E) 1 2 0 m /

Test Bank for Physics Principles With Applications 7th Edition Giancoli 0321625927 9780321625922

Full link download: Test Bank:

https://testbankpack.com/p/test-bank-for-physics-principles-with-applications-7th-edition-giancoli-0321625927-9780321625922/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-physics-principles-with-applications-7th-edition-giancoli-0321625927-9780321625922/

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) Consider a deer that runs from point A to point B. The distance the deer runs can be greater than the magnitude of its displacement, but the magnitude of the displacement can never be greater than the distance it runs.
 - A) True B) False
- 2) Which of the following quantities has units of a displacement? (There could be more than one correct choice.)
 - A) 32 ft/s² vertically downward
 - B) 9.8 m/s^2
 - C) 40 km southwest
 - D) 186,000 mi
 - E) -120 m/s
- 3) Suppose that an object travels from one point in space to another. Make a comparison between the magnitude of the displacement and the distance traveled by this object.
 - A) The displacement is either greater than or equal to the distance traveled.
 - B) The displacement is always equal to the distance traveled.
 - C) The displacement can be either greater than, smaller than, or equal to the distance traveled.
 - D) The displacement is either less than or equal to the distance traveled.
- 4) Consider a car that travels between points A and B. The car's average speed can be greater than the magnitude of its average velocity, but the magnitude of its average velocity can never be greater than its average speed.
 - A) True B) False
- 5) Which of the following quantities has units of a velocity? (There could be more than one correct choice.)
 - A) 40 km southwest
 - B) 9.8 m/s downward
 - C) 9.8 m/s² downward
 - D) 186,000 mi

		4)
		1)
		5)
		,
6	6) When is the average velocity of an object equal to the instantaneous velocity?	6)
,	A) when the velocity is constant	٠, <u> </u>
	B) only when the velocity is increasing at a constant rate	
	C) never	
	D) only when the velocity is decreasing at a constant rate	
	E) always	
7	7) You drive 6.0 km at 50 km/h and then another 6.0 km at 90 km/h. Your average speed over the 12	7)
	km drive will be	
	A) greater than 70 km/h.	
	B) less than 70 km/h.	
	C) equal to 70 km/h.	
	D) exactly 38 km/h.	
	E) It cannot be determined from the information given because we must also know directions traveled.	
8	8) If the velocity of an object is zero at some point, then its acceleration must also be zero at that	po int.

D) Its acceleration is zero.

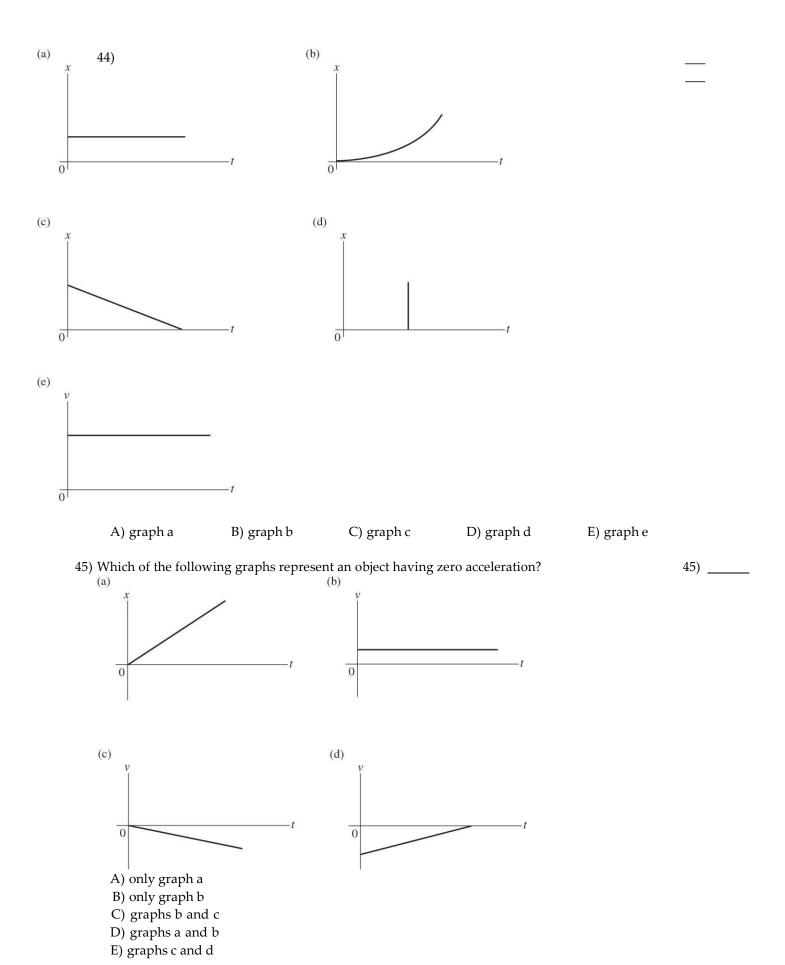
8)

acceleration n A) The acce B) The acce C) The acce	an object is moving with a connust be correct? eleration is constantly increasing eleration is a constant non-zero eleration is constantly decreasing eleration is equal to zero.	value.	17)
(There could l A) The acce	of an object is zero at one insta be more than one correct choice eleration could be positive. eleration must be zero.	ant, what is true about the acceleration of that object? e.) B) The acceleration could be negative. D) The acceleration could be zero.	18)
velocity? A) This can B) This can C) The acce D) The acce	ondition is average velocity eq only occur if there is no accele occur only when the velocity is eleration must be constantly inc eleration is constant.	is zero. creasing.	19)
spaced at equ	-	along a straight track. This track has markers start, as shown in the figure. The car reaches a speed ${\sf speed} = 140 \; {\sf km/h}$	20)
	1	· •	
Start	Marker 1	Marker 2	
	marker 1 and marker 2 er 1	traveling at half this speed, that is at 70 km/h?	
A) is down B) is upwa C) is zero D) reverses	ward rd from upward to downward	ir resistance, the acceleration at its highest point	21)
22) A rock from a resistance. W A) Through same did B) On the w point bo C) On the w point bo D) The accepoint.	hich one of the following states nout the motion, the acceleration rection as the acceleration. way up, its acceleration is down the its velocity and acceleration way down, both its velocity and the its velocity and acceleration the its velocity and acceleration.	d acceleration are downward, and at the highest are zero. Sints in the motion except that is zero at the highest	22)

