT LINES AND THE DERIVATIVE FUNCTION

This simple activity reinforces that although we are moving to thinking of the derivative as a function of x , it

is still the slope of the line tangent to the graph of f .

ANSWERS
1, 3.

_3

_2

_1

0

1

1 2 3 4 x

y

y=g(x)

(¹/2, g(¹/2))

(¹/3, g(¹/3)) 2. y  
2


x  

2


4. y 


1
2  


3

6

 
x  

3

 
6

GROUP WORK 2: THE REVENGE OF ORVILLE REDENBACHER

In an advanced class, or a class in which one group has finished far ahead of the others, ask the students to

repeat the activity substituting “D t, the density function” for V t.

ANSWERS

1. y

t

y = V ( t )

0

2. y

t

y = V » ( t )

0

Units are cm3s.

3. y

t

y = V » » ( t )

0

When the second derivative
crosses the x-axis, the first
derivative has a maximum,
meaning the popcorn is

expanding the fastest.
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SECTION 2.2 THE DERIVATIVE AS A FUNCTION

GROUP WORK 3: THE DERIVATIVE FUNCTION

Give each group of between three and five students the picture of all eight graphs. They are to sketch the

derivative functions by first estimating the slopes at points, and plotting the values of f  x. Each group

should also be given a large copy of one of the graphs, perhaps on acetate. When they are ready, with this

information they can draw the derivative graph on the same axes. For closure, project their solutions on the

wall and point out salient features. Perhaps the students will notice that the derivatives turn out to be positive

when their corresponding functions are increasing. Concavity can even be introduced at this time. Large

copies of the answers are provided, in case the instructor wishes to overlay them on top of students’ answers

for reinforcement. Note that the derivative of graph 6 (y  ex ) is itself. Also note that the derivative of

graph 1 (y  cosh x) is not a straight line. Leave at least 15 minutes for closure. The whole activity should

take about 45–60 minutes, but it is really, truly worth the time.

If a group finishes early, have them discuss where f  is increasing and where it is decreasing. Also show that

where f is increasing, f  is positive, and where f is decreasing, f  is negative.

ANSWER (larger answer graphs are included after the group work)

Graph 1 Graph 2 Graph 3 Graph 4

Graph 5 Graph 6 Graph 7 Graph 8
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CHAPTER 2 DERIVATIVES

HOMEWORK PROBLEMS

CORE EXERCISES 1, 3, 5, 8, 11, 19, 33, 50

SAMPLE ASSIGNMENT 1, 3, 5, 7, 8, 11, 16, 17, 19, 33, 42, 50, 53

EXERCISE D A N G
1 
3 
5 
7  
8 
11 
16 
17 
19 
33 
42 
50 
53  
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GROUP WORK 1, SECTION 2.2
Tangent Lines and the Derivative Function

The following is a graph of g x  x cos x .

_3

_2

_1

0

1

1 2 3 4

y

x

y=g(x)

It is a fact that the derivative of this function is g x  cos x  x sin x .

1. Sketch the line tangent to g x at x  
2  157 on the graph above.

2. Find an equation of the tangent line at x  
2 .

3. Now sketch the line tangent to g x at x  
3  105.

4. Find an equation of the tangent line at x  
3 .
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GROUP WORK 2, SECTION 2.2
The Revenge of Orville Redenbacher

1. Consider a single kernel of popcorn in a microwave oven. Let V t be the volume in cm3 of the kernel at

time t seconds. Draw a graph of V t, including as much detail as you can, up to the time that the kernel

is taken from the oven.

2. Now sketch a graph of the derivative function V  t. What are the units of V  t?

3. Finally, sketch a graph of V  t. What does it mean when this graph crosses the x-axis?
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GROUP WORK 3, SECTION 2.2
The Derivative Function

The graphs of several functions f are shown below. For each function, estimate the slope of the graph of f at

various points. From your estimates, sketch graphs of f .

Graph 1 Graph 2

Graph 3 Graph 4

Graph 5 Graph 6

Graph 7 Graph 8
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The Derivative Function

Graph 1
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The Derivative Function

Graph 2
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The Derivative Function

Graph 3
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The Derivative Function

Graph 4
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The Derivative Function

Graph 5

94

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



The Derivative Function

Graph 6
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The Derivative Function

Graph 7
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The Derivative Function

Graph 8
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The Derivative Function

Answer 1
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The Derivative Function

Answer 2
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The Derivative Function

Answer 3
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The Derivative Function

Answer 4
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The Derivative Function

Answer 5
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The Derivative Function

Answer 6
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The Derivative Function

Answer 7
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The Derivative Function

Answer 8
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2.3 Differentiation Formulas

SUGGESTED TIME AND EMPHASIS

2–3 classes Essential material

POINTS TO STRESS

1. The Power, Constant Multiple, Sum and Difference Rules, and how they are developed from the limit

definition of the derivative.

2. Justification of the Product and Quotient Rules.

3. The computation of derivatives using the above rules.

QUIZ QUESTIONS

 TEXT QUESTION Why don’t we use the Quotient Rule every time we encounter a quotient?

ANSWER Sometimes algebraic simplification can make the problem much easier.

 DRILL QUESTION Compute the derivative of


x6  1
8 x4
 

x  π

.

ANSWER
x6  1

8 x4

2


x



6x5  1
2 x3
 

x  π


MATERIALS FOR LECTURE

 As an introductory exercise, draw the function f x  x3

3
. Ask the students to estimate slopes at several

points, perhaps using secant lines. Create a table of x versus f  x and try to get them to see the pattern.

Then review the idea of the derivative function. Similarly, examine the derivatives of f x  5x  2 and

f x  3.

 Let f x  x3  2x2  3x  4. Find a point a, both visually and algebraically, where f  a  2. Then

ask them to find where the tangent line to the function f x  x3  x  1 is parallel to the line y  x .

 Derive the Product Rule, and show its relationship to the Constant Multiple Rule (For example, one can

find

3ex


using either rule, but

xex


requires the Product Rule.)

 State and demonstrate a proof of the Quotient Rule via the Reciprocal Rule:

Let f g  1. Then by the Product Rule, f g  g f  0  f g  g f  f   g f

g
  g

g2

since f  1

g
. This is the Reciprocal Rule: If f  1

g
, then f    g

g2
.

This result allows us to prove the Quotient Rule:
f

g





f  1

g


 f 


1

g


 f


1

g


(by the Product Rule)

 f 
g
 f


 g

g2


(by the Reciprocal Rule)

 f g  f g
g2

 Show that, if f x  x4 x2 x  1, then f 5 x  0. Conclude that if f x is a polynomial of degree

m, then f m1 x  0.
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SECTION 2.3 DIFFERENTIATION FORMULAS

WORKSHOP/DISCUSSION

 Do a complex-looking differentiation that requires algebraic simplification, such as

f x 
x2 3


x  x


x3 


2x
2


x23

2
 After the students have mastered the basics of the Power Rule, have them differentiate some notationally

tricky functions such as x, 


x , and π


2.

 Give some examples in which the automatic use of the Quotient Rule is not the best strategy to follow, for

example, f x  x2 x  3


x

x
, g x  x3  2x

17
, or h x  3

x
. The idea is to get the students to

think and simplify first (if they can) before using any of the rules.

 Do an example like Exercise 53. If you actually use the Witch of Agnesi, the students may be interested

to hear the history of the curve: Italian mathematician Maria Agnesi (1718–1799) was a scholar whose

first paper was published when she was nine years old. She called a particular curve versiera, or “turning

curve”. John Colson from Cambridge confused the word with avversiera, or “wife of the devil,” and

translated it “witch”.

 Graph f x  4 x2 and compute the equations of the tangent line

and the normal line at x  1. Draw those lines and point out that, as

predicted, they are perpendicular.

