Test Bank for Precalculus Concepts Through Functions A 032193094105789321981047 Trigonometry 3rd Edition Sullivan

Full link download: Test Bank:

https://testbankpack.com/p/test-bank-for-precalculus-concepts-through-functions-a-unit-circle-approach-to-trigonometry-3rd-edition-sullivan-0321931041-9780321931047/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-precalculus-concepts-through-functions-a-unitcircle-approach-to-trigonometry-3rd-edition-sullivan-0321931041-9780321931047/

Ch. 2 Linear and Quadratic Functions

2.1 Properties of Linear Functions and Linear Models

1 Graph Linear Functions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Determine the slope and y-intercept of the function.

1) $f(x) = 6x - 9$	-		
A) $m = 6; b = -9$	B) m = 6; b = 9	C) m = -6; b = -9	D) m = -6; b = 9
2) $h(x) = -8x + 10$ A) $m = -8; b = 10$ 10	B) m = 8; b = -10	C) m = 8; b = 10	D) m = -8; b = -
3) $p(x) = -x + 5$ A) $m = -1; b = 5$ 4) $f(x) = -\frac{9}{7}x + 3$	B) m =1; b = - 5	C) m = -1; b = -5	D) m = 0; b = 5
9	9	7	9
A) m = $-\frac{1}{7}$; b = 3 3	B) m = 3; b =7	C) $m = -9; b = -3$	D) m = ₇ ; b = -
5) $F(x) = 1$			

A) m = 0; b = 1B) m = 1; b = 0C) m = 0; b = 0D) m = 1; b = 1

6) $G(x) = 5x$			
A) $m = 5; b = 0$	B) m = -5; b = 0	C) m $= \frac{1}{5}$; b = 0	D) $m = 0; b = 5$
		5	
7) $F(x) = -\frac{1}{5}x$			
A) m = $-\frac{1}{5}$; b = 0	B) $m = -5; b = 0$	C) m $= \frac{1}{5}$; b = 0	D) m = 0; b = $\frac{1}{2}$

5

Use the slope and y-intercept to graph the linear function.

Determine whether the given function is linear or nonlinear. 16)

х	y = f(x)
4	24
6	36
8	48
10	60
Α) linear

B) nonlinear

2 Use Average Rate of Change to Identify Linear Functions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Determine the average rate of change for the function. 1) f(x) = 5x - 4

1) $f(x) = 5x - 4$ A) 5	B) 4	C) - 4	D) -5
2) $h(x) = -7x + 6$ A) -7	B) 7	C) 6	D) -6
3) $p(x) = -x - 6$ A) -1	B) 1	C) 6	D) -6
4) F(x) = -8 A) 0	B) $-\frac{1}{8}$	C) 8	D) -8
5) $f(x) = \frac{3}{4}x + \frac{2}{4}A)\frac{3}{4}$	B) - <u>3</u> 4	C) 2	D) - 2
6) h(x) = $-\frac{3}{5}x + \frac{1}{5}$ A) $-\frac{3}{5}$	B) $\frac{3}{5}$	C) 1	D) - 1

3 Determine Whether a Linear Function is Increasing, Decreasing, or Constant

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Graph the function. State whether it is increasing, decreasing, or constant..

8 X

8 x

8 x

δ x

4 Find the Zero of a Linear Function

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Find the zero of the 1) $f(x) = x + 2$	linear function.		
A) -2	B) 2	C) 0	D) 4
2) $g(x) = -x + 3$ A) 3	B) -3	C) 0	D) -6
3) $h(x) = 14 - x$ A) 14	B) -14	C) 1	D) -28

4) $f(x) = 6x + 12$ A) -2	B) 2	C) 0	D) 12
5) $g(x) = 2x - 6$ A) 3	B) -3	C) 0	D) -6
6) $h(x) = -3x + 4$ A) $\frac{4}{3}$	B) $-\frac{5}{4}$	C) 1	D) -1
7) $F(x) = \frac{1}{9}x - 4$	4		
A) 36	B) $\frac{4}{9}$	C) - <u>4</u> 9	D) -36
8) $G(x) = -\frac{1}{2}x - 3$			
A) -6	B) $\frac{3}{2}$	C) $-\frac{3}{2}$	D) 6
Solve the problem. 9) Suppose that $f(x) = -x$ 14. (a) Solve $f(x) = 0$. (b) Solve $g(x) = 0$. (c) Solve $f(x) = g(x)$. A) (a) $x = -9$; (b) $x = 1$ C) (a) $x = 9$; (b) $x = 1$	- 9 and g(x) = x - : 14; (c) x = 2.5 14; (c) x = 2.5	B) (a) x = -9; (b) x D) (a) x = -9; (b) x	= 14; (c) x = -11.5 = -14; (c) x = 2.5
 10) Suppose that f(x) = -x 14. (a) Solve f(x) > 0. (b) Solve g(x) > 0. (c) Solve f(x) ≤ g(x). 	- 1 and g(x) = x -		
A) (a) x < -1; (b) x > C) (a) x > 1; (b) x > 1	14; (c) $x \ge 6.5$ 14; (c) $x > 6.5$	B) (a) x < -1; (b) x D) (a) x < -1; (b) x	< 14; (c) x ≥ -7.5 < -14; (c) x ≤ 6.5

11) Let f(x) be the function represented by the dashed line and g(x) be the function represented by the solid line.

Copyright © 2015 Pearson Education, Inc.

12) Let f(x) be the function represented by the dashed line and g(x) be the function represented by the solid line.

13) Let f(x) be the function represented by the dashed line and g(x) be the function represented by the solid line.

5 Build Linear Models from Verbal Descriptions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Solve the problem.

1) A truck rental company rents a moving truck one day by charging \$31 plus \$0.09 per mile. Write a linear equation that relates the cost C, in dollars, of renting the truck to the number x of miles driven. What is the cost of renting the truck if the truck is driven 130 miles?

A) $C(x) = 0.09x + 31;$ \$42.70	B) $C(x) = 31x + 0.09$; \$4030.09
C) $C(x) = 0.09x + 31; 32.17	D) $C(x) = 0.09x - 31; -$19.30$

- 2) Linda needs to have her car towed. Little Town Auto charges a flat fee of \$85 plus \$2 per mile towed. Write a function expressing Linda's towing cost, c, in terms of miles towed, x. Find the cost of having a car towed 7 miles.
 - A) c(x) = 2x + 85; \$99 B) c(x) = 2x; \$14 C) c(x) = 2x + 85; \$89 D) c(x) = 2x; \$87

3) To convert a temperature from degrees Celsius to degrees Fahrenheit, you multiply the temperature in degrees

Celsius by 1.8 and then add 32 to the result. Express F as a linear function of c.

A)
$$F(c) = 1.8c + 32$$

B) $F(c) = 1.8 + 32c$
C) $F(c) = 33.8c$
D) $F(c) = \frac{c}{1.8}$

4) If an object is dropped off of a tower, the velocity, V, of the object after t seconds can be obtained by multiplying t by 32 and adding 10 to the result. Express V as a linear function of t.

A) V(t) = 32t + 10 B) V(t) = 32 + 10t C) V(t) = 42t D) $V(t) = \frac{t - 10}{32}$

5) If an object is dropped from a tower, then the velocity, V (in feet per second), of the object after t seconds can

be obtained by multiplying t by 32 and adding 10 to the result. Find V as a linear function of t, and use this function to evaluate V(3.5), the velocity of the object at time t = 3.5 seconds.