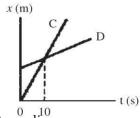
23) Suppose a ball is the	rown straight up	and experiences no	appreciable air resist	ance. What is its	23)
acceleration just bef		•	11		
A) slightly less th			zero		
C) exactly <i>g</i>	Ü	•	slightly greater than	g	
24) A ball is thrown stra	aight up, reaches	s a maximum height,	, then falls to its initia	l height. Which of	24)
	-		rity and acceleration o	-	,
	tv and its acceler	ration points downw	ard.		
	•	and its acceleration			
		d its acceleration poi			
D) Both its veloci	ty and its acceler	ration point upward.			
25) A ball is thrown do	wnward in the a	bsence of air resistar	nce. After it has been i	released, which	25)
•			e could be more than		,
A) Its acceleration					
B) Its acceleration	•	creasing.			
C) Its acceleration		ogransing			
D) Its acceleration E) Its acceleration	•	-			
		-	d	1	
26) A 10-kg rock and a	_	-	-	-	26)
height will the 20-k		J-kg rock reaches a n	naximum height <i>h,</i> w	nat maximum	
A) $h/2$	B) 2 <i>h</i>	C) h/4	D) 4h	E) <i>h</i>	
11) 11/2	ם בוו	C) 11/4	D) ±n	L) II	
27) A 10-kg rock and 20	0-kg rock are dro	opped from the same	e height and experier	ce no significant air	27)
_	-		ground, what time v	-	
rock to reach the gr	ound?				
A) <i>T</i>	B) T/2	C) 2T	D) 4T	E) T/4	
28) A 10-kg rock and a	20-kg rock are dı	ropped at the same t	ime and experience n	o significant air	28)
_	-		at is the acceleration o	•	2 0)
A) a/2	B) 4a	C) a/4	D) 2a	E) <i>a</i>	
29) Two objects are dro	opped from a brid	dge, an interval of 1.	0 s apart. Air resistan	ce is negligible.	29)
During the time tha	t both objects co	ntinue to fall, their s	eparation		
A) decreases.					
B) decreases at fi					
C) increases at fi	•	ys constant.			
D) stays constant	•				
E) increases.					
30) From the edge of a	roof top you toss	a green ball upward	ds with initial speed រ	v_0 and a blue ball	30)
downwards with th	ie same initial sp	eed. Air resistance is	s negligible. When the	ey reach the ground	<i></i>
below					
	_	aster than the blue b	all.		
B) the two balls v		-	-11		
C) the blue ball w	viii be moving fa	ster than the green b	all.		
31) Ball A is dropped fr	-	0		•	31)
building. Neglect ai	r resistance. As	s time progresses, the	e difference in their s	peeds	/

A) decreases.		
B) remains constant.		
C) increases.		
D) cannot be determined from the information	given.	
32) Two objects are thrown from the top of a tall build	ding. One is thrown up, and the other is	32)
thrown down, both with the same initial speed. V	What are their speeds when they hit the street?	
Neglect air resistance.		
A) The one thrown down is traveling faster.		
B) They are traveling at the same speed.		
C) The one thrown up is traveling faster.		
D) It is impossible to tell because the height of	the building is not given.	
33) Brick A is dropped from the top of a building. E building, and neither one experiences appreciable accelerations is correct?	e air resistance. Which statement about their	33)
A) The acceleration of A is greater than the acc		
B) The acceleration of B is greater than the acceleration of B is grea		
C) Neither brick has any acceleration once it is		
D) The two bricks have exactly the same accele	ration.	
34) An object is moving with constant non-zero veloc	city in the $+x$ direction. The position versus	34)
time graph of this object is		
A) a horizontal straight line.		
B) a vertical straight line.		
C) a straight line making an angle with the time	e axis.	
D) a parabolic curve.		
35) An object is moving with constant non-zero accel-	eration in the $+x$ direction. The position	35)
versus time graph of this object is		,
A) a horizontal straight line.		
B) a vertical straight line.		
C) a straight line making an angle with the time	e axis.	
D) a parabolic curve.		
36) An object is moving with constant non-zero veloc	city in the $+x$ direction. The velocity versus	36)
time graph of this object is		20)
A) a horizontal straight line.		
B) a vertical straight line.		
C) a straight line making an angle with the time	e axis.	
D) a parabolic curve.		
37) An object is moving with constant non-zero accel-	eration in the $+x$ direction. The velocity versus	27)
time graph of this object is		37)
A) a horizontal straight line.		
B) a vertical straight line.		
C) a straight line making an angle with the time	e axis.	
D) a parabolic curve.		
38) The slope of a position versus time graph gives		38)
A) displacement.	B) velocity.	
C) the distance traveled.	D) acceleration.	

39) The slope of a velocity versus time graph gives		39)
A) displacement.	B) the distance traveled.	
C) acceleration.	D) velocity.	
40) If the position versus time graph of an object is a hor	rizontal line, the object is	40)
A) moving with constant non-zero speed.		
B) moving with constant non-zero acceleration.		
C) at rest.		
D) moving with increasing speed.		
41) If the velocity versus time graph of an object is a hor	izontal line, the object is	41)
A) moving with zero acceleration.		
B) moving with constant non-zero acceleration.		
C) at rest.		
D) moving with increasing speed.		
42) If the velocity versus time graph of an object is a stra	ight line making an angle of +30° (counter	42)
clockwise) with the time axis, the object is		
A) moving with constant non-zero speed.		
B) moving with constant non-zero acceleration.		
C) at rest.		
D) moving with increasing acceleration.		
43) The motions of a car and a truck along a straight roa	d are represented by the velocity-time	43)
graphs in the figure. The two vehicles are initially al	ongside each other at time $t = 0$.	
<i>v</i>		


At time T, what is true of the *distances* traveled by the vehicles since time t = 0?

A) The truck will not have moved.


Truck

Car

- B) They will have traveled the same distance.
- C) The car will have travelled further than the truck.
- D) The truck will have travelled further than the car.
- 44) Which of the following graphs represent an object at rest? (There could be more than one correct choice.)

46) The figure shows a graph of the position x of two cars, C and D, as a function of time t.

According to this graph, which statements about these

cars

must be

true?

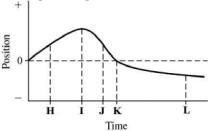
(There

could be more

than one

correct

choice.)

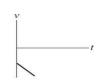

- A) The magnitude of the acceleration of car C is greater than the magnitude of the acceleration of car D.
- B) The magnitude of the acceleration of car C is less than the magnitude of the acceleration of car D.
- C) At time t = 10 s, both cars have the same velocity.
- D) The cars meet at time t = 10 s.
- E) Both cars have the same acceleration.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

47) The graph in the figure shows the position of an object as a function of time. The letters

47)

H-L represent particular moments of time.


- (a) At which moment in time is the speed of the object the greatest?
- (b) At which moment in time is the speed of the object equal to zero?
- 48) A child standing on a bridge throws a rock straight down. The rock leaves the child's hand at time t = 0 s. If we take upward as the positive direction, which of the graphs shown below best represents the velocity of the stone as a function of time?

B)

C)

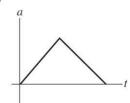
D)

E)

49) A child standing on a bridge throws a rock straight down. The rock leaves the child's hand at time t = 0 s. If we take upward as the positive direction, which of the graphs shown below best represents the acceleration of the stone as a function of time?

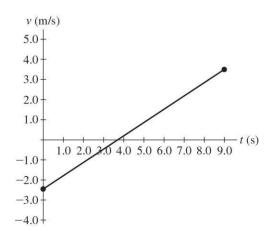
49) ___

A)

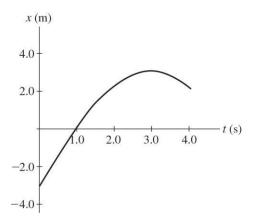

B)

D)

C)



E)


MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

50) The motion of a particle is described in the velocity vs. time graph shown in the figure.