_1
0

1
2
3

y

_2 _1 1 2 x

4

GROUP WORK 1: DOING A LOT WITH A LITTLE

This exercise starts out by showing what can be done with the Power Rule, and ends by foreshadowing the

Chain Rule. The first page should be handed out separately, and then the second sheet handed out to groups

who finish early. Emphasize that the solution to Problem 5 should resemble that of Problem 4 in form. If

a group finishes both sheets far ahead of the others, ask them to figure out a formula for the derivative of

f x  g xn , and to come up with a few examples to check their formula. (Notice that when we state the

Power Rule, we allow n to be any real number.)

ANSWERS (Notation may vary)

1. f  x  10x9  7x8  4x7  35x6  198x5  5πx4  4


2x3

2. f  x  1

3
3


x2
, g x   3

x4
 3

4 4


x7
, h x  9

2 x72  x32

3. f  x  64x3, g x  15x14

4. This follows immediately when the given functions are expanded.

5. f  x  n kxn1 k, g x  n

xk
n1  kxk1
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CHAPTER 2 DERIVATIVES

GROUP WORK 2: FIND THE ERROR

This is the first of several exercises where students will try to find mistakes in somebody else’s reasoning.

When first faced with a task like this, some students will pick a line towards the end, show it is false, and

then consider the task completed. It is important to stress you want them to find the reasoning error; what the

person who did the work did incorrectly to get that false line.

If a student still doesn’t understand the idea, put it this way: “The person who wrote this listens to what you

just said, and says, ‘What did I do wrong?’ Can you give an answer that will help that person avoid making

similar mistakes in the future?”

ANSWER The function “x  x      x  
x times

” is defined only for integer values of x and is thus not a differentiable

function.

GROUP WORK 3: BACK AND FORTH

This exercise foreshadows antiderivatives and gives students an opportunity to practice using the derivative

rules they’ve learned so far.

The students pair up, and decide who is A and who is B. Seat the A’s on one side of the room and the B’s

on the other side. All the A’s get one sheet, and all the B’s get the other sheet. The students compute five

derivatives, without simplifying, and write their answers in the space provided. Emphasize that they should

write only their unsimplified answers, not the work leading up to them, in the blanks. Then they trade papers

with their partner and try to undo what their partner has done, that is, find the antiderivative.

If a pair finishes early, have them repeat the exercise, making up their own functions, and simplifying at will.

When closing this exercise, have the class notice that there was no way to recover the constant terms in

Problems 1 and 5. Ask what this implies about the general problem of finding a function whose derivative is

equal to a given function.

ANSWERS

FORM A f  x  20x33x (the 4 is unrecoverable), g x  x12x34, h x  x2  2x  4
 

3x2  1


2x  2

x3  x  3


, j  x 


x  1

 
4x3  4

 x4  4x  3



2


x


x  1
2 , k x  x43 (the 42

is unrecoverable)

FORM B f  x  6x28


x (the 8 is unrecoverable), g x  1
5


3x2
 

x3  x
 x3  1

 
3x2  1

 12x

,

h x  x3  x2  2x
 

10x  8x3  8
 5x2  2x4  8x

 
3x2  2x  2


,

j  x  1 2x (x  0), k x  22
3 x23

GROUP WORK 4: SPARSE DATA

This exercise allows the students to practice the rules they have learned, with a minimum of algebraic manip-

ulation. The students should work on these problems in groups of three or four, perhaps choosing groups of

students with similar algebraic proficiency. Problem 5 uses the General Power Rule, which was illustrated in

Group Work 1.

ANSWERS 1. 0 2.  48 3. 43
25 4. 18 5. 1

3
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SECTION 2.3 DIFFERENTIATION FORMULAS

HOMEWORK PROBLEMS

CORE EXERCISES 2, 5, 12, 18, 24, 26, 32, 50, 51, 60, 101

SAMPLE ASSIGNMENT 2, 5, 12, 18, 24, 26, 32, 32, 35, 47, 50, 51, 60, 61, 68, 73, 90, 94, 101, 105

EXERCISE D A N G
2 
5 
12 
18 
24 
26 
32 
32 
35 
47 
50  
51 
60 
61 
68  
73 
90 
94 

101 
105 
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GROUP WORK 1, SECTION 2.3
Doing a Lot with a Little

Section 2.3 introduces the Power Rule:
d

dx
xn  nxn1, where n is any real number. The good news is that

this rule, combined with the Constant Multiple and Sum Rules, allows us to take the derivative of even the

most formidable polynomial with ease! To demonstrate this power, try Problem 1:

1. A formidable polynomial:

f x  x10  7
9 x9  1

2 x8  5x7  033x6  πx5 2x4  42

Its derivative:

f  x 

The ability to differentiate polynomials is only one of the things we’ve gained by establishing the Power Rule.

Using some basic definitions, and a touch of algebra, there are all kinds of functions that can be differentiated

using the Power Rule.

2. All kinds of functions:

f x  3


x  5


2 g x  1

x3
 1

4


x3
h x  x5  3


x  2

x
Their derivatives:

f  x  g x  h x 

Unfortunately, there are some deceptive functions that look like they should be straightforward applications

of the Power and Constant Multiple Rules, but actually require a little thought.

3. Some deceptive functions:

f x  2x4 g x  x3
5

Their derivatives:

f  x  g x 
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Doing a Lot with a Little

The process you used to take the derivative of the functions in Problem 3 can be generalized. In the first case,

f x  2x4, we had a function that was of the form kxn , where k and n were constants (k  2 and

n  4. In the second case, g x  x3
5

, we had a function of the form

xk
n

. Now we are going to find a

pattern, similar to the Power Rule, that will allow us to find the derivatives of these functions as well.

4. Show that your answers to Problem 3 can also be written in this form:

f  x  4 2x3  2 g x  5


x3
4  3x2

And now it is time to generalize the Power Rule. Consider the two general functions, and try to find expres-

sions for the derivatives similar in form to those given in Problem 4. You may assume that n is an integer.

5. Two general functions:

f x  kxn g x  xk
n

Their derivatives:

f  x 
g x 
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GROUP WORK 2, SECTION 2.3
Find the Error

It is a bright Spring morning. You have just finished your Chemistry lab, and have a Physics class starting in

a half hour, so you have a little bit of time to sit on a park bench and relax by leafing through your Calculus

book. Suddenly, you notice a wild-eyed, hungry-looking stranger looking over your shoulder.

“Lies! Lies!” he yells. “That book there is filled with nothing but lies!”

“Why, you are mistaken,” you explain. “My Calculus book is chock-a-block with knowledge and useful

wisdom.”

“Oh yeah? Well what would your calculus book say about THIS?” he demands, and hands you a piece of

paper with the following written on it:

“Put THAT in your pipe and smoke it!” At that, the gentleman runs off, screaming, “I’ll be back!” into the

wind.

Is all of mathematics wrong? Is two really equal to one? Are “two for one” specials really no bargain at all?

Is “six of one” really not “half a dozen of the other”? Or is there a mistake in your new friend’s reasoning?

If so, what is it?
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GROUP WORK 3, SECTION 2.3
Back and Forth (Form A)

Compute the following derivatives. Write your answers at the bottom of this sheet, where indicated. When

finished, fold the top of the page backward along the dotted line and hand to your partner.

Do not simplify.

1. f x  5x4  3
2 x2  4

2. g x  2


x  4 4


x

3. h x  x2  2x  4
 

x3  x  3


4. j x  x4  4x  3
x  1

5. k x  3
3


x
 42

ANSWERS
f  x 

g x 

h x 

j  x 

k x 
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GROUP WORK 3, SECTION 2.3
Back and Forth (Form B)

Compute the following derivatives. Write your answers at the bottom of this sheet, where indicated. When

finished, fold the top of the page backward along the dotted line and hand to your partner.

Do not simplify.