A) $V(3.5) = 122$ feet per second	B) V(3.5) = 123.3 feet per second
C) $V(3.5) = 121.3$ feet per second	D) $V(3.5) = 120$ feet per second

6) The cost for labor associated with fixing a washing machine is computed as follows: There is a fixed charge of

\$25 for the repairman to come to the house, to which a charge of \$20 per hour is added. Find an equation that can be used to determine the labor cost, C(x), of a repair that takes x hours.

A)
$$C(x) = 25 + 20x$$
 B) $C(x) = 20 + 25x$ C) $C(x) = (25 + 20)x$ D) $C(x) = 25 - 20x$

7) In a certain city, the cost of a taxi ride is computed as follows: There is a fixed charge of \$2.20 as soon as you get in the taxi, to which a charge of \$1.85 per mile is added. Find an equation that can be used to determine the

cost, C(x), of an x-mile taxi ride.

A) C(x) = 2.20 + 1.85x B) C(x) = 1.85 + 2.20x C) C(x) = 4.05x D) C(x) = 2.55x

8) In a certain city, the cost of a taxi ride is computed as follows: There is a fixed charge of \$2.70 as soon as you get in the taxi, to which a charge of \$2.45 per mile is added. Find an equation that can be used to determine the

```
cost, C(x), of an x-mile taxi ride, and use this equation to find the cost of a 7-mile taxi ride.A) $19.85B) $20.03C) $19.73D) $20.75
```

9) Marty's Tee Shirt & Jacket Company is to produce a new line of jackets with an embroidery of a Great Pyrenees dog on the front. There are fixed costs of \$560 to set up for production, and variable costs of \$35 per jacket. Write an equation that can be used to determine the total cost, C(x), encountered by Marty's Company in producing x jackets.

A)
$$C(x) = 560 + 35x$$
 B) $C(x) = 560x + 35$ C) $C(x) = (560 + 35)x$ D) $C(x) = 560 - 35x$

- 10) Marty's Tee Shirt & Jacket Company is to produce a new line of jackets with a embroidery of a Great Pyrenees dog on the front. There are fixed costs of \$530 to set up for production, and variable costs of \$40 per jacket. Write an equation that can be used to determine the total cost, C(x), encountered by Marty's Company in producing x jackets, and use the equation to find the total cost of producing 79 jackets. A) \$3690 B) \$3702 C) \$3670 D) \$3682
- 11) Suppose that the quantity supplied S and quantity demanded D of baseball caps at a major league game are given by the functions S(p) = 4180 70p and D(p) = 120p, where p is the price. Find the equilibrium price for caps at the game. Then find the equilibrium quantity.

12) Regrind, Inc. regrinds used typewriter platens. The variable cost per platen is \$1.30. The total cost to regrind 50 platens is \$500. Find the linear cost function to regrind platens. If reground platens sell for \$9.50 each, how many must be reground and sold to break even?

	2	0	
A) $C(x)$	= 1.30x + 4	35; 53 platens	B) C

C) C(x) = 1.30x + 500; 47 platens

B) C(x) = 1.30x + 500; 61 platens D) C(x) = 1.30x + 435; 41 platens 13) Northwest Molded molds plastic handles which cost \$0.80 per handle to mold. The fixed cost to run the molding machine is \$3816 per week. If the company sells the handles for \$3.80 each, how many handles must be molded and sold weekly to break even?

A) 1272 handles B) 848 handles C) 4770 handles D) 829 handles

14) A lumber yard has fixed costs of \$4020.50 per day and variable costs of \$0.84 per board-foot produced. Lumber sells for \$2.54 per board-foot. How many board-feet must be produced and sold daily to break even?

A) 2365 board-feet B) 1576 board-feet C) 4786 board-feet D) 1189 board-feet

2.2 Building Linear Models from Data

1 Draw and Interpret Scatter Diagrams

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

Plot and interpret the appropriate scatter diagram.

3) The table gives the times spent watching TV and the grades of several students.

Weekly TV	6	12	18	24	30	36
Grade (%)	92.5	87.5	72.5	77.5	62.5	57.5

Which scatter diagram describes the data and the relationship, if any?

A) Effect of TV-Watching on Grades 100 Grade (%) 50 +++++++++ 12 6 Weekly TV (h) More hours spent watching TV may reduce grades. B) Effect of TV-Watching on Grades 100 **.** . Grade (%) 50 \rightarrow 30 18 24 36 12 Weekly TV (h) More hours spent watching TV may increase grades. C) Effect of TV-Watching on Grades 100 Grade (%) 50 6 12 18 24 30 36 18 24 12 Weekly TV (h)

More hours spent watching TV may reduce grades. D) none of these

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

4) The table shows the study times and test scores for a number of students. Draw a scatter plot of score versus time treating time as the independent variable.

Study Time	9	16	21	26	33	36	40	47
Test Score	59	61	64	65	73	74	78	78
1								
$\mathbf{+}$ · · · · ·	•	•	•		•	•	•	
+ · · · · ·		•	•		•	•	•	
\mathbf{I} · · · · ·	•				•			
\mathbf{I} · · · · ·		•					•	
\downarrow · · · · ·								
\bot · · · · ·								
L								
\leq + + + + + + + + + + + + + + + + + + +	-+-			+ +	-+		-+>	

5) The one-day temperatures for 12 world cities along with their latitudes are shown in the table below. Make a scatter diagram for the data. Describe what happens to the one-day temperatures as the latitude increases.

City	Temperature	Latitude
Oslo, Norway	30°	59°
Seattle, WA	57°	47°
Anchorage, AK	40°	61°
Paris, France	61°	48°
Vancouver,	54°	49°
London, England	48°	51°
Tokyo, Japan	55°	35°
Cairo, Egypt	82°	30°
Mexico City,	84°	19°
Miami, FL	81°	25°
New Delhi, India	95°	28°
Manila, Philippines	93°	14°

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

6) The following scatter diagram shows heights (in inches) of children and their ages.

What happens to height as age increases?

A) Height increases as age increases.C) Height stays the same as age increases.

related.

B) Height decreases as age increases.

- D) Height and age do not appear to be
- 7) The following scatter diagram shows heights (in inches) of children and their ages.

8) The following scatter diagram shows heights (in inches) of children and their ages.

2 Distinguish between Linear and Nonlinear Relations

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Determine if the type of relation is linear, nonlinear, or none.

7) Identify the scatter diagram of the relation that appears linear.

3 Use a Graphing Utility to Find the Line of Best Fit

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Use a graphing utility to find the equation of the line of best fit. Round to two decimal places, $\frac{x | 2 | 4 | 5 | 6}{16 | 100 | 1$

A)
$$y = 3x$$
B) $y = 2.8x + 0.15$ C) $y = 2.8x$ D) $y = 3x + 0.15$ 2) $\frac{x}{y} \begin{vmatrix} 6 & 8 & 20 & 28 & 36 \\ \hline y & 2 & 4 & 13 & 20 & 30 \\ A) y = 0.90x - 3.79$ B) $y = 0.95x - 2.79$ C) $y = 0.80x - 3.79$ D) $y = 0.85x - 2.79$ 3) $\frac{x}{y} \begin{vmatrix} 1 & 3 & 5 & 7 & 9 \\ \hline y & 143 & 116 & 100 & 98 & 90 \\ A) y = -6.2x + 140.4$ B) $y = 6.2x - 140.4$ C) $y = -6.8x + 150.7$ D) $y = 6.8x - 150.7$

4)

x	1	2	3	4	5	6			
y	17	20	19	22	21	24			
A) $y = 1.17x + 16.4$ 16.4					.4		B) $y = 1.03x + 18.9$	C) $y = 1.17x + 18.9$	D) $y = 1.03x +$

13) Ten students in a graduate program were randomly selected. Their grade point averages (GPAs) when they

entered the program were between 3.5 and 4.0. The following data were obtained regarding their GPAs on entering the program versus their current GPAs.