Over the nine-seco nd interval shown, we can say that the *speed* of the particle

- A) only decreases.
- B) decreases and then increases.
- C) remains constant.
- D) increases and then decreases.
- E) only increases.
- 51) The graph in the figure shows the position of a particle as it travels along the x-axis.

At what value of t is the speed of the particle equal to 0 m/s?

A) 2 s

B) 3 s

C) 1 s

D) 0 s

E) 4 s

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

52) If, in the figure, you start from the Bakery, travel to the Cafe, and then to the Art Gallery

(a) what distance you have traveled?

(b) what is your displacement?

2.50 km ArP2) Bakery
Gallery

51) _

MULTIPLE CHOICE. Choose to 53) An object moves 15.0 m the magnitude of its dis	n north and then 11.0 m s	-	-	i on. 53)
A) 26.0 m, 4.0 m	B) 4.0 m, 26.0 m	C) 4.0 m, 4.0 m	D) 26.0 m, 26.0 m	
54) What must be your ave A) 67.0 km/h	rage speed in order to tra B) 66.0 km/h	avel 350 km in 5.15 h? C) 69.0 km/h	D) 68.0 km/h	54)
55) A runner ran the marat average speed of the ru	thon (approximately 42.0	•	•	55)
A) 14.2 m/s	B) 124 m/s	C) 14,200 m/s	D) 3.95 m/s	
56) A light-year is the dista How many miles are th	O	one year. The speed of li mi = 1609 m, 1 y = 365 d)	_	56)
A) 5.88 × 10 ¹² mi	• •	C) 9.46 × 1012 mi	D) 5.88 × 10 ¹⁵ mi	
57) If you are driving 72 k you travel during this i		d and you look to the sid	e for 4.0 s, how far do	57)
A) 20 m	B) 80 m	C) 40 m	D) 18 m	
SHORT ANSWER. Write the w	vord or phrase that best o	completes each statemen	t or answers the question	1.
58) If you run a complete lo (a) average velocity and	_	ack of length 400 m in 10	0 s, find your 58)	
MULTIPLE CHOICE. Choose to 59) A polar bear starts at the north to return to its starts speed?	ne North Pole. It travels	-	n east, and then 1.0 km	ion. 59)
A) 0.00 km/h	B) 0.067 km/h	C) 5.3 km/h	D) 4.0 km/h	
60) A polar bear starts at the north to return to its state velocity?		1.0 km south, then 1.0 km kes 45 min. What was th		60)
A) 0.00 km/h	B) 5.3 km/h	C) 0.067 km/h	D) 4.0 km/h	
61) You are driving home of and you slow to 35 mi/l your hometown from s	h. You arrive home afte	ol at 55 mi/h for 110 miles. r driving 4 hours and 15 m		61)
A) 180 mi	B) 210 mi	C) 190 mi	D) 200 mi	
62) A motorist travels 160 k motorist for this trip?	km at 80 km/h and 160 kr	n at 100 km/h. What is t	he average speed of the	62)
A) 84 km/h	B) 91 km/h	C) 90 km/h	D) 89 km/h	
63) A motorist travels for 3 trip?	.0 h at 80 km/h and 2.0 h	at 100 km/h. What is he	r average speed for the	63)
A) 90 km/h	B) 85 km/h	C) 88 km/h	D) 92 km/h	
64) An airplane travels at 3 is the average speed for		and then at 250 mi/h nort	h for 750 miles. What	64)

A) 275 mi/h	B) 280 mi/l	n C) 26	60 mi/h	D) 270 mi/h	
65) A race car circl (a) what is its a	ite the word or phrase t es 10 times around a circ everage speed for the ter everage velocity for the t	cular 8.0-km track i Llaps?		_	n.
wall that is 20.0	oward the east at 2.0 m/s, 0 m in front of the bat at air. How many millisect from the wall?	the instant the shri	ek is emitted. Sour	nd travels at	
67) If, in the figure in 2.00 hours, v (a) average spe (b) average vel	ed?	ery, travel to the Ca	fe, and then to the	Art Gallery 67) _	
Art Gallery	m				
68) A runner runs	Choose the one alternat around a track consisting s with a radius of 49 m.	ng of two parallel li	nes 96 m long con	nected at the ends by	68)
two semicircles speed?	B) 0 m/s around a track consisting with a radius of 49 m.	ng of two parallel li She completes one	lap in 100 seconds	. What is her average	69)
your trip. Alor	B) 1.3 m/s 549-mi trip in order to ag the way you plan to so he longest time you can	top for dinner. If the spend over dinner B) 1.	e fastest you can sa and still arrive just	afely drive is 65 t in time for the	70)
•	kes a trip of 180 miles. Fo constant speed must she be 40 mph? B) 52.5 mph			•	71)
HORT ANSWER. Wr	ite the word or phrase t	hat best completes	each statement or	answers the question	n.
72) Human reaction drunk driver's both are initial slowing down,	on times are worsened by car travel before he hits ly traveling at 50.0 mi/h and that the sober drive er takes 1.0 s to do so. (5	alcohol. How much the brakes than a se and their cars have er takes 0.33 s to hit	ch <i>further</i> (in feet) webber driver's car? A	would a 72) _ Assume that tion while	

73) Arthur and Betty start walking toward each other when they are 100 m apart. Arthur has a speed of 3.0 m/s and Betty has a speed of 2.0 m/s. How long does it take for them to et?

	74) The position <i>x</i> (<i>t</i>) of m/s) <i>t</i> - (5.0 m/s ²) <i>t</i> ² . 0.40 s?	-	ion of time t is given be velocity of the partic	•		
	75) A water rocket can average acceleration	-	m/s in 0.050 seconds f	rom launch. What is	s its 75) _	
MU	LTIPLE CHOICE. Choo		-		-	
	76) An airplane increas increase its speed fr	-	O .	. How much time	does it take to	76)
	A) 0.25 s	B) 0.058 s	C) 17 s	D) 4.0 s	
SHO	ORT ANSWER. Write tl	ne word or phrase tl	hat best completes ea	ch statement or ans	wers the questio	on.
	77) The captain orders I How many days do at 3.0 × 10 ⁸ m/s.)		erate from rest at a rat p to reach 10% the spo	0 . 0	·	
MU :	LTIPLE CHOICE. Choo	se the one alternati	ve that best complete	s the statement or a	nswers the ques	stion.
	78) A car is traveling n					
	· ·		s average acceleration			
	A) 2.7 m/s^2 , north	ı		n/s ² , south		
	C) 0.30 m/s^2 , nor	th	D) 0.30	m/s ² , south		
	79) A racquetball strike speed of 26 m/s. Th	•	ed of 30 m/s and reboums. What is the avera	* *		,
	collision with the w					
	A) 200 m/s ²	B) 0 m/s^2	C) 2800 m/s ²	D) 1300 m/s ²	E) 1500 m/s ²	
	80) The velocity $v(t)$ of m/s ³) t^2 . What is the A) 13 m/s ²	•	on of time is given by on of the particle betwo C) -15 m/s ²			80)
CIIC	,	·	·	ŕ	·	
эпс	ORT ANSWER. Write th	e word or phrase th	iai besi compietes ead	in statement or ans	wers the question	m.
	81) If a car accelerates a km/hr, starting from		² , how long will it take	e to reach a speed of	f 80 81) _	
	92) A conthatic initially		a basina ta a salamata (-10 FF0 (2)	
	82) A car that is initially m/s ² .	/ moving at 7.50 m/s	s begins to accelerate i	orward uniformly a	at 0.330 62) _	
		0 0	ate does it take the car has traveled 3.50 km?			
	83) An auto accelerates 1.033 km while acce		/s at a uniform 0.71 m	/s ² . It travels a dista	ance of 83) _	
			it is traveled the 1.033	km?		
		nds did it take to tra				

84) In a ballistics test, a bullet moving horizontally with a speed of 500 m/s strikes a sandbag

(a) at is the

and penetrates a distance of 10.0 cm.