1. f x  2x3 


8
2 x2  8

2. g x 

x3  1

 
x3  x

 6x2

5

3. h x  x3  x2  2x
 

5x2  2x4  8x


4. j x  x2  x3

x

5. k x  11 22 3


x

ANSWERS
f  x 

g x 

h x 

j  x 

k x 
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GROUP WORK 4, SECTION 2.3
Sparse Data

Assume that f x and g x are differentiable functions about which we know very little. In fact, assume that

all we know about these functions is the following table of data:

x f x f  x g x g x
2 3 1 5 8
1 9 7 4 1

0 5 9 9 3
1 3 3 2 6
2 5 3 8 ?

This isn’t a lot of information. For example, we can’t compute f  3 with any degree of accuracy. But we

are still able to figure some things out, using the rules of differentiation.

1. Let h x   3


x
4 f x. What is h 0?

2. Let j x  4 f x g x. What is j  1?

3. Let k x  x f x

g x
. What is k 2?

4. Let l x  x3g x. If l  2  48, what is g 2?

5. Let m x  1

f x
. What is m 1?
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APPLIED PROJECT Building a Better Roller Coaster

This project models a typical hill in a roller coaster ride using two lines as the sides and a parabola for the

peak area. It also discusses how to smooth this model to have a continuous second derivative by using cubic

connecting functions between the parabola and the two lines. A computer algebra system is needed to solve

the resulting equations. In their report, students should address the question, “Why do we want the second

derivative to be continuous?”
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2.4 Derivatives of Trigonometric Functions

SUGGESTED TIME AND EMPHASIS

1 class Essential material

POINTS TO STRESS

Formulas for the derivatives of the standard trigonometric functions.

QUIZ QUESTIONS

 TEXT QUESTION Why does the text bother going through all the fuss of computing lim
0

sinθ

θ
and

lim
0

cosθ  1

θ
?

ANSWER When deriving the formulas for the derivatives for sinθ and cosθ, these limits arise when taking

the limits of the difference quotients. These computations are necessary to finish the derivations.

 DRILL QUESTION What is lim
h0

tan


4  h

 tan


4


h

?

(A) 2 (B) 


2
2 (C) 0 (D) 1 (E) Does not exist

ANSWER (A)

MATERIALS FOR LECTURE

 Many students may need a review of notation: sin2 x  sin x2, sin x2  sin

x2

, sin x1  1

sin x


csc x , sin x1  sin
1

x
, but sin1 x represents the inverse sine of x , arcsin x , and not any of the previous

functions.

 Demonstrate simple harmonic motion in different ways such as observing the end of a vertical spring,

marking the edge of a spinning disk, or swinging an object on a chain.

 Have the students set their calculators to degrees and approximate the derivative of cos x at x  
2 by

zooming in on the graph of cos x . Repeat the exercise with their calculators set to radians. Discuss the

reason why the answers are different, and why only one is considered correct. Show how the slope of the

tangent to the graph of sin x at x  0 is not 1 if the x-axis is calibrated in degrees instead of radians.

ANSWER The derivation of sinθ  cosθ involved using the fundamental trigonometric limit, which

assumed θ was in radians.

WORKSHOP/DISCUSSION

 Demonstrate that lim
x0

sin ax

ax
 1 for any positive a. Then ask students to find lim

x0

sin ax

x
. Show how

this argument can be extended to derive the formulas
d

dx
sin ax  a cos ax and

d

dx
cos ax  a sin ax .

Finally, demonstrate that your results make sense by drawing graphs of
sin ax

ax
and

sin ax

x
for various

values of a.
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CHAPTER 2 DERIVATIVES

0

1

¹ 2¹_2¹ _¹
x

y

y  sin 2x

2x

0

2

¹ 2¹_2¹ _¹
x

y

1

y  sin 2x

x

0

1

¹ 2¹_2¹ _¹
x

y

y  sin 5x

5x

0

5

¹ 2¹_2¹ _¹
x

y

y  sin 5x

x
 Consider f x  1

2 x  cos x , 0  x  2π. Discuss local maxima and minima of f x. Repeat for

g x  9
10 x  cos x and h x  x  cos x . Discuss why h is qualitatively different from f and g.

GROUP WORK 1: THE MAGNIFICENT SIX

After showing the students that sin x  cos x and cos x   sin x , it is possible to use the Quotient

Rule to derive the trigonometric derivatives on their own, and the process of deriving these formulas is good

practice at using the rules learned so far.

ANSWERS

1. cos x 2.  sin x 3. sec2 x

4. tan x sec x 5.  csc2 x 6.  cot x csc x

GROUP WORK 2: USING OUR NEW KNOWLEDGE

ANSWERS

1. 1, 3, 1

2. y  x , y  3x  3π, y  x  2π

3.
y=g(x)

y

_4

_2
0

2

4

2 4 6 8 10 x

4. There is no tangent line at y  
2 because the function has a vertical asymptote there.

GROUP WORK 3: WHEN THE LIGHTS GO DOWN IN THE CITY

This activity will help the students understand the relationship between a trigonometric function in the ab-

stract, and a trigonometric function as a model for real situations.

Creative use of technology can be encouraged here. It is important to stress to the students that Problem 2

assumes that they are looking at only a one-month window. Problem 6 foreshadows the technique of linear

approximation covered in Section 2.9.
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SECTION 2.4 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

ANSWERS

1. Maximum: 1, minimum: 20 2. It is part of a cosine curve. 3. December 4. May

5. 3095 minutes per day (05158 hours per day) 6. 3095  31  9594, accurate to within about 1%.

HOMEWORK PROBLEMS

CORE EXERCISES 3, 7, 21, 28, 42, 41, 44

SAMPLE ASSIGNMENT 3, 7, 21, 28, 33, 37, 41, 42, 44

EXERCISE D A N G
3 
7 

21 
28  
33 
37  
41 
42  
44 

119

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



GROUP WORK 1, SECTION 2.4
The Magnificent Six

The derivative of f x  sin x was derived for you in class. From this one piece of information, it is possible

to figure out formulas for the derivatives of the other five trigonometric functions. Using the trigonometric

identities you know, compute the following derivatives. Simplify your answers as much as possible.

1. sin x 

2. cos x 

3. tan x 

4. sec x 

5. cot x 

6. csc x 
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GROUP WORK 2, SECTION 2.4
Using Our New Knowledge

The following is a graph of g x  tan x  2 sin x .

y=g(x)
y

¹ 2¹ 3¹

_4

_2
0

2

4

x

There are some things we can say about the graph just by looking at the picture, although our intuition may

sometimes mislead us.

1. Compute g 0, g π, and g 2π.

2. Find equations of the lines tangent to this curve at x  0, x  π, and x  2π.

3. Graph the equations you found in Problem 2, and make sure they look as they should.

4. What happens when you try to find the equation of the line tangent to this curve at x  
2 ? Why?
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GROUP WORK 3, SECTION 2.4
When the Lights Go Down in the City

The number of hours of daylight in Summitville, Canada varies between 9 hours and 15 hours per day. A

model for the number of daylight hours on day t is D t  123 cos 00172 t  11, 0  t  365. (t  1

corresponds to January 1.) The graph for a particular month looks like this:

1. On approximately what day of the month does this graph achieve its minimum? Its maximum?

2. Why does this graph have the shape that it does?

3. What month is this graph likely to represent?

4. For which month would you expect to see a graph shaped like this one, only upside-down?

5. How rapidly are we gaining daylight 90 days after the minimum occurs?

6. A newspaper in Summitville states that during the period of 31 days starting from day 68 after the

minimum, we gain 1 hour and 35 minutes of sunlight. Use the rate of change computed in Problem 5

to estimate the change in hours of sunlight over this period. How close is your estimate to the figure

reported in the newspaper?

122

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



2.5 The Chain Rule

SUGGESTED TIME AND EMPHASIS

11
2–2 classes Essential material

POINTS TO STRESS

1. A justification of the Chain Rule by interpreting derivatives as rates of change.

2. The use of the Chain Rule to compute derivatives.

QUIZ QUESTIONS

 TEXT QUESTION The text presents the two forms of the Chain Rule:  f g x  f  g x g x and
dy

dx
 dy

du

du

dx
. Do these two equations say the same thing? Explain your answer.