Entering GPA	Current GPA		
3.5	3.6		
3.8	3.7		
3.6	3.9		
3.6	3.6		
3.5	3.9		
3.9	3.8		
4.0	3.7		
3.9	3.9		
3.5	3.8		
3.7	4.0		
A) $y = 0.03x + 3.67$	B) $y = 0.02x + 4.91$	C) $y = 0.50x + 5.81$	D) $y = 0.33x +$

14) Two different tests are designed to measure employee productivity and dexterity. Several employees are randomly selected and tested with these results.

Page 35

15) Managers rate employees according to job performance and attitude. The results for several randomly selected employees are given below.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the

question. Solve the problem.

16) The one-day temperatures for 12 world cities along with their latitudes are shown in the table below. Make a scatter diagram for the data. Then find the line of best fit and graph it on the scatter diagram.

City	Temperature	Latitude
Oslo, Norway	30°	59°
Seattle, WA	57°	47°
Anchorage, AK	40°	61°
Paris, France	61°	48°
Vancouver,	54°	49°
London, England	48°	51°
Tokyo, Japan	55°	35°
Cairo, Egypt	82°	30°
Mexico City,	84°	19°
Miami, FL	81°	25°
New Delhi, India	95°	28°
Manila, Philippines	93°	14°
		•

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

17) A drug company establishes that the most effective dose of a new drug relates to body weight as shown below.

Let body weight be the independent variable and drug dosage be the dependent variable. Use a graphing utility to draw a scatter diagram and to find the line of best fit. What is the most effective dosage for a person weighing 130 lbs?

Body	Drug			
Weight ((lbs) Dosage ((mg)		
50	10			
100	12			
150	14			
200	18			
250	22			
A) 14 mg		B) 22.26 mg	C) 13 mg	D) 12.07 mg

18) A marina owner wishes to estimate a linear function that relates boat length in feet and its draft (depth of boat below water line) in feet. He collects the following data. Let boat length represent the independent variable and draft represent the dependent variable. Use a graphing utility to draw a scatter diagram and to find the line of best fit. What is the draft for a boat 60 ft in length (to the nearest tenth)?

Boat Length	Draft (ft)			
25	2.5			
25	2			
30	3			
30	3.5			
45	6			
45	7			
50	7			
50	8			
A) 9.7	B)	15.7	C) 10.5	D) 10.3

19) A survey of the interest rates earned by Certificates of Deposit (CDs) showed the following percents for the length of time (in years) for holding the CD. Let length of time represent the independent variable and interest rate represent the dependent variable. Use a graphing utility to draw a scatter diagram and to find the line of best fit. What is the estimate of the interest rate for a CD held for 30 years (to the nearest thousandth)?

CD Maturity	Interest rate		
5	8.458		
10	8.470		
15	8.496		
20	8.580		
25	8.625		
A) 8.669	B) 8.675	C) 9.064	D) 8.874

20) Super Sally, a truly amazing individual, picks up a rock and throws it as hard as she can. The table below displays the relationship between the rock's horizontal distance, d (in feet) from Sally and the initial speed with which she throws.

Initial speed(in ft/sec), v	10	15	20	25	30
Horizontal distance of the rock (in feet),	9.9	14.8	19.1	24.5	28.2

Assume that the horizontal distance travelled varies linearly with the speed with which the rock is thrown. Using a graphing utility, find the line of best fit, and estimate, rounded to two decimal places, the horizontal distance of the rock if the initial speed is 33 ft/sec. A) 31.34 feet B) 26.67 feet C) 34.76 feet D) 31.33 feet

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

21) The following data represents the amount of money Tom is saving each month since he graduated from college.

 month
 1
 2
 3
 4
 5
 6
 7

 savings
 \$52
 \$70
 \$81
 \$91
 \$102
 \$118

Using the line of best fit for the data set, predict the amount he will save in the 24th month after graduating from college.

22) The following data represents the amount of money Tom is saving each month since he graduated from college.

 month
 1
 2
 3
 4
 5
 6
 7

 savings
 \$52
 \$70
 \$81
 \$91
 \$102
 \$118

Find the slope of the line of best fit for the data set and interpret it.

23) The following data represents the Olympic winning time in Women's 100 m Freestyle.

year 1972 1976 1980 1984 1988 1992 time 58.59 55.65 54.79 55.92 54.93 54.65

Using the line of best fit (with slope correct to 5 decimal places) for the data set, predict the Olympic winning time in 2000.

24) The following data represents the Olympic winning time in Women's 100 m Freestyle.

year 1972 1976 1980 1984 1988 1992 time 58.59 55.65 54.79 55.92 54.93 54.65

Find the slope of the line of best fit for the data set and interpret it.

25) The following data represents the number of employees at a company at the start of each year since the company began.

 month
 1
 2
 3
 4
 5
 6
 7

 number
 3
 172
 403
 571
 823
 1061

Using the line of best fit for the data set, predict the number of employees at the start of the 10th year.

26) The following data represents the number of employees at a company at the start of each year since the company began.

 month
 1
 2
 3
 4
 5
 6
 7

 number
 3
 172
 403
 571
 823
 1061

Find the slope of the line of best fit for the data set and interpret it.

2.3 Quadratic Functions and Their Zeros

1 Find the Zeros of a Quadratic Function by Factoring

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Use factoring to find the zeros of the quadratic function. List the x-intercepts of the graph of

the function.

1) $f(x) = x^2 + 5x - 50$ A) $x = -10, x = 5$ 5	B) $x = 10, x = 5$	C) $x = -10, x = 1$	D) x = 10, x = -
2) $g(x) = x^2 + 2x - 48$ A) $x = -8, x = 6$ 0	B) $x = 8, x = -6$	C) $x = 8, x = 6$	D) x = -48, x =
3) $F(x) = x^2 - x - 6$ A) $x = -2, x = 3$	B) x = 2, x = 3	C) x = 1, x = 6	D) x = -2, x = - 3
4) $h(x) = x^2 + 6x - 16$ A) $x = -8, x = 2$	B) x = 8, x = 2	C) x = -8, x = 1	D) x = 8, x = -2
5) $f(x) = x^2 - 8x - 20$ A) $x = 10, x = -2$ 2	B) x = 10, x = 2	C) $x = -10, x = 1$	D) x = -10, x =
6) $G(x) = x^2 + 4x$ A) $x = 0, x = -4$	B) $x = 0, x = 4$	C) x = -4	D) x = 4
7) $f(x) = 2x^2 - 5x - 7$ A) $x = \frac{7}{2}, x = -1$ $\frac{2}{2}, x = 0$	B) x = ² , x = -1 7	C) $x = \frac{2}{7}, x = 1$	D) x = 7
8) $g(x) = 81x^2 - 1$ A) $x = \frac{1}{2}, x = -\frac{1}{2}$	B) x = <u>1</u>	C) x = - <u>1</u>	D) $x = \frac{1}{2}, x = 0$
9 9	9	9	9
9) $F(x) = 3x^2 + 11x - 4$ A) $x = \frac{1}{2}, x = -4$ x = 4 ₃	B) $x = \frac{1}{3}, x = 4$	C) $x = -\frac{1}{2}, x = -4$	D) x =- ¹ , 3

10) $h(x) = 7x^2 - 21x$ Page 39

A) $x = 0, x = 3$	B) x = 3	C) $x = 7, x = 3$	D) $x = 0$
-------------------	----------	-------------------	------------

11) $f(x) = x^2 - 16$			
A) $x = -4, x = 4$	B) $x = -256, x = 256$	C) $x = 4$	D) x = -4

2 Find the Zeros of a Quadratic Function Using the Square Root Method

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the zeros of the quadratic function using the Square Root Method. List the x -intercepts of the graph of the function.