Wh magnitude of

the	84)				
average					
accelerati					
on of the					
bullet in				_	
the					
sandbag?					
(b) How					
many					
milliseco					
nds does					
it take					
the bullet					
to come					
to rest in					
the					
sandbag?					
MULTIP	LE CHOICE. Ch	oose the one alternative that b	est completes the statement	t or answers the quest	ion.
85)	A certain test car	can go from rest to 32.0 m/s in	3.88 s. The same car can com	ne to a full stop from	85)
	that speed in 4.14	s. What is the ratio of the mag	nitude of the starting acceler	ration to the	
	stopping accelera	tion?	_		
	A) 1.14	B) 0.937	C) 1.07	D) 0.878	
	,	,	,	,	
86)	•	veling at 60 km/h accelerates at ar to reach a speed of 90 km/h?		How much time is	86)
	A) 4.2 s	B) 45 s	C) 30 s	D) 15 s	
87)	A cart starts from	rest and accelerates uniformly	v at 4.0 m/s ² for 5.0 s. It next:	maintains the	87)
	velocity it has rea	iched for 10 s. Then it slows do	wn at a steady rate of 2.0 m/	s^2 for 4.0 s. What is	
	the final speed of		,		
	A) 20 m/s	B) 10 m/s	C) 12 m/s	D) 16 m/s	
	11) =0 111,0	2) 10 1140	C) 12 111,0	2) 10 11,0	
88)		5 m/s for 10 s. It then speeds u	ıp with a constant acceleration	on of 2.0 m/s ² for 15	88)
		this time, what is its velocity?			
	A) 30 m/s	B) 45 m/s	C) 15 m/s	D) 375 m/s	
89)	A cart with an ini	tial velocity of 5.0 m/s to the ri	ght experiences a constant a	cceleration of 2.0	89)
	m/s^2 to the right.	What is the cart's displaceme	ent during the first 6.0 s of th	is motion?	
	A) 66 m	B) 80 m	C) 55 m	D) 10 m	
90)	A jet plane is laur	nched from a catapult on an air	craft carrier. In 2.0 s it reac	hes a speed of 42 m/s	90)
	at the end of the o	catapult. Assuming the accele	ration is constant, how far d	id it travel during	, , , , , , , , , , , , , , , , , , , ,
	those 2.0 s?	1	·	O	
	A) 24 m	B) 42 m	C) 84 m	D) 16 m	
	•	•	•	•	
91)	A car starting from	m rest accelerates at a constant	$2.0 \mathrm{m/s^2}$ for $10 \mathrm{s}$. It then tray	vels with constant	91)
,		eved for another 10 s. Then it fi			/1/
	-		•	notarit acceleration	
	-	m/s^2 . How far does it travel a	_	D) 200	
	A) 200 m	B) 500 m	C) 400 m	D) 300 m	

92	•	2		hile traveling a distance of	92)
		celeration during this tim		D) 0	
	A) 8.0 m/s^2	B) 9.6 m/s ²	C) 24 m/s ²	D) 12 m/s^2	
93	s) An object starts from r	est and undergoes unifor	rm acceleration. Durin	g the first second it travels	93)
	5.0 m. How far will it	travel during the third	second?		
	A) 45 m	B) 15 m	C) 25 m	D) 5.0 m	
94	,	a straight line with cons		•	94)
	m/s. Three seconds l A) 48 m	later it is traveling at 10 B) 39 m	C) 30 m	D) 57 m	
95) A car starts from rest a	and accelerates uniformly	y at 3.0 m/s^2 toward the	north. A second car	95)
		iter at the same point and r the second car starts do	•		
	A) 24 s	B) 21 s	C) 12 s	D) 19 s	
SHORT	ANSWER Write the	ward or phraca that bact	completes each statem	ent or answers the question	
SHOKI	ANSWER. Write the	word or piliase that best	completes each statem	ent or answers the questior	l .
96		on a dry road can deceler	•	ady rate of about 96)	
		g. If a car is initially trav	eling at 55 mi/h		
		es it take the car to stop?			
	(b) what is its stopping	g distance:			
077) A. a	1. 1	.1 1	07	
97		light turns green, a car th			
		nstant acceleration of 2.00		t a truck traveling	
		ry of 15.0 m/s overtakes a e necessary for the car to	-		
		ance beyond the traffic li		s the truck	
		eed of the car when it pas	•		
	-	-			
MIIITIE	PLECHOICE Choose	the one alternative that l	hest completes the state	ment or answers the quest	ion
		agster travels a straight 1			98)
	,	ts velocity when it crosse			
	A) 296 mi/h	B) 269 mi/h	C) 135 mi/h	D) 188 mi/h	
99) A higyalist starts a time	ed race at 6.0 mi/h. In or	don to vision has marret arres	21 mi/h. A coursing	99)
,,,		rom the start, how fast m)))
	A) 30 mi/h	B) 24 mi/h	C) 36 mi/h	D) 42 mi/h	
	11) 00 111/11	2) 21 1111/11	C) 50 Hi/H	2) 12 1111/11	
100) A car accelerates from	5.0 m/s to 21 m/s at a co	onstant rate of 3.0 m/s^2 .	How far does it travel	100)
	while accelerating?				
	A) 69 m	B) 117 m	C) 41 m	D) 207 m	
101)	1 (1 1 %	c 203 0km/h	. a 2000-m	101\
101				f. On a ^{2000-m} runway, ake flight if it starts from	101)
	rest?	urinform acceleration flec	essary for the plane to t	ake mgm ii it starts nom	
	A) 0.79 m/s ²	B) 1.0 m/s ²	C) 0.95 m/s ²	D) 0.87 m/s ²	
102) Assuming equal rates	of uniform acceleration i	n hoth cases how much	n further would you travel	102\
102		h to rest than from 28 m		riardici would you davel	102)
	A) 3.2 times farther	to rest attait from	B) 5.2 times farthe	er	