ANSWER They do. Let y  f u and u  g x. Then the statement f g x  f  g x g x becomes
dy

dx
 dy

du

du

dx
.

 DRILL QUESTION Compute
d

dx
sin x2 and

d

dx
sin2 x .

ANSWER 2x cos x2, 2 sin x cos x

MATERIALS FOR LECTURE

 The following is one way to introduce the Chain Rule:

Before formally discussing the rule, do two examples of differentiating multi-nested functions. Explain

to the students that you aren’t going to justify anything yet, but that you just want them to see the pattern

before getting into the material. After every step, say something like, “The derivative of sin x is cos x , so

the derivative of the sine of this stuff is the cosine of this stuff, times the derivative of what’s left.” After

the students have seen the pattern with functions like

sin

cos

x2  4x  5

33
, you should justify the

Chain Rule and discuss the details.

 Show how to compute derivatives, using the Chain Rule, in one line. Take the derivative of sin

x4  1


,

first by using the Chain Rule explicitly [ f u  sin u, u x  x4  1], and then by inspection [the

derivative of sin

x4  1


, which is cos


x4  1


times the derivative of x4  1, which is 4x3.]

 Address the question: “Where do you stop when using the Chain Rule?” For example, why is it false that
d

dx
sin

x5  4x2

 ? cos

x5  4x2

 
5x4  8x

 
20x3  8

 
60x2


120x 120?

One way to help students decide “when to stop” is to draw their attention to the text’s Reference Page 5

(Differentiation Rules). One stops when the derivative is one of the primitive rules such as the ones on that

page.

 Justify the Chain Rule using rate of change arguments, such as the following: One factory converts sugar

to chocolate (c  8s) and another converts chocolate to candy bars (b  16c). Finding the rate at which

sugar is converted to candy bars can be used to help justify the Chain Rule, particularly if the units of the

relevant quantities are emphasized.
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CHAPTER 2 DERIVATIVES

WORKSHOP/DISCUSSION

 Compute some derivatives, such as those of sec

x2  x


,


cos x

x2  1

3

, 3


x  cos x2, and cos

sin

x2


.

 Compute the equation of the line tangent to y  cos


x  π

x  1


at 01.

 Draw the following graph of f x (or copy it onto a transparency).

Tell the students that f  0  1, f  1  3
4 , f  2  1, and f  4  3. Define g x  f


x2

. First

compute g 1, g 0, g 1, g


2


, and g 2. Then compute g 0, g 2, and g 2. Finally, sketch

g x as below. Use the graph to verify the values for g x and g x computed above.

GROUP WORK 1: UNBROKEN CHAIN

This is meant to be a gentle introduction to the mechanics of taking derivatives using the Chain Rule. You

may be surprised at the difficulty some groups have with Problem 4 of the activity, but by the end they all

should be ready to go home and practice.

Start by “warming the class up” as a large group by having them take the derivatives of functions like x324,

sin x ,


x , tan x , and so on. This quick review is important, because the activity works best if their mental

focus is on the Chain Rule, as opposed to formulas they should already know.

While helping the individual groups, don’t volunteer that the answers to most of the questions are supersets

of the previous questions. They are supposed to discover this pattern for themselves.

If a group finishes early, give them a function like cos

x2 x


sin 1x to try.

When they are finished, write the solutions to Problems 4, 6, and 7 on the board. Ask the students if they
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SECTION 2.5 THE CHAIN RULE

need you to write the solutions to the earlier ones. After they say “no”, try to get them to explain why it isn’t

necessary. (If they say “yes”, refuse and ask them why you are refusing.)

ANSWERS

1. cos 3x  3 2. 3 sin 3x2 cos 3x  3 3. 3 sin 3x2 cos 3x  3 5

4. 5

sin 3x3  5x

4 
3 sin 3x2 cos 3x 3 5


(check their parentheses carefully)

5. 1 x2 6. 1
2


x  1x12

1 x2

7.

sin 3x3  5x

5 1
2


x  1

x

12 
1 x2

5

sin 3x3  5x

4 
3 sin 3x2 cos 3x 3 5

 
x  1

x


(If the students don’t write out the answer to Part 7, instead referring to the answers to previous parts, don’t

penalize them; they have gotten the point.)

GROUP WORK 2: CHAIN RULE WITHOUT FORMULAS

This exercise works best with pairs or groups of three. Before handing it out, write both forms of the Chain

Rule on the board. If a group finishes early, ask them where h  0 and over which intervals h is constant.

(This turns out to be a tricky problem.)

ANSWERS 1. f  3 g 1  3 2. f  0 g 0  3
2 3. g 2 does not exist, so h 2 does not exist.

GROUP WORK 3: EXAMINING A STRANGE GRAPH

Have the students first answer the questions just by looking at the graph, and then go back and verify their

intuition using calculus. If the students find this curve interesting, you can point out another interesting

property. Consider the line segment going from 01 to 0 1. The curve gets arbitrarily close to every

point on this segment, although it never actually touches the segment. If we consider the combined segment

and curve we get a mathematical object that is “connected” but not “path connected”.

If a group finishes early, perhaps ask them to figure out what the graph of tan 1x will look like, and to

verify their guess using their calculators.

ANSWERS

1. y  cos 1x

x2 . As x  , y  0. Therefore the function has a horizontal asymptote. Or, one can

argue that as x , 1x  0, so sin 1x 0.

2. The function does not approach a specific y-value as x  0. (One can look at either the function or its

derivative as x  0.)

3. The slope of the curve approaches 0.

4. The slope oscillates, but its peaks and valleys get larger and larger without bound as x  0.
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CHAPTER 2 DERIVATIVES

HOMEWORK PROBLEMS

CORE EXERCISES 4, 7, 10, 12, 24, 44, 53, 67

SAMPLE ASSIGNMENT 4, 7, 10, 12, 19, 24, 44, 53, 63, 65, 67, 68, 73, 80, 84

EXERCISE D A N G
4 
7 
10 
12 
19 
24 
44 
53 
63  
65  
67 
68 
73 
80 
84  
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GROUP WORK 1, SECTION 2.5
Unbroken Chain

For each of the following functions of x , write the equation for the derivative function. This will go a lot more

smoothly if you remember the Sum, Product, Quotient, and Chain Rules... especially the Chain Rule! Please

do us both a favor and don’t simplify the answers.

1. f x  sin 3x f  x 

2. g x  sin 3x3 g x 

3. h x  sin 3x3  5x h x 

4. j x  sin 3x3  5x
5

j  x 

5. k x  x  1

x
k x 

6. l x 


x  1

x
l  x 

7. m x 


x  1

x


sin 3x3  5x

5
m x 
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GROUP WORK 2, SECTION 2.5
Chain Rule Without Formulas

Consider the functions f and g given by the following graph:

Define h  f  g.

1. Compute h 1.

2. Compute h 0.

3. Does h 2 exist?
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GROUP WORK 3, SECTION 2.5
Examining a Strange Graph

Several times in this course, we have looked at the graph of y  sin 1x.

x

y

y=sin(1/x)

There are some things we can say about the graph just by looking at the picture, although our intuition may

deceive us.

1. As we move farther and farther to the right, does the graph oscillate forever, or does it approach some

y-value?

2. As we move closer and closer to zero, does the graph oscillate forever, or approach some y-value?

3. What happens to the slope of the curve as we go farther and farther to the right?

4. What happens to the slope of the curve as we approach zero?

Since intuition could fail us, please consider the function y  sin 1x directly, and prove that your answers

to the above questions are correct. If it turns out that you were wrong above, then correct your answer and

note why your intuition led you astray.
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SPECIAL SECTION Derivative Hangman

I recommend doing this activity just after covering the Chain Rule, for a class of students who need more

practice computing derivatives. It is designed to keep all the students involved and practicing both computing

derivatives, and checking their work. Divide the class into teams of 4–6 students each. Put blanks representing

the letters of a mystery word or phrase on the board. The game then proceeds as follows:

One representative from each team goes to the blackboard. The teacher then puts up a function either on the

blackboard, or using the overhead projector. Everyone in the room tries to compute the derivative. The people

at the board cannot speak, but their teammates can work together, speaking quietly.