1) $f(x) = x^2 - 4$ A) x = -2, x = 2B) x = -16, x = 16C) x = 2D) x = -22) $F(x) = x^2 - 11$ A) $x = \sqrt{11}, x = \sqrt{11}$ B) x = -11, x = 11C) x = 11 D) x = 113) $g(x) = (x - 7)^2 - 25$ A) x = 2, x = 12B) x = 32C) x = -5, x = 5D) x = -12, x =4) $h(x) = (x + 3)^2 - 9$ A) x = -6, x = 0B) x = 0C) x = -3, x = 3D) x = -65) $G(x) = (2x - 5)^2 - 81$ A) x = -2, x = 7B) x = -7, x = 2C) x = -4, x = 14D) x = -14, x = 4

3 Find the Zeros of a Quadratic Function by Completing the Square

1) $f(x) = x^2 - 14x + 45$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the zeros of the quadratic function by completing the square. List the x-intercepts of the graph of the function.

A) $x = 9, x = 5$	B) $x = -9, x = -5$	C) x =√2, x = −1	D) $x = 40, x = 5$
2) $g(x) = 6x^2 + 3x - 3$ A) $x = \frac{1}{2}, x = -1$	B) x = 2, x = -1	C) x = 2, x = 1	D) $x = 2, x = 0$
3) $F(x) = x^2 + 14x + 13$ A) $x = -1$, $x = -13$	B) x = 1, x = 13	C) x ≖√13, x ≖√-13	D) x = 26, x = -13
4) $f(x) = x^2 - \frac{1}{5}x - \frac{2}{25}$ A) $x = \frac{2}{5}, x = -\frac{1}{5}$	B) $x = \frac{2}{-5}, x = \frac{1}{-5}$	C) $x = \frac{2}{5}, x = \frac{1}{5}$	D) $x = -\frac{2}{5}, x = \frac{1}{5}$
5) $g(x) = 36x^2 + 48x +$ 7 A) $x = -\frac{1}{7}, x = -\frac{1}{7}$	B) $x = -\frac{1}{2}, x = -\frac{7}{2}$	C) $x = \frac{1}{2}, x = \frac{1}{2}$	D) $x = -\frac{7}{2}, x = \frac{7}{2}$
6 6	36 36	6 6	18 18
6) $f(x) = 4x^2 + 28x + 13$ A) $x = -\frac{1}{2}, x = -\frac{1}{2}$	B) $x = -\frac{1}{2}, x = -\frac{1}{2}$	C) $x = \frac{1}{13}$, $x = \frac{1}{13}$	D) $x = -\frac{13}{2}, x = \frac{13}{2}$
2 2	4 4	2 2	2 2

4 Find the Zeros of a Quadratic Function Using the Quadratic Formula

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the real zeros, if any, of each quadratic function using the quadratic formula. List the x -intercepts, if any, of the graph of the function.

1) $f(x) = 7x^2 - 45x - 28$ A) $x = -\frac{4}{7}, x = 7$	B) $x = \frac{4}{7}, x = -7$	C) $x = -4, x = 7$	D) $x = \frac{8}{7}, x = 14$
2) $g(x) = x^{2} - 19 - 3x$ A) $x = \frac{3\sqrt{2}}{2}$ C) $x = \frac{3\sqrt{2}}{2}$ 2		B) x = 3, x = 19 D) No real zeros or x-in	tercepts
3) $G(x) = x^2 + 5x - 14$ A) $x = -7, x = 2$	B) x = 7, x = 2	C) x = 7, x = -2	D) x = -7, x = -2
4) $H(x) = 3x^2 - 20x - 7$ A) $x = -\frac{1}{2}, x = 7$ -3 3	B) x = -3, x = 7	C) $x = -\frac{1}{2}, x = 3$	D) $x = -\frac{1}{7}, x = 7$
5) $F(x) = 3x^2 - 7x - 1$ A) $x = \frac{7 \pm \sqrt{61}}{6}$ C) $x = \frac{-7 \pm \sqrt{61}}{6}$		B) $x = \frac{7 + \sqrt{61}}{6}$ D) No real zeros or x-in	tercepts
6) $h(x) = x^2 - 6x + 13$ A) $x = -3, x = 2$ C) $x = 5, x = 1$		B) x = 6 , x = -4 D) No real zeros or x-ir	ntercepts

5 Find the Point of Intersection of Two Functions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve f(x) = g(x). Find the points of intersection of the graphs of the two functions.

1) f(x) = 4x + 5 $g(x) = x^2$ A) x = -1, x = 5B) x = 1, x = 5C) $x = -1, x = \frac{1}{5}$ D) $x = 1, x = -\frac{1}{5}$

```
2) f(x) = x^2 - 11x + 24

g(x) = 2x^2 - 12x + 18
```

Page 42

Copyright © 2015 Pearson Education, Inc.

A)
$$x = 3, x = -2$$

B) $x = \frac{1}{3}, x = -2$
B) $x = -\frac{10}{3}, x = -2$
D) $x = -\frac{10}{3}, x = \frac{10}{2}$
2 2 2 2 2

3)
$$f(x) = 8x^{2}$$

 $g(x) = -5x$
A) $x = -\frac{5}{8}, x = 0$
B) $x = \pm \frac{5}{8}$
C) $x = 0$
D) $x = \frac{5}{8}, x = 0$
4) $f(x) = x^{2} + 7x + 29$
 $g(x) = 29$
A) $x = -7, x = 0$
B) $x = 0, x = 7$
C) $x = \frac{\sqrt{\pm}}{2}$
D) no real numbers

6 Solve Equations That Are Quadratic in Form

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Find the real zeros of the function. List the x-intercepts of the graph of the function.

1) $f(x) = x^4 - 81$ A) $x = -3, x = 3$	B) $x = -9, x = 9$	C) x = √3, x ≠√3	D) no real solution
2) $F(x) = x^4 - 37x^2 + 36$ A) $x = -1, x = 1, x = -6, x = 6$ C) $x = -36, x = 36$	ó	B) x = -6, x = 6 D) x = -37, x = 37	
3) $G(x) = x^4 - 9x^2 - 112$ A) $x = -4, x = 4$ 4) $h(x) = 2x^4 - 155x^2 - 567$ A) $x = -9, x = 9$	B) x = √7, x =√7	C) $x = -16, x = 7$ B) $x = \frac{\sqrt{14}}{2}, x = \frac{\sqrt{14}}{2}, x = \frac{\sqrt{14}}{2}$	D) no real solution −9, x = 9
C) x = 9		D) no real solution	
5) $H(x) = x^6 + 7x^3 - 8$ A) $x = -2, x = 1$	B) x = 8	C) x = 2	D) x = 2, x = -1
6) $f(x) = 4(x + 1)^2 + 14(x + 1) + 6$ A) $x = -\frac{3}{2}$, $x = -4$	B) $x = \frac{1}{4}, x = 2$	C) $x = \frac{1}{2}, x = -4$	D) $x = \frac{3}{8}, x = -3$
7) $P(x) = (3x + 2)^2 - 10(3x + 2) +$ 21 A) $x = \frac{5}{2}, x = \frac{1}{2}$	B) $x = -\frac{5}{2}, x = -\frac{1}{2}$	C) $x = \frac{9}{2}, x = -\frac{9}{2}$	D) $x = -\frac{9}{2}, x = \frac{5}{2}$
3 3	3 3	3 3	2 3
8) $Q(x) = (-5x+7)^2 - 4(-5x+7) - \frac{1}{11}$ A) $x = -\frac{1}{5}, x = \frac{1}{5}$	$\begin{array}{c} -32 \\ B) x = \frac{1}{5}, x = -\frac{11}{5} \end{array}$	C) x = 8, x = -4	D) $x = -3, x = -\frac{3}{5}$

Solve the problem.