-	imes farthe		,	times farther		
103) Accelera	tion is som	etimes expressed in	multiples of g, whe	$re g = 9.8 \text{ m/s}^2 \text{ is}$	the acceleration of	103)
		earth's gravity. In a				
		How many g's are ex				
A) 24		B) 14 g	C) 26		D) 20 g	
,	0	7 8	,	8	, 8	
104) A baseb	all is hit wi	th a bat and, as a res	sult, its direction is	completely revers	ed and its speed is	104)
doubled	. If the actu	al contact with the l	oat lasts 0.45 s, wha	t is the ratio of the	e magnitude of the	,
average	acceleratio	n of the ball to its or	iginal speed?			
A) 2.2	s-1	B) 4.4 s-1	C) 6.7	s-1	D) 0.15 s-1	
105) A train	starts from	rest and accelerates	uniformly until it ha	as traveled 5.6 km	n and acquired a	105)
forward	velocity of	42 m/s. The train th	nen moves at a const	tant velocity of 42	2 m/s for 420 s. The	
	•	wn uniformly at 0.0	20	•		
		6 km of travel is clos			ne deceleration	
A) o a	$\frac{1}{2}$ $\frac{1}{2}$	$^{\rm B)} 0.16 {\rm m/s^2}$	$C)$ on $a = s^2$	D) $a_1 = s^2$	E) 0.14 / s ²	
11) 0.2	0 m/°	0.16 m/s	0.19 m/ ^s	2) 0.17 m/s	² / 0.14 m/ ³	
106) A train	starts from	rest and accelerates	uniformly until it b	as transplad 2.1 la	m and acquired a	106)
					m/s for 400 s. The	100)
	-		20	•		
				rought to a halt. T	he distance traveled	
· ·		lowing down is clos				
A) 3.8	km.	B) 3.6 km.	C) 4.0 km.	D) 4.2 km.	E) 4.4 km.	
107) A socce	ball is rele	ased from rest at the	top of a grassy incl	ine. After 6.4 sec	·	
(a) Wha	t was the ba	all's acceleration?				
(b) How	long was t	he incline?				
MIII TIDI E CHO	CF CI				d .	.•
			-		or answers the quest	108)
	irts from re	st and accelerates at	a steady 6.00 m/s ² .	How far does it tr	avel in the first 3.00	100)
s?						
A) 18	0 m	B) 9.00 m	C) 27.0 m	D) 36.0 m	E) 54.0 m	
•		th a constant acceler	,	,	,	109)
		and at time $t = 8.0 \text{ s}$ i				,
		erval of time?	Ž			
A) 20	m	B) 10 m	C) 50 m	D) 40 m	E) 30 m	
110) An airp	ane starts f	rom rest and acceler	ates at a constant 10	0.8 m/s^2 . What is i	ts speed at the end	110)
of a 400	m-long rur	iway?				
A) 37	0 m/s	B) 65.7 m/s	C) 93.0 m/s	D) 186 m/s	E) 4320 m/s	
		_				
	_	th a speed of 32.0 m/				111)
		car to slow down w				
		vel after the driver p			-	
A \ 1 E	7 m	B) 146 m	C) 9.14 m	D) 292 m	E) 112 m	

	112) A car is traveling w	rith a constant speed	when the driver su	addenly applies the	brakes, causing	112)
the car to slow down with a constant acceleration of magnitude 3.50 m/s ² . If the car comes to a						
		f 30.0 m, what was t	0			
	A) 105 m/s	B) 210 m/s	C) 315 m/s	D) 10.2 m/s	E) 14.5 m/s	
	113) A car is traveling w	rith a constant speed	of 30.0 m/s when t	he driver suddenly a	applies the brakes.	113)
	_	_		The car comes to a s		•
	•	s the acceleration of			•	
	A) 4.75 m/s ²	B) 3.75 m/s^2	C) 4.25 m/s^2	D) 4.50 m/s^2	E) 4.00 m/s^2	
	114) A car is traveling at			• •	O .	114)
				stop in a distance of		
	-			ere the brakes were a		
	A) 18.4 m/s	B) 22.5 m/s	C) 15.0 m/s	D) 12.1 m/s	E) 9.20 m/s	
	115) Car A is traveling a	t 22.0 m/s and car	B at 29.0 m/s. Car	A is 300 m behind ca	ar B when the	115)
	driver of car A acce	elerates his car with a	a uniform forward	acceleration of 2.40	m/ ^{s2} . How long	
		o accelerate does it t			<u> </u>	
	A) 12.6 s					
	B) 19.0 s					
	C) 316 s					
	D) 5.50 s	. 1				
	E) Car A never o	vertakes car B.				
	116) A stone is thrown v	vith an initial upwai	d velocity of 7.0 m.	s and experiences n	egligible air	116)
		-	•	at is the velocity of t		110)
	s?	1 1	,	,		
	A) 0.00 m/s	B) 2.1 m/s	C) -4.9 m/s	D) -2.1 m/s	E) 4.9 m/s	
SHO	RT ANSWER. Write th	ne word or phrase tl	nat best completes	each statement or a	nswers the question	n.
	117) An astronaut on a s	-	——————————————————————————————————————		_	
				ed is 6.0 m/s. Wha		
	magnitude of the a	cceleration due to gr	avity on the planet	?		
MIII	TIPLE CHOICE. Choo	see the one alternati	we that best compl	atas tha statamant a	r aneware the allee	tion
	118) A laser is thrown u					118)
				nosphere. What is th		,
	height reached by t			1		
	A) 48 m	B) 18 m	C) 8.	0 m	D) 144 m	
	110) A 1		- (10 m./ m.th		1 th .	110)
	119) A laser is thrown u			-		119)
				nosphere. How long	does it take for	
		ne maximum height?		Le	D) 8 0 c	
	A) 11 s	B) 16 s	C) 14	1 3	D) 8.0 s	
	120) An instrument is th	rown upward with	a speed of 15 m/s	on the surface of pla	net X where the	120)
		-	-	nosphere. How long		,
		eturn to where it wa				
	A) 10 s	B) 12 s	C) 6.	0 s	D) 8.0 s	

121) A hammer is thrown upward with a speed of 14 m/s on the surface of planet X where the