The first person at the board to compute the derivative slaps the board, blows a whistle, or claps their hands.

The teacher calls on him or her to state the solution. Then each other team gets a chance to accept the answer,

or challenge.

The team that wins (first to have their representative get it right, or first to challenge successfully) gets to

guess a letter of the puzzle. If they guess A, for example, all instances of A in the mystery phrase are filled

in:

__ __ A __ __ A __ __ __ __ __ __ __ __ __ A

Whether or not their letter was in the phrase, they then get a chance to guess at the puzzle (“QUADRATIC

FORMULA”, in this case). If they get it right, the round is over and they win. If not, each team sends up a

new representative and the game continues.

If this game is officiated with care and enthusiasm, all the students will be involved and working every time a

new problem is put on the board.

APPLIED PROJECT Where Should a Pilot Start Descent?

This project can be used as an out-of-class assignment, or as an extended in-class exercise. At this point in

the course, some students may be asking about opportunities for extra credit, and an oral report based on this

project would be a worthwhile extra-credit activity.

The project includes a computation of the minimum distance from the airport at which an airplane should

begin its descent. A nice addition to this project would be the actual figure (or range of figures) used by a

local airport, obtained by a few well-placed telephone calls.
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2.6 Implicit Differentiation

SUGGESTED TIME AND EMPHASIS

1 class Essential material

POINTS TO STRESS

1. The concepts of implicit functions and implicit curves.

2. The technique of implicit differentiation.

QUIZ QUESTIONS

 TEXT QUESTION Describe what is being illustrated by Figure 3. Make sure your answer is as complete as

possible.

ANSWER The implicit curve x3 y3  6xy does not define a function. Figure 3 illustrates several functions,

each of which is implicitly defined by x3  y3  6xy.

 DRILL QUESTION If x2  xy  10, find
dy

dx
when x  2.

ANSWER 7
2

MATERIALS FOR LECTURE

 Go over the definition of implicit curves, and the method of implicit differentiation. A good starting

example is the curve defined by x  sin y (which can be easily graphed and visualized). Another example

is the curve x  y  x2  y2
2

, which can be graphed using polar coordinates.

ANSWER

_3
_2

_1
0

1

2
3

_1 1 x

y

x  sin y

1

1

x

y

x  y  x2  y2
2

,

r  3


cosθ  sinθ
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CHAPTER 2 DERIVATIVES

 Derive the equation of the line tangent to the curve x2  sin xy y3  1 at the point 1 0. Sketch the

curve as below and draw the tangent line.

ANSWER The tangent line is y  2x  2.

 Display some interesting looking implicit curves such as the following:

0

2

1 x

y

y2  x3  4x
an elliptic curve

_1

0

1

_1 1 x

y

x6  y6  4x2y2  3y2x4  3x2y4

a four-leaved rose

x

y

1

1

sin π x  y  0

Have the students figure out a test to see if a given point is on the implicit curve. For example, is 2 0

on the first graph? Is 06 02 on the second? Is 12 28 on the third? Have the students determine the

slopes of the lines in the third graph, and show that they are parallel.

ANSWER Substituting the coordinates into the equations shows that 2 0 is on the first graph, 06 02 is

not on the second, and 12 28 is on the third. The lines on the third graph all have slope 1 and are

therefore parallel.

WORKSHOP/DISCUSSION

 If the students have access to appropriate graphing technology, have them try to come up with interesting-

looking implicit curves. Perhaps have an award for the most aesthetically pleasing one.

 Consider r2  2s


t  rt . Show the students how to compute drdt when s is held constant, drds and

dsdr when t is held constant, and dtds when r is held constant.

 Have the students differentiate y2  x7  6x implicitly, and then differentiate y  x7  6x using the

Chain Rule.

 If f x4  x  f x3 and f 1  2 find f  1.
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SECTION 2.6 IMPLICIT DIFFERENTIATION

GROUP WORK 1: IMPLICIT CURVES

Computer algebra systems are notoriously bad at graphing implicit functions. Even simple functions such

as the ones described above in Materials for Lecture point 5 are often poorly graphed by implicit function

plotters. This activity describes an implicit curve which many calculators graph inaccurately, but which can

be analyzed using a little bit of algebra.

ANSWERS

1. All lines of the form x  πk, y  
2  πk, k

an integer.

x

y

1

1

0

2. Maple gives the graph below.

x

y

1

1

0

3. dydx  0 or is undefined when x  πk. The derivative must be taken carefully to obtain this result.

GROUP WORK 2: CIRCLES AND ASTROIDS

The basic idea of this activity is for students to visualize flat circles and astroids, and to compute slopes by

implicit differentiation. The question about where the slope is 1 or1 can be addressed first visually and then

analytically. As a follow-up question, students can be asked to show that the answers are always the points of

intersection with the lines y  x and y  x .

ANSWERS

1.
dy

dx
 


x

y

5

. The slope of the tangent is 1 at
216216


and 1 at

216216

.

0

1

y

1 x
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CHAPTER 2 DERIVATIVES

2. If pq  4
3 , the slope is 1 at

234234


and 1 at
234234


. If pq  2

5 , the slope is 1

at
252252


and 1 at

252252

.

GROUP WORK 3: A WALK IN THE PARK

Before beginning this activity, discuss the concepts of orthogonal trajectories (discussed in Exercises 49–52)

and path of steepest descent. Perhaps do a quick example on the blackboard, and then hand out the activity.

Problem 4 requires some deep reasoning.

ANSWERS

1, 2.

2(a)

1

2(b)

3. The steepest descent lines are always

perpendicular to the contour lines.

4. Yes, there are. There are precarious

balance points between the paths that go

to one valley or the other. These are

points of unstable equilibrium.

HOMEWORK PROBLEMS

CORE EXERCISES 3, 10, 18, 22, 25, 32, 48, 49, 56

SAMPLE ASSIGNMENT 3, 10, 18, 22, 25, 32, 44, 48, 49, 51, 56, 59

EXERCISE D A N G
3 

10 
18 
22 
25 
32 
44 
48  
49  
51 
56 
59 
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GROUP WORK 1, SECTION 2.6
Implicit Curves

Consider the implicit function sin x cos y  0.

1. Without using technology, graph this function. You have to think carefully, but you can get it.

2. If you have access to technology that can graph implicit functions, have it graph this function. Do you get

a good graph?

3. Use implicit differentiation to compute
dy

dx
. Does your graph confirm or contradict your answer?

135

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



GROUP WORK 2, SECTION 2.6
Circles and Astroids

1. Consider the “flat” circle x6  y6  1. At what point(s) is the slope of the tangent line equal to 1? Where

is it equal to 1?

2. Below are some curves x pq y pq  1, where p is even and q is odd. These curves are sometimes called

astroids when pq  1.

At what point(s) is the slope of the tangent line equal to 1 or 1 if pq  4
3? How about if pq  2

5?
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GROUP WORK 3, SECTION 2.6
Looking for the Minimum

The graph of g x  arcsin

x2  ex


is shown below. Clearly there is a minimum value somewhere

between x  02 and x  04.

x

y

1

1.5

0

y=g(x)

1

1. Find a formula for g x.

2. Find an equation of the line tangent to this curve at x  034. (Round all numbers to three significant

figures.)

3. Does the minimum value of g x occur to the left or to the right of x  034? How do you know?

4. Find an equation of the line tangent to the curve at x  036. Does the minimum value of g x lie to the

left or to the right of x  036?

5. Estimate the location of the minimum value of g x. Then use technology to see how close your estimate

is to the actual location.
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GROUP WORK 4, SECTION 2.6
A Walk in the Park

The following is a contour map of a region in Orange Rock National Park.