9) The length of a vegetable garden is 5 feet longer than its width. If the area of the garden is 50 square feet, find

Page 44

its dimensions.			
A) 5 ft by 10 ft	B) 4 ft by 11 ft	C) 6 ft by 11 ft	D) 4 ft by 9
	ft		•

10) An open box is to be constructed from a square sheet of plastic by removing a square of side 2 inches from each corner, and then turning up the sides. If the box must have a volume of 242 cubic inches, find the length of one side of the open box					
A) 11 in.	B) 13 in.	C) 15 in.	D) 10 in.		
11) A ball is thrown vert	ically upward from the top of	a building 128 feet tall wi	th an initial velocity of 112		
feet per second. The distance s (in feet) of the ball from the ground after t seconds is $s = 128 + 112t - 16t^2$. After how many seconds will the ball pass the top of the building on its way down?					
A) 7 sec	B) 128 sec	C) 6 sec	D) 9 sec		
12) As part of a physics	experiment, Ming drops a bas	eball from the top of a 345	-foot building. To the nearest		
tenth of a second, for	how many seconds will the b	aseball fall? (Hint: Use the	e formula $h = 16t^2$, which gives		
the distance h, in fee	t, that a free-falling object trav	vels in t seconds.)			
A) 4.6 sec	B) 86.3 sec	C) 21.6 sec	D) 1.2		
sec					
13) If a polygon, of n sid	des has ¹ n(n - 3) diagonals, h	ow many sides will a poly	gon with 779 diagonals		
	have	2			

	2	naves	
A) 41 sides	B) 42 sides	C) 40 sides	D) 43 sides

2.4 Properties of Quadratic Functions

1 Graph a Quadratic Function Using Transformations

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Match the graph to one of the listed functions.

A)
$$f(x) = -x^2 + 8x$$

B) $f(x) = x^2 + 8x$

C)
$$f(x) = -x^2 + 8$$
 D) $f(x) = x^2 + 8$

3)

4)

Graph the function f by starting with the graph of $y = x^2$ and using transformations (shifting, compressing, stretching, and/or reflection).

2 Identify the Vertex and Axis of Symmetry of a Quadratic Function

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Find the vertex and axis of symmetry of the graph of the function.

1)
$$f(x) = x^2 + 10x$$

A) (-5, -25); $x = -5$
B) (-25, 5); $x = -25$
C) (5, -25); $x = 5$
D) (25, -5); $x = -25$
C) (5, -25); $x = 5$
D) (25, -5); $x = -25$
A) (4, -16); $x = 4$
B) (-16, 4); $x = -16$
C) (-4, 16); $x = -4$
D) (16, -4); $x = -4$

Page 58³) $f(x) = -x^2 + 4x$

A) $(2, 4); x = 2$	B) (-4, 2); x = -4	C) (-2, -4); x = -2	D) $(4, -2); x = 4$
			, , ,

4)
$$f(x) = -x^2 - 8x$$

A) $(-4, 16); x = -4$
B) $(-16, 4); x = -16$
C) $(4, -16); x = 4$
D) $(16, -4); x = -5$
S) $f(x) = 4x^2 - 40x$
A) $(5, -100); x = 5$
B) $(-5, -100); x = -5$
C) $(5, 0); x = 5$
D) $(-5, 0); x = -5$
C) $(-5, 0); x = -5$
D) $(-5, 0); x = -5$
C) $(-5, 0); x = -5$
D) $(-2, 9); x = -2$
D) $(-2, 9); x = -2$
D) $(-2, 9); x = -2$
D) $(-4, -21); x = -8$
S) $f(x) = -4x^2 + 8x - 2$
A) $(1, 2); x = 1$
B) $(-1, -14); x = -1$
C) $(2, -10); x = 2$
D) $(-2, -34); x = -9$
S) $f(x) = x^2 - 3x + 6$
A) $\left(\frac{3}{2}, \frac{15}{4}\right; x = \frac{3}{2}$
B) $\left(-\frac{3}{2}, \frac{51}{4}\right; x = -\frac{3}{2}$
C) $(5, 6); x = 5$
D) $(-3, 24); x = -9$

10)
$$f(x) = -2x^2 - 2x - 4$$

A) $\begin{pmatrix} 1 & 7 \\ -\frac{7}{2}, -\frac{7}{2} \end{pmatrix}$; $x = -\frac{1}{2}$ B) (2, -4); $x = 2$ $\begin{pmatrix} \frac{1}{2}, \frac{7}{2} \end{pmatrix}$; $x = \frac{1}{2}$ D) -2, - $\frac{7}{2}$; $x = -2$
C)

3 Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Graph the function using its vertex, axis of symmetry, and intercepts.

Determine the domain and the range of the function. 10) $f(x) = x^2 + 8x$ A) domain: all real numbers range: $\{y \mid y \geq -$ 16 C) domain: $\{x \mid x \in X$ ≥4} range: $\{y \mid y \ge 16\}$ 11) $f(x) = -x^2 + 12x$ A) domain: all real numbers range: $\{y \mid y \le 36\}$ C) domain: $\{x \mid x \leq -$ 6} range: $\{y \mid y \le 36\}$ 12) $f(x) = x^2 - 8x + 16$ A) domain: all real numbers range: $\{y \mid y \ge 0\}$ C) domain: $\{x \mid x \ge -4\}$ range: $\{y \mid y \ge 0\}$ 13) $f(x) = x^2 + 2x - 8$ A) domain: all real numbers range: $\{y \mid y \ge -9\}$ C) domain: range: $\{x \mid x \ge x\}$ 1} range: $\{y \mid y \ge 9\}$ 14) $f(x) = -x^2 - 4x - 3$ A) domain: all real numbers range: $\{y \mid y \le 1\}$ C) domain: $\{x \mid x \leq -2\}$ range: $\{y \mid y \leq -1\}$ 15) $f(x) = x^2 - 4x - 5$ A) domain: all real numbers range: $\{y | y \ge -9\}$ C) domain: all real numbers range: $\{y | y \le 9\}$ 16) $f(x) = -x^2 + 6x - 5$ A) domain: all real numbers range: $\{y \mid y \le 4\}$

B) domain: $\{x | x \ge -4\}$ range: $\{y | y \ge -16\}$ D) domain: all real numbers range: $\{y | y \ge 16\}$

B) domain: {x | x ≤ 6} range: {y | y ≤ 36}
D) domain: all real numbers range: {y | y ≤ -36}

B) domain: {x | x ≥ 4} range: {y | y ≥ 0}
D) domain: all real numbers range: {y | y ≥ 16}

B) domain: range: $\{x | x \ge 1\}$ range: $\{y | y \ge -9\}$ D) domain: all real numbers range: $\{y | y \ge 9\}$

B) domain: {x | x ≤ -2} range: {y | y ≤ 1}
D) domain: all real numbers range: {y | y ≤ -1}

B) domain: {x | x ≥ -2} range: {y | y ≥ -9}
D) domain: all real numbers range: all real numbers

> C) domain: all real numbers range: $\{y | y \le -4\}$

B) domain: $\{x \mid x \le -3\}$ range: $\{y \mid y \le 4\}$

17)
$$f(x) = -2x^2 - 2x - 9$$

A) domain: all real
numbers $\begin{cases} | & \frac{17}{2} \\ range: y y \le -\frac{2}{2} \end{cases}$

C) domain: all real numbers range: $\left\{ y \mid y \ge \frac{17}{2} \right\}$ D) domain: all real numbers range: all real numbers

۱}

Determine where the function is increasing and where it is decreasing.