accel eratio

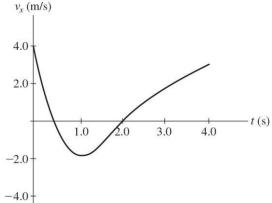
	ue to 121)			
_	rity is			_
3.5 r	n/s ²			
and				
ther	e is			
no				
atmo	osph			
ere.				
Wha	at is			
the				
_	ed of			
the				
	mer			
	: 8.0			
s?	D) 70		D) 01 /	
	A) 14 m/s B) 7.0 m/s	C) 64 m/s	D) 21 m/s	
	100) II			100)
	122) Human reaction time is usually greater than 0.10	•	-	122)
	fingers and releases it without warning, how far	can you expect the rule	r to fall before you cate	ch
	it, assuming negligible air resistance?	C) Atlant 6 9 am	D) Atlant 0.9 a	
	A) At least 4.9 cm B) At least 3.0 cm	C) At least 6.8 cm	D) At least 9.8 c	Ш
	123) A ball is thrown upward at a velocity of 19.6 m/s	s What is its velocity a	fter 3 0 s. assuming	123)
	negligible air resistance?	. What is its velocity a	itter 0.0 b, abbanning	120)
	A) 19.6 m/s downward	B) 9.8 m/s upward		
	C) 0 m/s	D) 9.8 m/s downwa		
		2) 10 1140 40 11111		
	124) A bullet shot straight up returns to its starting po	oint in 10 s What is the	e initial speed of the	124)
	bullet, assuming negligible air resistance?	onicin 10 5. What is the	e initial speed of the	121)
	A) 49 m/s B) 25 m/s	C) 98 m/s	D) 9.8 m/s	
	11) 13 1140	C) yo myo	2) 7.0 mg	
	125) A ball is thrown straight up with a speed of 36 m	n/s. How long does it to	ake to return to its	125)
	starting point, assuming negligible air resistance	· ·		120)
	A) 11 s B) 15 s	C) 7.3 s	D) 3.7 s	
	126) A ball is thrown downward from the top of a bu	ilding with an initial sp	eed of 25 m/s. It strike	es 126)
	the ground after 2.0 s. How high is the building	g, assuming negligible a	ir resistance?	,
	A) 50 m B) 70 m	C) 20 m	D) 30 m	
SHO	ORT ANSWER. Write the word or phrase that best o	completes each statemen	nt or answers the ques	tion.
	127) A ball is thrown straight up with a speed of 30 m		negligible. 12	7)
	(a) How long does it take the ball to reach the ma	_		
	(b) What is the maximum height reached by the	ball?		
	(c) What is its speed after 4.2 s?			
	128) A faul hall is hit straight up into the air with a sp	and of 20 m/s and air r	ocietance is (d) ancilians to
	128) A foul ball is hit straight up into the air with a sp	beed of 50 m/s, and an 10	esistance is (d) answers to
	negligible.			was hit
	(a) Calculate the time required for the ball to rise	e to its maximum height		by the
	(b) Calculate the maximum height reached by th	•		bat.
	bat.	, and the point w		
	(c) Determine the times at which the ball passes a	a point 25 m above the r	point where it	
	, , , , , , , , , , , , , , , , , , ,	1		

Expl part (c). ain why ther

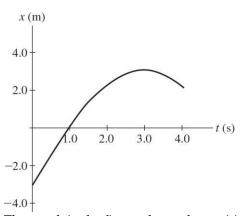
e are two

ULTIPI	LE CHOICE. Choo	ose the one alterna	tive that best compl	etes the statement o	r answers the quest	ion.
129)	A ball is projected	upward at time $t =$	0 s, from a point on a	a flat roof 10 m abo	ve the ground.	129)
	The ball rises and t	hen falls with insig	nificant air resistanc	e, missing the roof, a	and strikes the	
	ground. The initial	velocity of the ball	is 58.5 m/s. Consider	er all quantities as po	ositive in the	
				of the ball is closest t		
	A) -12 m/s.	B) -175 m/s.	C) +175 m/s.	D) +12 m/s.	E) 0 m/s.	
	,,		<i>-</i>)	_ /		
130)	A ball is projected	upward at time $t =$	0 s, from a point on a	a flat roof 90 m abo	ve the ground.	130)
,	. ,	•		e, missing the roof, a	- C	
				er all quantities as po		
	unward direction	The wortical volocit	w of the hall when it	is ^{89 m} above the gr	round is closest to	
	A) -32 m/s.	B) -81 m/s.		D) -48 m/s.	E) -97 m/s.	
	A) -32 II/s.	<i>D)</i> -01 III/5.	C) -04 III/5.	D) -40 III/8.	E) -77 H(5.	
131)	A test rocket at gro	und level is fired st	raight un from rest s	with a net upward a	celeration of 20	131)
				ues to coast upward		131)
			on does the rocket re	-	with hisignificant	
	A) 490 m	B) 330 m	C) 160 m	D) 410 m	E) 320 m	
	A) 450 III	D) 550 III	C) 100 III	D) 410 III	E) 320 III	
132)	A tow rocket is laur	sched vertically fro	m ground level at tir	ne $t = 0.00$ s. The roc	ket engine	132)
102)				nase. At the instant o		152)
				ocity of 60 m/s. The		
				t, reaches maximum		
				cket engine provided	0	
	acceleration, is clos		during which the roo	cket engine provided	i tile upwaru	
	A) 2.3 s.	B) 1.5 s.	C) 1.9 s.	D) 1.7 s.	E) 2.1 s.	
	11) 2.3 3.	D) 1.5 3.	C) 1.7 3.	D) 1.7 3.	L) 2.1 3.	
133)	A tov rocket is laur	nched vertically fro	m ground level at tir	me $t = 0.00$ s. The roc	ket engine	133)
	•	•	-	nase. At the instant o	-	100)
				ocity of $40 \mathrm{m/s}$. The		
				t, reaches maximum		
				during the burn pha	0	
				D) $_{9.3 \text{ m/s}^2}$.		
	11) 9.9 m/ ³ .	⁹ , 9.6 m/ ⁹ .	6, 8.7 m/s.	² / 9.3 m/ ³ .	² / 9.0 m/ ³ .	
104)	A (1111 C		(O - Th 1 - 1		104)
134)	•	•	0	me $t = 0$ s. The rocket	~	134)
				ne instant of engine b		
				60.0 m/s. The rocket		
				nes maximum height	, and falls back to	
	· ·	_	ched by the rocket is		E) 201	
	A) 209 m.	B) 233 m.	C) 256 m.	D) 244 m.	E) 221 m.	
125\	A rock is projected	unward from the	urface of the Moon	at time $t = 0$ s, with a	on unward	125)
•	• /	•			•	135)
	velocity of 30.0 m/s. The acceleration due to gravity at the surface of the Moon is 1.62 m/s ² , and the Moon has no atmosphere. The height of the rock when it is descending with a speed of 20.0					
		mosphere. The her	grit of the fock when	it is descending wit	ii a speed of 20.0	
	m/s is closest to	R) 154 m	C) 125 m	D) 145 m	E) 125 m	
	A) 115 m.	B) 154 m.	C) 135 m.	D) 145 m.	E) 125 m.	
126\	A 111 1- (1			1. (18m/s -		126)
				speed of ^{18 m/s.} H	ow much time	136)
	passes before the b	an strikes the groui	nd if we disregard ai	r resistance?		