1. Suppose you start a little to the west of point A. Draw the path of steepest descent from this point to the

edge of the map.

2. (a) Now start a little bit southwest of point A, and trace the path of steepest descent.

(b) Repeat this starting at a point a little east of point A.

3. What assumptions are you making in drawing your paths?

4. Are there any paths starting near point A that do not fall into one of the three valleys that are in the park?

Explain your reasoning.
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LABORATORY PROJECT Families of Implicit Curves

This exciting project puts the abilities of a CAS to use quite nicely. Students should be encouraged to take

the last part of Problem 1(b) seriously by exploring many values of c, not just the ones explicitly mentioned.

With a CAS, this takes only a few keystrokes. In Problem 2, students should be encouraged to play with the

equation by putting constants in front of other terms and noting what effect this has on the graph.
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2.7 Rates of Change in the Natural and Social Sciences

SUGGESTED TIME AND EMPHASIS

1 class Essential material

POINTS TO STRESS

1. The concepts of average and instantaneous rate of change.

2. Some uses of derivatives in physics and in other disciplines.

QUIZ QUESTIONS

 TEXT QUESTION This section discusses many different kinds of examples. What is the main idea underlying

them all?

ANSWER All of them involve expressing quantities as an average rate of change, and then using the idea of

the derivative to compute an instantaneous rate of change.

 DRILL QUESTION The magnitude F of the force exerted by the Earth on an object is inversely proportional to

the square of the distance r from that body to the center of the Earth.

(a) Write an equation expressing F as a function of r .

(b) Write an equation expressing d Fdr as a function of r .

(c) What is the physical meaning of d Fdr?

ANSWER

(a) F  k

r2
(b)

d F

dr
 2k

r3

(c) d Fdr tells how fast the force changes as a result of a slight change in the object’s distance from the

center of the Earth.

MATERIALS FOR LECTURE

 Bring in a taut string, rubber band, violin, or guitar. Illustrate that when the string is plucked, the pitch

depends on the length. Discuss Exercise 28, solving it as a class.

 Go over Examples 6 and 7 in detail (or different examples, based on the makeup of the student population).

 Foreshadow Exercise 35 by defining “stable population” and discussing some of the underlying concepts.

WORKSHOP/DISCUSSION

 Discuss some of the issues involved in using a continuous function to model discrete data. For example,

ask if taking the derivative of a step function like “cost” is a valid thing to do.

 Do a velocity/distance linear motion problem, such as the one below:

Let s t  t4  8t3  18t2 be the distance function for a particle.

1. Find the position at t  1, t  2, t  3, and t  6.

2. Find the velocity at t  2 and t  4.

3. Determine when the particle is at rest. When is the acceleration zero?

4. Find the total distance traveled on the intervals [0 1], [0 2], [0 3], and [0 6].

5. When is the particle speeding up? Slowing down? This motion can be visualized and analyzed graph-

ically.
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SECTION 2.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES

GROUP WORK 1: FOLLOW THAT PARTICLE!

Students are asked to analyze the motion of a typical particle.

ANSWERS

1. 0, 3, 22,  11

2.  t  4t3  15t2  1, 1, 10, 27,  1186

3. At rest: at t  37. Moving forward: 0  t . 37

4.
 2

1  f x dx is larger

5. a t  12t2  30t

6. Speeding up: 0  t  25. Slowing down: 25  t  5.

GROUP WORK 2

To help with the homework assignment, put the students into groups, ideally grouping similar majors together,

and have each group work on a different problem from the upcoming assignment. After finishing their work,

each group should present their solution to the class. Each student will then have a start on several of the

problems from the assignment.

HOMEWORK PROBLEMS

CORE EXERCISES 3, 5, 14, 20, 28

SAMPLE ASSIGNMENT 3, 5, 14, 20, 28, 29, 42, 49

EXERCISE D A N G
3  
5  
14  
20  
28  
29  
42  
49  
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GROUP WORK 1, SECTION 2.7
Follow That Particle!

For 495 seconds, a particle moves in a straight line according to the position function

f t 


t3  1

5 t 5

where t is measured in seconds and f in feet.

Answer the following questions. You can visualize this motion and verify many of your answers using a

graph. First attempt all the problems by hand, and then graph the position function to verify your answers.

1. What is the position of the particle at t  0, t  1, t  2, t  495?

2. Find the velocity of the particle at time t . What is the velocity of the particle at t  0, t  1, t  2,

t  495?

3. When is the particle at rest? When is the particle moving forward?

4. Find the total distance traveled by the particle on the intervals [0 1] and [1 2]. Which is larger and why?

5. Find the acceleration of the particle at time t .

6. When was the particle speeding up? Slowing down?
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2.8 Related Rates

SUGGESTED TIME AND EMPHASIS

1 class Recommended material

POINTS TO STRESS

1. The concept of related rates (first two paragraphs of the text).

2. The classic procedure for handling related rates, including the warning to the side of the procedure in the

text.

3. The value of careful diagrams and good notation.

QUIZ QUESTIONS

 TEXT QUESTION In Example 2 in the text, what is the physical meaning of the negative sign in the expression
dy

dt
 x

y

dx

dt
?

ANSWER The value of y is getting smaller, because the ladder is moving downward.

 DRILL QUESTION If one side of a rectangle, a, is increasing at a rate of 3 inches per minute while the other

side, b, is decreasing at a rate of 3 inches per minute, which of the following must be true about the area

A of the rectangle?

(A) A is always increasing

(B) A is always decreasing

(C) A is decreasing only when a  b

(D) A is decreasing only when a  b

(E) A is constant.

ANSWER (D)

MATERIALS FOR LECTURE

 Begin with a quick review of implicit differentiation, particularly when an implicit function in x and y

is differentiated with respect to time or some other third variable. Have the students read the first two

paragraphs of the section, and try to see why implicit differentiation is going to be useful in solving related

rates problems. Then present a sample problem such as Exercise 14, using the strategy outlined in the text.

Deliberately start to make the error referred to, to see if the students catch it.

 Bring balloons into class, and show the students (or have them discover for themselves) how the radius

naturally grows more slowly as time goes on, assuming air comes in at a constant rate (for example, one

breath every 30 seconds).

 Revisit Example 2 in the text. Compute the velocity of the ladder when it is 1
1000 inch off the ground

(y  0001). Show how that at some point, the tip of the ladder will exceed the speed of light. Have the

students discuss what they think the problem is. (This can be done even with a large class; give them a few

minutes.) Since the conclusion that “the tip really does exceed the speed of light” is impossible, the only

possible conclusion to draw is that the model is faulty. Take a yardstick and actually do the experiment.

(The tip of the yardstick does not stay in contact with the wall.) If the room is such that the students cannot

all see the result of the experiment, have a few volunteers come up to watch and describe what happens,

and encourage the students to try the experiment at home with a ruler or other similar object.
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CHAPTER 2 DERIVATIVES

WORKSHOP/DISCUSSION

 Work this problem with the class: You are blowing a bubble with bubble gum and can blow air into the

bubble at a rate of 3 in3s.

(a) At what rate is the volume V increasing with respect to the radius when the radius r is 1 inch? When

the radius is 3 inches?

(b) How fast is the radius increasing with respect to time when r  1 inch? When r  3 inches?

(c) Suppose you increase your effort when r  3 inches and begin to blow in air at a rate of 4 in3s. How

fast is the radius increasing now?

 Do some challenging related rates problems, such as the ones in the later exercises.

 Many children notice that when they eat a spherical lollipop (as opposed to the disk-shaped kind) it seems

like at first they can lick and lick and lick without it seeming to get smaller, and then toward the end it

disappears quickly. If they tell an adult, it is usually attributed to imagination or the subjectivity of passing

time. Have the students try to come up with a mathematical explanation.

ANSWER If a student is licking at a constant rate, dVdt is constant. However, the perceived change in size

of the lollipop is based on the diameter of the sphere, which decreases more quickly near the end.