18) $f(x) = x^2 + 6x$ A) increasing on $(-3, \infty)$ decreasing on $(-\infty, -$ 3) C) increasing on $(-\infty, 3)$ decreasing on $(3, \infty)$ 19) $f(x) = -x^2 - 8x$ A) increasing on $(-\infty, -$ 4) decreasing on (-4, ∞) C) increasing on $(4, \infty)$ decreasing on $(-\infty,$ 4) 20) $f(x) = x^2 - 10x + 25$ A) increasing on $(5, \infty)$ decreasing on $(-\infty)$, 5) C) increasing on $(-\infty, -$ 5) decreasing on (-5, ∞) 21) $f(x) = x^2 + 6x + 5$ A) increasing on $(-3, \infty)$ decreasing on $(-\infty, -$ 3) C) increasing on $(-4, \infty)$ decreasing on $(-\infty, -$ 4) 22) $f(x) = -x^2 - 8x - 7$ A) increasing on $(-\infty, -$ 4) decreasing on (-4, ∞) C) increasing on $(-\infty)$, 9) decreasing on (9, ∞) 23) $f(x) = x^2 - 6x + 8$ A) increasing on $(3, \infty)$ decreasing on $(-\infty)$, 3) C) increasing on $(-\infty, -$ 1)

decreasing on (-1,

∞)

B) increasing on (-∞, -3) decreasing on (-3, ∞)
D) increasing on (3, ∞) decreasing on (-∞, 3)

B) increasing on (-4, ∞) decreasing on (-∞, -4)
D) increasing on (-∞, 4) decreasing on (4, ∞)

B) increasing on (-∞, 5)
decreasing on (5, ∞)
D) increasing on (-5, ∞)
decreasing on (-∞, -5)

B) increasing on (-∞, -3) decreasing on (-3, ∞)
D) increasing on (-∞, -4) decreasing on (-4, ∞)

B) increasing on (-4, ∞) decreasing on (-∞, -4)
D) increasing on (9, ∞) decreasing on (-∞, 9)

B) increasing on $(-\infty, 3)$ decreasing on $(3, \infty)$ D) increasing on $(-1, \infty)$ decreasing on $(-\infty, -1)$
24) $f(x) = -x^2 + 4x - 3$ A) increasing on $(-\infty, 2)$ decreasing on $(2, \infty)$ C) increasing on $(1, \infty)$ decreasing on $(-\infty, 1)$

25) $g(x) = 6x^2 + 36x + 18$ A) decreasing on $(-\infty, -3)$ increasing on $(-3, \infty)$ C) decreasing on $(-\infty, 3)$ increasing on $(3, \infty)$ B) increasing on (2, ∞) decreasing on (-∞, 2)
D) increasing on (-∞, 1) decreasing on (1, ∞)

B) increasing on $(-\infty, -18)$ decreasing on $(-18, \infty)$ D) increasing on $(-\infty, -3)$ decreasing on $(-3, \infty)$

4 Find a Quadratic Function Given its Vertex and One Other Point

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine the quadratic function whose graph is given.

A) $f(x) = 2x^2 + 4x + 3$	B) $f(x) = -2x^2 - 4x - 3$	C) $f(x) = 2x^2 - 8x + 3$	D) $f(x) = -2x^2 + 4x$
+ 3			

5 Find the Maximum or Minimum Value of a Quadratic Function

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine, without graphing, whether the given quadratic function has a maximum value or a minimum value and then find that value.

1)
$$f(x) = x^2 + 6$$

A) minimum; 6 B) minimum; 0 C) maximum; 0 D) maximum; 6
2) $f(x) = x^2 - 9$
A) minimum; -9 B) minimum; 0 C) maximum; -9 D) maximum; 0
3) $f(x) = x^2 - 2x - 3$
A) minimum; -4 B) maximum; -4 C) minimum; 1 D) maximum; 1
4) $f(x) = -x^2 + 3x - 8$
A) maximum; $\frac{23}{4}$ B) minimum; $\frac{-23}{4}$ C) minimum; $\frac{3}{2}$ D) maximum; $\frac{3}{2}$
5) $f(x) = 2x^2 + 2x - 8$
A) minimum; $\frac{17}{2}$ B) maximum; $\frac{-17}{2}$ C) minimum; $\frac{1}{2}$ D) maximum; $\frac{1}{-2}$
6) $f(x) = 4x^2 + 4x$
A) minimum; -1 B) maximum; -1 C) minimum; $\frac{1}{-2}$ D) maximum; $\frac{1}{-2}$
7) $f(x) = -2x^2 + 2x$
A) maximum; $\frac{1}{2}$ B) minimum; $\frac{1}{2}$ C) minimum; $-\frac{1}{2}$ D) maximum; $-\frac{1}{2}$
8) $f(x) = -11x^2 - 2x - 6$
A) maximum; $\frac{65}{-11}$ B) minimum; $\frac{65}{-11}$ C) $\frac{65}{-11}$ D) minimum; $\frac{65}{-11}$ D)

Solve the problem.

maximum;

9) The manufacturer of a CD player has found that the revenue R (in dollars) is $R(p) = -4p^2 + 1110p$, when the unit price is p dollars. If the manufacturer sets the price p to maximize revenue, what is the maximum revenue to the nearest whole dollar? A) \$77,006 D) \$616,050 B) \$154,013 C) \$308,025 10) The owner of a video store has determined that the cost C, in dollars, of operating the store is approximately given by $C(x) = 2x^2 - 28x + 770$, where x is the number of videos rented daily. Find the lowest cost to the nearest dollar. D) \$868 A) \$672 B) \$378 C) \$574

11

11) The price p and the quantity x sold of a certain product obey the demand

equation $p = -\frac{1}{x} + 160, 0 \le x \le 800.$

What quantity x maximizes revenue? What is the maximum revenue?

12) The price p and the quantity \rightarrow	sold of a certain product ob	bey the demand equation	
$p = -\frac{1}{2}x + 200,$	$0 \le x \le 400.$		
What price should the compar A) \$100	ny charge to maximize rever B) \$120	nue? C) \$150	D) \$50
13) The price p (in dollars) and th equation $x = -5p$	e quantity x sold of a certair + 120. $0 \le p \le 24$.	product obey the demand	
What quantity x maximizes re A) 60; \$720	evenue? What is the maximu B) 30; \$540	m revenue? C) 90; \$540	D) 120; \$720
14) The price p (in dollars) and the equation $p = -15x$. What price should the compared a) \$14	e quantity x sold of a certair + 420, $0 \le x \le 28$. ny charge to maximize rever B) \$16.8	product obey the demand nue?	D) \$7
τι) ψτι	b) \$10.0	C) \ \ 21	
15) The profit that the vendor matrix $P(x) = -0.002x^2 + 1.4x - 300$. Fin A) 350 pretzels	kes per day by selling x pret nd the number of pretzels th B) 700 pretzels	zels is given by the function at must be sold to maximize C) 0.7 pretzels	profit. D) -55 pretzels
16) The owner of a video store ha $P(x) = -x^2 + 70x + 55$, where x nearest dollar.	s determined that the profits is the number of videos rent	P of the store are approxim ed daily. Find the maximum	ately given by a profit to the
A) \$1280	B) \$1225	C) \$2505	D) \$2450
17) You have 84 feet of fencing to maximize the enclosed area.	enclose a rectangular regior	n. Find the dimensions of the	e rectangle that
A) 21 ft by 21 ft	B) 42 ft by 42 ft	C) 42 ft by 10.5 ft	D) 23 ft by 19 ft
18) A developer wants to enclose has	a rectangular grassy lot that	borders a city street for part	king. If the developer
268 feet of fencing and does n	ot fence the side along the st	reet, what is the largest area	that can be enclosed?
A) 8978 ft ²	B) 17,956 ft ²	C) 4489 ft ²	D) 13,467 ft ²
19) You have 256 feet of fencing t A) 4096 square feet	o enclose a rectangular regio B) 16,384 square feet	on. What is the maximum ar C) 65,536 square feet	ea? D) 4092 square feet
20) You have 92 feet of fencing to side along the river, find the le A) length: 46 feet, width: 23 C) length: 46 feet, width: 46	enclose a rectangular plot tl ength and width of the plot feet feet	nat borders on a river. If you that will maximize the area. B) length: 69 feet, width: 2 D) length: 23 feet, width: 2	do not fence the 3 feet 3 feet
21) A projectile is fired from a clif	f 200 feet above the water at	an inclination of 45° to the	horizontal, with a
muzzle velocity of 210 feet pe	r second. The height h of the	projectile above the water i	s given by $h(x) = -$
$\frac{32X^2}{2}$ + x + 200,			(210) ²
where x is the horizontal dista of the projectile.	nce of the projectile from th	e base of the cliff. Find the n	naximum height
A) 544.53 ft	B) 689.06 ft	C) 344.53 ft	D) 1233.59 ft