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 137) A rock is thrown directly upward from the edge of a flat roof of a building that is \$6.3 137) meters tall. The rock misses the building on its way down, and is observed to strike the ground 4.00 seconds after being thrown. Take the acceleration due to gravity to have magnitude 9.80 m/s² and neglect any effects of air resistance. With what speed was the rock thrown? 138) A package is dropped from a helicopter that is moving upward at 15 m/s. If it takes 138) 8/8 before the package strikes the ground, how high above the ground was the package when it was released? Neglect air resistance. 139) At the same moment, one rock is dropped and one is thrown downward with an initial velocity of 29 m/s from the top of a building that is 300 m tall. How much auriliar does the thrown rock strike the ground? Neglect air resistance. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 140) An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance. A) 9.9 m/s B) 21 m/s C) 20 m/s D) 15 m/s E) 4.9 m/s 141) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she	A) 3.7 s	B) 0.6 s	C) 1	.8 s	D) 1.1 s	
138) A package is dropped from a helicopter that is moving upward at 15 m/s. If it takes 8.0 s before the package strikes the ground, how high above the ground was the package when it was released? Neglect air resistance. 139) At the same moment, one rock is dropped and one is thrown downward with an initial 139) velocity of 29 m/s from the top of a building that is 300 m tall. How much earlier does the thrown rock strike the ground? Neglect air resistance. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 140) An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance. A) 9.9 m/s B) 21 m/s C) 20 m/s D) 15 m/s E) 4.9 m/s 141) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to	137) A rock is thrown meters tall. The ro ground 4.00 secon	directly upward from ock misses the building ods after being throw	n the edge of a flat ing on its way down	roof of a building tha , and is observed to ation due to gravity	at is 56.3 137 strike the to have	
8.0 s before the package strikes the ground, how high above the ground was the package when it was released? Neglect air resistance. 139) At the same moment, one rock is dropped and one is thrown downward with an initial velocity of 29 m/s from the top of a building that is 300 m tall. How much earlier does the thrown rock strike the ground? Neglect air resistance. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 140) An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance. A) 9.9 m/s B) 21 m/s C) 20 m/s D) 15 m/s E) 4.9 m/s 141) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) — 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bot	_	^{n/s2} and neglect any	effects of air resista	nce. With what spec	ed was the	
velocity of 29 m/s from the top of a building that is 300 m tall. How much earlier does the thrown rock strike the ground? Neglect air resistance. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 140) An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance. A) 9.9 m/s B) 21 m/s C) 20 m/s D) 15 m/s E) 4.9 m/s 141) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2	$8.0\mathrm{s}$ before the p	ackage strikes the gro	ound, how high abo	oward at ¹⁵ m/s. If it is ove the ground was	it takes 138 the package	3)
140) An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance. A) 9.9 m/s B) 21 m/s C) 20 m/s D) 15 m/s E) 4.9 m/s 141) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s	velocity of 29 m/s	s from the top of a bu	ilding that is 300 r	n tall. How much ear))
140) An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the same instant. What was the initial speed of the second object? Neglect air resistance. A) 9.9 m/s B) 21 m/s C) 20 m/s D) 15 m/s E) 4.9 m/s 141) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s		ooso the one alterna	tive that best some	lates the statement	on anaturona tha au	action
A) 9.9 m/s B) 21 m/s C) 20 m/s D) 15 m/s E) 4.9 m/s 141) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s	140) An object is drop reach the water 2	ped from a bridge. A 0 m below at the san	second object is th	rown downwards 1	.0 s later. They bo	th 140)
time it takes for it to hit the water. If the time is 2.3 s, what is the height of the bridge? Neglect air resistance. A) 32 m B) 14 m C) 10 m D) 52 m E) 26 m 142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s	· ·		C) 20 m/s	D) 15 m/s	E) 4.9 m/s	
142) To determine the height of a bridge above the water, a person drops a stone and measures the time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s	time it takes for it	0	-	•		,
time it takes for it to hit the water. If the height of the bridge is 41 m, how long will it take for the stone to hit the water? Neglect air resistance. A) 2.6 s B) 3.2 s C) 2.9 s D) 2.3 s E) 3.6 s 143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s	A) 32 m	B) 14 m	C) 10 m	D) 52 m	E) 26 m	
143) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.	time it takes for it stone to hit the w	to hit the water. If thater? Neglect air resi	ne height of the brid stance.	ge is 41 m, how long	g will it take for th	,
m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.	A) 2.6 S	D) 3.2 S	C) 2.9 S	D) 2.3 S	E) 3.6 S	
time it takes for it to hit the bottom. If the time is 6.3 s, what is the depth of the crater? A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.	· _	•			0	,
A) 26 m B) 32 m C) 14 m D) 38 m E) 10 m 144) An astronaut stands by the rim of a crater on the Moon, where the acceleration of gravity is 1.62 m/s ² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.			•	•		he
m/s ² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.				-		
m/s ² and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for the rock to fall to the bottom of the crater? A) 32.1 s B) 3.04 s C) 29.3 s D) 37.5 s E) 12.2 s 145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.	144) A maratura manutata m	As her the sime of a su	atawa a tha Masa a	h (h l		
145) An object is thrown upwards with a speed of 16 m/s. How long does it take it to reach a height of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.	m/s^2 and there is no air. To determine the depth of the crater, she drops a rock and measures the time it takes for it to hit the bottom. If the depth of the crater is 120 m, how long does it take for					ie – –
of 7.0 m on the way up? Neglect air resistance. A) 3.1 s B) 2.4 s C) 1.2 s D) 0.52 s E) 4.2 s 146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.	A) 32.1 s	B) 3.04 s	C) 29.3 s	D) 37.5 s	E) 12.2 s	
146) An object is thrown upwards with a speed of 13 m/s. How long does it take to reach a height of 4.0 m above the projection point while descending? Neglect air resistance.				w long does it take	it to reach a heigh	t 145)
4.0 m above the projection point while descending? Neglect air resistance.				D) 0.52 s	E) 4.2 s	
		-	•	-	to reach a height o	of 146)
	-				E) 2.3 s	

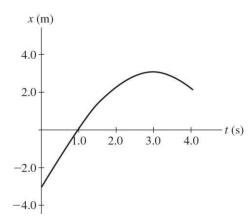

- 147) To determine the height of a flagpole, Abby throws a ball straight up and times it. She sees that the ball goes by the top of the pole after 0.50 s and then reaches the top of the pole again after a total elapsed time of 4.1 s. How high is the pole above the point where the ball was launched? Neglect air resistance.
- 147) _

- A) 26 m
- B) 10 m
- C) 13 m
- D) 18 m
- E) 16 m
- 148) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.50 s and reaches the level of the top of the pole after a total elapsed time of 4.1 s. What was the speed of the ball at launch? Neglect air resistance.
- 148) _____


- A) 45 m/s
- B) 23 m/s
- C) 48 m/s
- D) 11 m/s
- E) 34 m/s
- 149) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.50 s and reaches the level of the top of the pole after a total elapsed time of 4.1 s. What was the speed of the ball at as it passed the top of the flagpole? Neglect air resistance.
- 149) _____

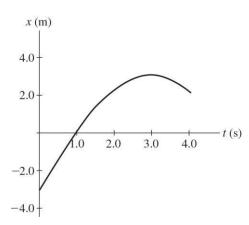
- A) 16 m/s
- B) 33 m/s
- C) 18 m/s
- D) 29 m/s
- E) 6.4 m/s
- SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
 - 150) The graph in the figure represents the velocity of a particle as it travels along the x-axis. What is the average acceleration of the particle between t = 2.0 s and t = 4.0 s?

- 151) The graph in the figure shows the position of a particle as a function of time as it travels along the *x*-axis.
- 151) _____
- (a) What is the average speed of the particle between t = 2.0 s and t = 4.0 s?
- (b) What is the average velocity of the particle between t = 2.0 s and t = 4.0 s?

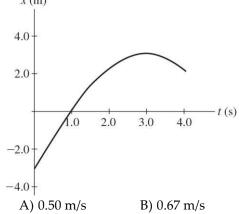

- 152) The graph in the figure shows the position of a particle as a function of time as it travels
- (b) average speed

along the x-axis.