GROUP WORK 1: FIND THE ERROR

This activity illustrates a common error that many students make. You may want to project the problem on an

overhead, and give the class a few minutes to discuss it. The activity can stand alone, or be handed out as a

warm-up.

GROUP WORK 2: NOBODY ESCAPES THE CUBE

This is a good introduction to related rates problems, requiring the students to express the volume of a cube

in terms of its surface area.

ANSWERS 1. 2 in2s 2. 1
2 in3s

GROUP WORK 3: THE SWIMMING POOL

The students shouldn’t work on this activity until they’ve had a chance to see or try some basic related rates

problems. Be prepared to give plenty of guidance to the students.

ANSWERS

1. V 


500h  125
8 h2 if 0  h  16

1500h  12,000 if 16  h  20
 dV

dt



500 125
4 h if 0  h  16

1500dh
dt if 16  h  20

2. You would need dVdt , the rate at which the pool is being filled. Note that you would not need h; if you

knew dVdt and the pool was empty at t  0, you could calculate V and then compute h.
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SECTION 2.8 RELATED RATES

HOMEWORK PROBLEMS

CORE EXERCISES 1, 4, 7, 13, 17, 19, 31, 39, 42, 49

SAMPLE ASSIGNMENT 1, 4, 7, 13, 17, 19, 23, 31, 39, 41, 42, 49

EXERCISE D A N G
1 
4 
7 

13 
17 
19 
23 
31  
39 
41 
42 
49 
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GROUP WORK 1, SECTION 2.8
Find the Error

It is a beautiful Spring evening. You and your wild-eyed, hungry-looking friends are sitting around, reading

your Calculus books. You arrive at the following:

EXAMPLE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder

slides away from the wall at a rate of 1 fts, how fast is the top of the ladder sliding down

the wall when the bottom of the ladder is 6 ft from the wall?

Your enthused roommates don’t read the rest of the example, preferring to do the problem on their own. This

is how they proceed:

“We want to find dydt . So we set up

x2  y2  100

Now, we want dydt when dxdt  1 and x  6. Substituting x  6 gives us

36 y2  100 or y2  64

Now we take derivatives:

2y
dy

dt
 0

giving dydt  0.”

The problem is, of course, that this answer doesn’t make any sense.

1. Why does their answer not make any sense?

2. What error did they make? How could they correct it?
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GROUP WORK 2, SECTION 2.8
Nobody Escapes the Cube

We are designing a computer graphic in which we zoom in on a cube. The volume V , surface area S, and

side length x of the cube are all varying with respect to time. With this information, compute the following

quantities, using the steps described in the text:

1. dSdt when x  2 inches and dVdt  1 in3s.

2. dVdt when x  2 inches and dSdt  1 in2s.
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GROUP WORK 3, SECTION 2.8
The Swimming Pool

We wish to find the change in volume of a 20-foot-wide pool as it fills up with water. A cross-section of the

pool is shown below.

20 ft

25 ft 25 ft

25 ft
h

1. Express dVdt in terms of h, V , and dhdt .

2. What additional information would you need to find dhdt at t  10 minutes?
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2.9 Linear Approximations and Differentials

SUGGESTED TIME AND EMPHASIS

1 class Essential material (linear approximation) and optional material (differentials)

POINTS TO STRESS

1. The general equation of a line tangent to the graph of a function, and its use in approximating that function

near a point.

2. The differential as the difference between the linearization of a function and the function itself.

QUIZ QUESTIONS

 TEXT QUESTION What is the difference between the function L x defined in the text and the equation of the

tangent line y  f a f  a x  a?

ANSWER None

 DRILL QUESTION Write the equation of the straight line that best approximates the graph of y  x  cos x at

the point 0 1.

ANSWER y  x  1

MATERIALS FOR LECTURE

 Discuss the motivation for studying linear approximations. Ask, “Why use an approximation to a function

when a computer can find the answer precisely?”

ANSWERS

1. A common modeling technique is to assume a function is locally linear, and then use the linear equation

in calculations, since it is easier to manipulate.

2. It is often easier physically to measure the derivative of a function than the function itself. Then the

derivative measurements can be used to obtain an approximation of the function.

3. When measuring a real phenomenon, there is often no easy-to-understand function that can be written

in a line or two, and the best that can be obtained is a set of sample data points. The “underlying”

function must be approximated.

4. In the real world, the input to functions can be noisy or wiggly. It is easier to handle small input

fluctuations if we assume that the output varies linearly.

5. When a function is called thousands of times by a computer program, as occurs in computer graphics

applications, the small time savings from using a linear function can result in savings of hours or even

days.

 Discuss the meaning of the phrase “approximating along the tangent line” and its connections to linear

approximation. Then present examples of linear approximation, such as sin x  x for x near 1 and

x  cos x  x  1 for x near 0.

 Raise the question, “What if we want a more accurate model of a function?” Foreshadow the quadratic

approximation (Taylor polynomial of order two) as an extension of the linear approximation. (The linear

approximation matches the function in the first derivative, so how can you make a function match the

second derivative as well?)

149

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



CHAPTER 2 DERIVATIVES

 Graph y  sin x with its approximations at x  0 and x  
4 . Discuss which is “better”.

 To illustrate how controversial differentials once were, cite the quotation from Bishop Berkeley (1734) on

differentials: “And what are these evanescent increments? They are neither finite quantities, nor quantities

infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?”

 Bring in a carpenter’s level. Show how, when the level is held perfectly straight, it can be used to measure

acceleration. (The bubble moves when the level is accelerated, and returns to center at constant velocity).

This can be done on an overhead projector, if the floor is flat. This is the principle used to make a simple

accelerometer. Then discuss how, given acceleration measurements, it is possible to approximate velocity

using the technique of linear approximation.

WORKSHOP/DISCUSSION

 Let f x  x1857. Find the linear approximation of f x at a  1 and use it to approximate f at x  11,

x  101, and x  1001. Compare the approximations to the actual values the calculator gives for f at

these points.

 In Example 1, discuss why we base our linear approximation at x  1 rather than at x  099 or 101.

 Practice using linear approximations with y  1
x

at x  4, and use differentials to approximate y for

x  1 and x  1.

 Have the students try to find a linear approximation for x near x  0, and explain why it is impossible.

GROUP WORK 1: FOUR VARIATIONS ON A THEME

This activity explores four different functions that have identical linear approximations near x  0.

ANSWERS

1. y  x in all cases.

2.
Function Function Value at x  01 Approximation at x  01

f 009545 01

g 0101 01

h 011007 01

j 009983 01

3. If the students need to, they can check the approximations for x  02 or x  03. The best approximation

is the one to j x, and the worst is the one to h x. This is immediate from looking at the graphs. Notice

that j and g have inflection points at x  0.
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SECTION 2.9 LINEAR APPROXIMATIONS AND DIFFERENTIALS

GROUP WORK 2: LINEAR APPROXIMATION

Some students may try to find approximations of the derivative functions. They should be reminded that we

are approximating f , using the graph of f  as an aid.

ANSWERS

1. f x  175 x  2 4, so f 198  3965 and f 202  4035.

2. The graph of f lies below its tangent line, so the approximations are overestimates.

3. The estimates are both 7, because the function is horizontal when x  3.

HOMEWORK PROBLEMS

CORE EXERCISES 3, 13, 17, 25, 33, 39

SAMPLE ASSIGNMENT 3, 5, 10, 13, 17, 25, 33, 38, 39, 41

EXERCISE D A N G
3 
5  

10 
13 
17 
25 
33  
38  
39 
41  
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GROUP WORK 1, SECTION 2.9
Four Variations on a Theme

Consider the following four functions:

f x  12x  1 g x  x3  x h x  tan2 x  x j x  sin x

1. Find the linearizations of f , g, h, and j at a  0.

2. Compute the values of each of these functions at x  01 and the values of their linearizations.

3. For which function is the approximation best? For which is it worst? Why?
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GROUP WORK 2, SECTION 2.9
Linear Approximation

Consider this graph of f  x, the derivative of f x.

f»

x10

1

y

1. Suppose that f 2  4. Approximate f 198 and f 202 as best you can. Don’t just guess. Show your

work.