22) A projectile is fired from a cliff 300 feet above the water at an inclination of 45° to the horizontal, with a muzzle velocity of 250 feet per second. The height h of the projectile above the water is given by h(x) = - $\frac{32x^2}{2} + x + 300,$ $(250)^2$

where x is the horizontal distance of the projectile from the base of the cliff. How far from the base of the cliff is the height of the projectile a maximum? C) 488.28 ft D) 1764.84 ft

- B) 788.28 ft A) 976.56 ft
- 23) Consider the quadratic model $h(t) = -16t^2 + 40t + 50$ for the height (in feet), h, of an object t seconds after the object has been projected straight up into the air. Find the maximum height attained by the object. How much time does it take to fall back to the ground? Assume that it takes the same time for going up and coming down.

A) maximum height = 75 ft; time to reach ground = 2.5seconds B) maximum height = 75 ft; time to reach ground = 1.25 seconds C) maximum height = 50 ft; time to reach ground = 1.25 seconds D) maximum height = 50 ft; time to reach ground = 2.5 seconds

24) An object is propelled vertically upward from the top of a 272-foot building. The quadratic function

 $s(t) = -16t^2 + 96t + 272$ models the ball's height above the ground, s(t), in feet, t seconds after it was thrown. How many seconds does it take until the object finally hits the ground? Round to the nearest tenth of a second if necessary.

C) 3 seconds

D) 2 seconds

```
A) 8.1 seconds
```

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

B) 2.1 seconds

25) A suspension bridge has twin towers that are 1300 feet apart. Each tower extends 180 feet above the road surface. The cables are parabolic in shape and are suspended from the tops of the towers. The cables touch the road surface at the center of the bridge. Find the height of the cable at a point 200 feet from the center of the bridge.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

26) Alan is building a garden shaped like a rectangle with a semicircle attached to one short side. If he has 50 feet of fencing to go around it, what dimensions will give him the maximum area in the garden?

A) width = $\frac{100}{\pi + 4} \approx 14$, length = 7	B) width = $\frac{50}{\pi + 4} \approx 7$, length = 14
C) width = $\frac{100}{\pi + 8} \approx 9$, length = 13.5	D) width = $\frac{100}{\pi + 4} \approx 14$, length = 18

- 27) The quadratic function $f(x) = 0.0042x^2 0.42x + 36.05$ models the median, or average, age, y, at which U.S. men were first married x years after 1900. In which year was this average age at a minimum? (Round to the nearest
 - year.) What was the average age at first marriage for that year? (Round to the nearest tenth.) A) 1950, 25.6 years old B) 1950, 46.6 years old D) 1951, 36 years old C) 1936, 46.6 years old

2.5 Inequalities Involving Quadratic Functions

1 Solve Inequalities Involving a Quadratic Function

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Solve the inequality.

1) $x^2 - 3x - 28 \le 0$			
A) [-4, 7]	B) (-∞, -4]	C) [7, ∞)	D) $(-\infty, -4]$ or $[7, \infty)$

	2) $x^2 + 7x + 12 > 0$ A) $(-\infty, -4)$ or $(-3, \infty)$	B) (-4, -3)	C) (-∞, -4)	D) (-3, ∞)
	3) $x^2 - 3x \ge 0$ A) $(-\infty, 0]$ or $[3, \infty)$	B) [0, 3]	C) (-∞, -3] or [0, ∞)	D) [-3,0]
	4) $x^2 + 8x \ge 0$ A) $(-\infty, -8]$ or $[0, \infty)$	B) [0, 8]	C) (-∞, 0] or [8, ∞)	D) [-8,0]
	5) $x^2 + 2x \le 0$ A) $[-2, 0]$	B) [0, 2]	C) $(-\infty, -2]$ or $[0, \infty)$	D) (-∞, 0] or [2, ∞)
	6) $x^2 - 6x \le 0$ A) [0, 6]	B) [-6,0]	C) $(-\infty, -6]$ or $[0, \infty)$	D) (-∞, 0] or [6, ∞)
	7) $x^2 - 64 > 0$ A) $(-\infty, -8)$ or $(8, \infty)$	B) (-8, 8)	C) $(-\infty, -64)$ or $(64, \infty)$	D) (-64, 64)
	8) $x^2 - 81 \le 0$ A) $[-9, 9]$	B) (-∞, -9] or [9, ∞)	C) (-∞, -81] or [81, ∞)	D) [-81, 81]
	9) $x^2 - 3x \ge -2$ A) $(-\infty, 1]$ or $[2, \infty)$	B) [1, 2]	C) (-∞, 1]	D) [2, ∞)
	10) $3x^2 - 6 < -3x$ A) $(-2, 1)$	B)(1,2)	C)(-2,-))	D(- 1,)
	11) 64x ² + 49 < 112x A) No real solution	B) $-\infty\frac{7}{78}$	$C\left(-\infty, \frac{7}{8}\right)$	$D(1) \frac{7}{8}, \infty$
	12) $12(x^2 - 1) > 7x$ A) $\left(-\infty, -\frac{3}{4}\right) \operatorname{or}\left(\frac{4}{3}, \infty\right)$ or	$B)\left(-\frac{3}{-4},\frac{4}{3}\right)$	$C)\left(-\infty, -\frac{4}{3}\right) \left(\frac{3}{4}, \infty\right)$	$D\left(-\frac{4}{3},\frac{3}{4}\right)$
Solve	e the problem. 13) If $f(x) = 6x^2 - 5x$ and $g(x) = 3$	2x + 3, solve for $f(x) =$		
	g(x)	$\left[8\sqrt{3}\right] \frac{1}{2}$	C) $\left\{ \frac{1}{2}, 1 \right\}$	D) $\left\{ \frac{1}{2}, - \frac{3}{2} \right\}$

A) $\begin{cases} -\frac{1}{2}, \\ 2 \end{cases}$ B) $\begin{pmatrix} -\frac{1}{2}, \\ 2 \end{bmatrix}$ $\begin{pmatrix} -\frac{1}{2}, \\ 3 \end{pmatrix}$ $\begin{pmatrix} -\frac{1}{2}, \\ -\frac{1}{2}, \\ 3 \end{pmatrix}$ $\begin{pmatrix} -\frac{1}{2}, \\ -\frac{1}{2}, \\ -\frac{1}{2}, \\ 1 \end{pmatrix}$ $\begin{pmatrix} -\frac{3}{2}, \\ -\frac{3}{2}, \\ -\frac{1}{2}, \\ -\frac{3}{2}, \\ -\frac{1}{2}, \\ -\frac{3}{2}, \\ -\frac{3$

