Test Bank for Numerical Analysis 10th Edition Burden Faires Burden 13052536639781305253667

Fulllink download
Test Bank :
https://testbankpack.com/p/test-bank-for-numerical-analysis-10th-edition-burden-faires-burden-1305253663-9781305253667

Solution Manual:
https://testbankpack.com/p/solution-manual-for-numerical-analysis-10th-edition-burden-faires-burden-1305253663-9781305253667/

Numerical Analysis 10E Name (Print):
Chapter 02 Solutions Of Equations In One Variable
1.(10 points) The equation $f(x)=x^{2}-2 e^{x}=0$ has a solution in the interval $[-1,1]$. (a)(5 points) With $p_{0}=-1$ and $p_{1}=1$ calculate p_{2} using the Secant method. (b)(5 points) With p_{2} from part
(a) calculate p_{3} using Newton's method.
2.(15 points) The equation $f(x)=2-x^{2} \sin x=0$ has a solution in the interval [1,2].
(a)(5 points) Verify that the Bisection method can be applied to the function f
(x) on [-1,2]. (b)(5 points) Using the error formula for the Bisection method find the number of iterations needed for accuracy 0.000001. Do not do the Bisection calculations.
(c)(5 points) Compute p_{3} for the Bisection method.
3.(15 points) The following refer to the fixed-point problem
(a)(5 points) State the theorem which gives conditions for a fixed-point sequence to converge to a unique fixed point.

$$
2-x^{3}+
$$

(b)(5 points) Given
$2 x$, use the theorem to show that the fixed

$$
=\quad g(x)
$$

\qquad

Solutions Of Equations In One Variable

-point se-
quence will converge to the unique fixed-point of g for any p_{0} in $[-1,1.1]$.
(c)(5 points) With $p_{0}=0.5$ generate p_{3}.
4.(10 points) Suppose the function $f(x)$ has a unique zero p in the interval [a, b]. Further, suppose $f^{j j}(x)$ exists and is continuous on the interval [a,b].
(a)(5 points) Under what conditions will Newton's Method give a quadratically convergent sequence to p ?
(b)(5 points) Define quadratic convergence.

$$
2-x^{3}+2 x
$$

5.(10 points) Let $g(x)$ \qquad on the interval $[-1,1.1]$. Let the initial value be o and 3 compute the result of 2 iterations of Stefffensen's Method to approximate the solution of $x=g(x)$.
1.(10 points) The equation $f(x)=x^{2}-2 e^{x}=0$ has a solution in the interval [$1,1]$.
(a)(5 points) With $p_{0}=-1$ and $p_{1}=1$ calculate p_{2} using the Secant method.
(b)(5 points) With p_{2} from part
(a) calculate p_{3} using Newton's method.
2.(15 points) The equation $f(x)=2-x^{2} \sin x=0$ has a solution in the interval [1,2].
(a)(5 points) Verify that the Bisection method can be applied to the function f (x) on [-1,2].
(b)(5 points) Using the error formula for the Bisection method find the number of iterations needed for accuracy 0.000001. Do not do the Bisection calculations.
(c)(5 points) Compute p_{3} for the Bisection method.
3.(15 points) The following refer to the fixed-point problem
(a)(5 points) State the theorem which gives conditions for a fixed-point sequence to converge to a unique fixed point.

$$
2-x^{3}+
$$

(b)(5 points) Given $2 x$, use the theorem to show that the fixed $g(x)$ point se $=\quad$ _ 3
quence will converge to the unique fixed-point of g for any p_{0} in $[-1,1.1]$. (c)(5 points) With $p_{0}=0.5$ generate p_{3}.
4.(10 points) Suppose the function $f(x)$ has a unique zero p in the interval $[\mathrm{a}, \mathrm{b}]$. Further, suppose $f^{j j}(x)$ exists and is continuous on the interval [a,b].
(a)(5 points) Under what conditions will Newton's Method give a quadratically convergent sequence to p ?
(b)(5 points) Define quadratic convergence.

$$
2-x^{3}+2 x
$$

5.(10 points) \qquad on the interval $[-1,1.1]$.

Let $g(x)$
=
Let the initial value be o and 3
compute the result of 2 iterations of Stefffensen's Method to approximate the solution of $x=g(x)$.

Solutions Of Equations In One Variable