2. Determine whether your approximations were overestimates or underestimates.

3. Suppose you also know that f 3  7Can you approximate f 298 and f 302? Explain your answer.
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LABORATORY PROJECT Taylor Polynomials

This project provides a solid early introduction to Taylor polynomials as extensions of the tangent line ap-

proximation concept. A few examples involving cos x and


x  3 are explored in more detail. Students may

be asked to explore their own function, and see what happens. Have them go beyond just working through

the six questions, and try to demonstrate that they understand the pretty concept introduced in this project.
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2 SAMPLE EXAM

Problems marked with an asterisk (*) are particularly challenging and should be given careful consideration.

1. Consider the graph of x2  xy  y2  1.

x

y

1

1

(a) Find an expression for
dy

dx
in terms of x and y.

(b) Find all points where the tangent line is horizontal.

(c) Find all points where the tangent line is parallel to the line y  x .

2. Let f x  7 sin x  π cos 2x .

(a) Compute f  x, f  x, f 3 x, and f 4 x.

(b) Compute f 13 0.

3. Assume that f x and g x are differential functions that we know very little about. In fact, assume that

all we know of these function is the following table of data:

x f x g x f  x g x
2 3 1 5 8
1 9 7 4 1

0 5 9 9 3
1 3 3 2 6
2 5 3 8 0

(a) Let h x  g x sin x . What is h 0?

(b) Let j x   f x x2
3

. What is j  1?

(c) Let l x  tanπx

g x
. What is l  1?
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CHAPTER 2 DERIVATIVES

4. Let u x be an always positive function such that u x  0 for all real numbers.

(a) Let f x  [u x]2  For what values of x will f x be increasing?

(b) Let g x  u u x  For what values of x will g x be increasing?

5. Let f x  x3  2x2  x  1 and g x  sin x  1.

(a) Find the equation of the line tangent to f x at x  0

(b) Show that g x has the same tangent line as f x at x  0

(c) Does this tangent line give a better approximation of f x or g x at x  1? Give reasons for your

answer.

6. The following is a graph of f , the derivative of some function f .

1

2 x

y

1

2

f»

_1_2

_2

_1

(a) Where is f increasing?

(b) Where does f have a local minimum? Where does f have a local maximum?

(c) Where is f concave up?

(d) Assuming that f 0  1, sketch a possible graph of f .

7. As a spherical raindrop evaporates, its volume changes at a rate proportional to its surface area A.

(a) If the constant of proportionality is K , find the rate of change of the radius r when r  4

(b) Show that the rate of change of the radius is always constant.

(c) Does part (b) mean that the rate of change of the volume is always constant? Why or why not?
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CHAPTER 2 SAMPLE EXAM

8. The voltage across a resistor R is given by V t  1

1 t
sin t . A graph of V t is shown below.

-0.2
0

0.2

0.4

2 4 6 8 10 12 t

V

a b

(a) How fast is the voltage changing after 2 seconds?

(b) Would you be better off using the linear approximation at x  a to estimate V b  or using the linear

approximation at x  b to estimate V a? Justify your answer.

9. Let f be the function whose graph is given below.

0

1

2

1 2 3 x

y

f

(a) Sketch a plausible graph of f .

1

_2

2

_1

(b) Sketch a plausible graph of a function F

such that F   f and F 0  1.

1

2

3

10. Suppose that the line tangent to the graph of y  f x at x  3 passes through the points 2 3 and

41.

(a) Find f  3.

(b) Find f 3.

(c) What is the equation of the line tangent to f at 3?
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11. Each of the following limits represent the derivative of a function f at some point a. State a formula for

f and the value of the point a.

(a) lim
h0

3 h2  9

h

(b) lim
x3

x  132  8

x  3

(c) lim
h0

sin π 2 h 0

h

12. The graph of f x is given below. For which value(s) of x is f x not differentiable? Justify your

answer(s).
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CHAPTER 2 SAMPLE EXAM SOLUTIONS

2 SAMPLE EXAM SOLUTIONS

1. (a) 2x  x
dy

dx
 y  2y

dy

dx
 0;

dy

dx
 2x  y

x  2y

(b) Set y  2x  0 and y  2x . Then x2  2x2  4x2  1  3x2  1  x   1
3


y   2
3
, so the points are


1
3
 2

3


and


 1

3
 2

3


.

(c) Set 2x  y

x  2y
 1 to get y  x . Then x2  x2  x2  3x2  1  x   1

3
 y   1

3
,

so the points are


1
3
 1

3


and


 1

3
 1

3


.

2. (a) f  x  7 cos x  π 2 sin 2x ; f  x  7 sin x  π 4 cos 2x ; f 3 x  7 cos x  π
8 sin 2x ; f 4 x  7 sin x  π 16 cos 2x

(b) f 13 x  7 cos x  π 213 sin 2x; f 13 0  7 cosπ  7

3. (a) h x  g x sin x  g x cos x; h 0  g 0  9

(b) j  x  3


f x x2
2 

f  x 2x

; j  1  3  f 1 12


f  1 2

  3  42  4  192

(c) l  x  g x  π sec2 πx  g x tanπx

g x2
; l  1  7π  0

72  π

7

4. (a) f  x  2u x u x  0 for all x , since u x  0 and u x  0. Never increasing.

(b) g x  u u x  u x  0, since u u x and u x  0. Always increasing.

5. (a) f  x  3x2  4x  1; f  0  1, f 0  1. Tangent line is y  1 1  x  1 x

(b) g x  cos x ; g 0  1, g 0  1. Tangent line is y  1 x

(c) At x  1, f 1  1 g 1  sin 1 1  1841. The tangent line approximation is y  1 1  2

This is better for g x at x  1.

6. (a) f is increasing on 1 1.

(b) Local minimum at x  1; local
maximum at x  1

(c) f is concave up where f  x is

increasing, that is, on 2 0.

(d)

_2

_1

0_2 _1 1 2 x

y

Inflection point

f

7. (a)
dV

dt
 K A. V  4

3πr3, so
dV

dt
 4πr2 dr

dt
. Since A  4πr2, we have K 4πr2  4πr2 dr

dt
. Thus,

dr

dt
 K .

(b) By part (a),
dr

dt
 K is constant.

dV

dt
 4πr2 dr

dt
 4Kπr2 So

dV

dt
depends on r2 and is not

constant.
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CHAPTER 2 DERIVATIVES

8. (a) V  t  1

1 t
cos t  1

1 t2
 sin t ; V  2  1

3 cos t  1
9 sin 2  0240

(b) The tangent line at x  b is horizontal. So the estimate for V a using this linear approximation is

V b, which is not very good. Thus, it is better to use the linear approximation at x  a to estimate

V b.

9. (a) Answers will vary. Look for:

(i) zeros at 1 and 2

(ii) f  positive for x  0 1 and 2 4

(iii) f  negative for x  1 2
(iv) f  flattens out for x  25

(b) Answers will vary. Look for

(i) F 0  1

(ii) F always increasing

(ii) F is never perfectly flat

(iv) F is closest to being flat at x  2

(v) F is concave up for x  0 1 and x  2 4
(vi) F is concave down for x  1 2

10. (a) 31
24  2

3

(b) The equation of the tangent line is y  3  2
3 x  2, so f 3  2

3 3 2 3  1
3 .

(c) The equation of the tangent line is y  3  2
3 x  2.

11. (a) f x  x2, a  3 (b) f x  x  132, a  3 (c) f x  sin πx, a  2

12. f isn’t differentiable at x  1, because it is not continuous there; at x  2 because it has a vertical

tangent there; and at x  4, because it has a cusp there.
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