Wha of the particle


- (a) What is the magnitude of the average velocity of the particle between t = 1.0 s and t = 4.0 s²
- t is between t = 1.0the s and t = 4.0 s?

4.0 s?

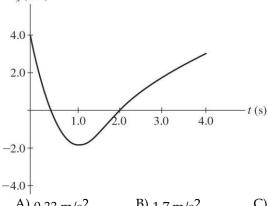

153) The graph in the figure shows the position of a particle as it travels along the x-axis. What is the magnitude of the instantaneous velocity of the particle when t = 1.0 s?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

154) The graph in the figure shows the position of a particle as it travels along the x-axis. What is the magnitude of the average velocity of the particle between t = 1.0 s and t = 4.0 s?

155) The graph in the figure shows the position of a particle as it travels along the x-axis. What is the magnitude of the average speed of the particle between t = 1.0 s and t = 4.0 s?

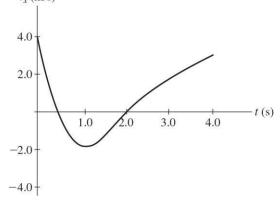
C) 0.25 m/s


D) 1.3 m/s

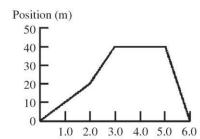
E) 1.0 m/s

- A) 1.3 m/s
- B) 0.25 m/s
- C) 0.67 m/s
- D) 1.0 m/s
- E) 0.50 m/s

156) _

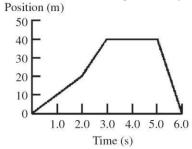

- 156) The graph in the figure shows the velocity of a particle as it travels along the *x*-axis. What is the magnitude of the average acceleration of the particle between t = 1.0 s and t = 4.0 s?

- A) 0.33 m/s^2
- B) 1.7 m/s^2
- C) 3.0 m/s^2
- D) 2.5 m/s^2
- E) 2.0 m/s^2

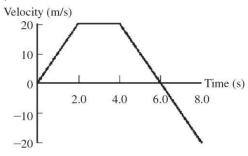

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 157) The graph in the figure shows the velocity of a particle as it travels along the *x*-axis. (a) 157) ____ In what direction (+x or -x) is the acceleration at t = 0.5 s?
 - (b) In what direction (+x or -x) is the acceleration at t = 3.0 s?
 - (c) What is the average acceleration of the particle between t = 2.0 s and t = 4.0 s?
 - (d) At what value of t is the instantaneous acceleration equal to 0 m/s^2 ? v_x (m/s)

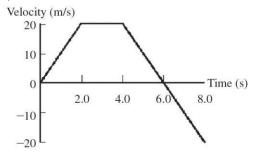
- 158) The figure shows a graph of the position of a moving object as a function of time. What is the velocity of the object at each of the following times?
 - (a) At t = 1.0 s
 - (b) At t = 2.5 s


- (c) (d) At t = 5.5 s
- At t
- = 4.0

Time (s)


- 159) The figure shows a graph of the position of a moving object as a function of time.
- 159) _____

- (a) What is the average velocity of the object from t = 0 s to t = 4.0 s?
- (b) What is the average velocity of the object from t = 0 s to t = 6.0 s?


- 160) The figure shows a graph of the velocity of an object as a function of time. What is the acceleration of the object at the following times?
- 160) _____

- (a) At 1.0 s
- (b) At 3.0 s

- 161) The figure shows a graph of the velocity of an object as a function of time. What is the average acceleration of the object over the following time intervals?
- 161) _____

- (a) From t = 0 s to t = 5.0 s
- (b) From t = 0 s to t = 8.0 s

- 1) A
- 2) C, D
- 3) D
- 4) A
- 5) B, E
- 6) A
- 7) B
- 8) B
- 9) D
- 10) B
- 11) B
- 12) B
- 13) D
- 14) A
- 15) A
- 16) A
- 17) D
- 18) A, B, D
- 19) D
- 20) C
- 21) A
- 22) E
- 23) C
- 24) C
- 25) C
- 26) E
- 27) A
- 28) E
- 29) E
- 30) B
- 31) B
- 32) B
- 33) D
- 34) C
- 35) D
- 36) A
- 37) C
- 38) B
- 39) C 40) C
- 41) A
- 42) B
- 43) D
- 44) A
- 45) D
- 46) D, E
- 47) (a) J (b) I
- 48) C
- 49) B
- 50) B
- 51) B

```
52) (a) 10.5 km
                      (b) 2.50 km south
 53) A
 54) D
 55) D
 56) A
 57) B
 58) (a) 0 m/s
                    (b) 4 m/s
 59) D
 60) A
 61) C
 62) D
 63) C
 64) D
 65) (a) 67 m/s
                     (b) 0 \text{ m/s}
 66) 117 ms
 67) (a) 5.25 km/h
                         (b) 1.25 km/h south
 68) B
 69) E
 70) C
 71) E
 72) 49 ft
 73) 20 seconds
 74) 0.00 m/s
 75) 1500 m/s<sup>2</sup>
 76) D
 77) 35 days
 78) D
 79) C
 80) C
 81) 5.6 s
82) (a) 1.00 \times 10^2 s
                          (b) 62.5 m/s
 83) (a) 39 m/s
                     (b) 45 s
84) (a) 1.25 \times 10^6 m/s<sup>2</sup>
                              (b) 0.400 ms
 85) C
 86) A
87) C
 88) B
 89) A
 90) B
 91) C
 92) D
 93) C
 94) B
 95) B
 96) (a) 4.9 s
                   (b) 60 m
                    (b) 225 m
 97) (a) 15.0 s
                                    (c) 30.0 \text{ m/s}
 98) B
 99) C
100) A
101) A
102) C
103) D
```

```
104) C
105) B
106) E
107) *a) 4.4 \text{ m/s}^2
                         (b) 120 m
108) C
109) E
110) C
111) B
112) E
113) B
114) A
115) B
116) B
117) 0.67 m/s<sup>2</sup>
118) A
119) D
120) B
121) A
122) A
123) D
124) A
125) C
126) B
                            (c) 11 m/s
127) (a) 3.1 s (b) 46 m
128) (a) 3.1 s
                  (b) 46 m
                                 (c) 1.0 s and 5.1 s
     (d) One value for the ball traveling upward; one value for the ball traveling downward.
129) E
130) B
131) A
132) E
133) A
134) B
135) B
136) A
137) 5.53 m/s
138) 190 m
139) 2.4 s
140) D
141) E
142) C
143) B
144) E
145) D
146) E
147) B
148) B
149) C
150) 1.5 m/s<sup>2</sup>
151) (a) 1.0 m/s
                      (b) 0 \text{ m/s}
152) (a) 0.67 m/s
                       (b) 1.3 \text{ m/s}
153) 3.0 m/s
```

154) B

155) A

156) B

157) (a) -x (b) +x (c) 1.5 m/s^2 (d) 1.0 s

158) (a) 10 m/s (b) 20 m/s (c) 0 m/s (d) -40 m/s

159) (a) 10 m/s (b) 0 m/s

160) (a) 10 m/s^2 (b) 0 m/s^2

161) (a) 2.0 m/s^2 (b) -2.5 m/s^2