Page 81

16) If $h(x) = x^2 + 9x + 14$, solve	h(x) > 0.		
A) $(-\infty, -7)$ or $(-2, \infty)$	B) (-7, -2)	C) (-∞, -7)	D) (-2, ∞)

17) If g(x) = x ² - 2x - 8, solve g(x) A) [-2, 4]	≤ 0. B) (-∞, -2]	C) [4, ∞)	D) (-∞, -2] or [4, ∞)
18) The revenue achieved by selli each calculator is \$19. How m of at least \$170 20?	ing x graphing calculators is any graphing calculators m	s figured to be x(31 - 0.2x) do ust be sold to make a profit	ollars. The cost of (revenue - cost)
A) {x 23 < x < 37}	B) $\{x 8 < x < 22\}$	C) $\{x 24 < x < 22\}$	D) $\{x 25 < x < 35\}$
19) A rock falls from a tower that	t is 368 ft high. As it is fallin	g, its height is given by the	formula h = 368 -
	$16t^2$.		
A) 4.8 s	B) 19.2 s	C) 8464 s	D) 18.8 s
20) A rock falls from a tower that How many seconds will it tak	t is 49 m high. As it is falling the for the rock to hit the grou	;, its height is given by the fo 1nd (h=0)?	ormula $h = 49 - 4.9t^2$.
A) 3.2 s	B) 7 s	C) 500 s	D) 6.6 s
21) A flare fired from the bottom	m of a gorge is visible only with an	when the flare is above the r	im. If it is fired
initial velocity of 208 ft/sec, as $16t^2 + v_0t + h_0$.)	nd the gorge is 672 ft deep, o	during what interval can the	flare be seen? (h = –
A) 6 < t < 7	B) 12 < t < 13	C) 0 < t < 6	D) 18 < t < 19
22) A coin is tossed upward from interval of time will the coin h	a a balcony 218 ft high with be at a height of at least 90 ft	an initial velocity of 32 ft/sec ? (h = -16t ² + v ₀ t + h ₀ .)	c. During what
A) $0 \le t \le 4$	B) $0 \le t \le 1$	C) $4 \le t \le 8$	D) $3 \le t \le 4$
23) If a rocket is propelled upwar given by $h = -9.8t^2 + 58.8t$. D	d from ground level, its hei uring what interval of time	ght in meters after t seconds will the rocket be higher tha	is n 78.4
m? A) 2 < t < 4	B) 0 < t < 2	C) 4 < t < 4	D) 4 < t < 6
24) A flare fired from the bottom with an initial velocity of 80 f seen? $(h = -16t^2 + y_0t + h_{00})$	of a gorge is visible only wl t/sec, and the gorge is 96 ft c	hen the flare is above the rim leep, during what interval c	n. If it is fired an the flare be
A) 2 < t < 3	B) 4 < t < 5	C) 0 < t < 2	D) 6 < t < 7
25) A coin is tossed upward from interval of time will the coin l	a balcony 250 ft high with be at a height of at least 90 ft	an initial velocity of 48 ft/sec ?	c. During what
$(h = -16t^2 + v_0t + h_0.)$			
A) $0 \le t \le 5$	B) $0 \le t \le 1$	C) $5 \le t \le 10$	D) $4 \le t \le 5$
26) If a rocket is propelled upwar	d from ground level, its hei	ght in meters after t seconds	is
given by $h = -9.8t^2 + 49t$. Due A) 2 < t < 3	ring what interval of time w B) 0 < t < 2	ill the rocket be higher than C) 3 < t < 4	58.8 m? D) 4 < t < 5

2.6 Building Quadratic Models from Verbal Descriptions and from Data

1 Build Quadratic Models from Verbal Descriptions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Solve the problem.

1) A projectile is throw	vn upward so that its distand	e above the ground after t see	conds is $h = -14t^2 + 532t$.
After how many sec	conds does it reach its maxim	um height?	
A) 19 s	B) 9 s	C) 28.5 s	D) 38
	S		

2) Alan is building a garden shaped like a rectangle with a semicircle attached to one short side

along its

diameter. The diameter of the semicircle is equal to the width of the short side of the rectangle. If he has 70 feet of fencing to go around the garden, what dimensions will give him the maximum area in the garden?

A) width =
$$\frac{140}{\pi + 4} \approx 19.6$$
, length = 9.8
 $\pi + 4$ = 19.6
B) width = $\frac{70}{\pi + 4} \approx 9.8$, length $\pi + 4$
140

C) width = $\frac{140}{\pi + 8} \approx 12.6$, length = 18.8 D) width = $\frac{140}{\pi + 4} \approx 19.6$, length = 25.2

3) The number of mos	quitoes M(x), in millions, in	a certain area depends on the	June rainfall x, in
inches: $M(x) = 6x -$	x^2 . What rainfall produces t	he maximum number of mosq	uitoes?
A) 3 in.	B) 0 in.	C) 36 in.	D) 6 in.

4) The manufacturer of a CD player has found that the revenue R (in dollars) is $R(p) = -5p^2 + 1740p$, when the unit price is p dollars. If the manufacturer sets the price p to maximize
revenue, what is the maximum revenue to the nearest whole dollar?A) \$151,380B) \$302,760C) \$605,520D) \$1,211,040

- 5) A projectile is thrown upward so that its distance above the ground after t seconds is $h = -15t^2 + 510t$. After how many seconds does it reach its maximum height? A) 17 s B) 8 s C) 25.5 s D) 34 s
- 6) The owner of a video store has determined that the cost C, in dollars, of operating the store is approximately given by C(x) = 2x² 28x + 630, where x is the number of videos rented daily. Find the lowest cost to the nearest dollar.
 A) \$532
 B) \$238
 C) \$434
 D) \$728

7) A developer wants to enclose a rectangular grassy lot that borders a city street for parking. If the developer has

332 feet of fencing and does not fence the side along the street, what is the largest area that can be enclosed?

A) 13,778 ft ²	B) 27,556 ft ²	C) 6889 ft ²	D) 20,667 ft ²
---------------------------	---------------------------	-------------------------	---------------------------

8) The quadratic function f(x) = 0.0040x² - 0.41x + 36.85 models the median, or average, age, y, at which U.S. men were first married x years after 1900. In which year was this average age at a minimum? (Round to the nearest year.) What was the average age at first marriage for that year? (Round to the nearest tenth.)
A) 1951, 26.3 years old
B) 1951, 47.4 years old
D) 1952, 36 years old

2 Build Quadratic Models from Data

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Use a graphing calculator to plot the data and find the quadratic function of best fit.

1) Southern Granite and Marble sells granite and marble by the square yard. One of its granite patterns is price

sensitive. If the price is too low, customers perceive that it has less quality. If the price is too high, customers perceive that it is overpriced. The company conducted a pricing test with potential customers. The following data was collected. Use a graphing calculator to plot the data. What is the quadratic function of best fit?

Price, x	Buyers, B
\$20	30
\$30	50
\$40	65
\$60	75
\$80	72
\$100	50
\$110	25

A) $B(x) = -0.0243x^2 + 3.115x - 22.13$	B) $B(x) = 0.0243x^2 - 3.115x - 22.13$
C) $B(x) = -0.243x^2 + 3.115x - 22.13$	D) $B(x) = -0.0243x^2 + 3.115x + 22.13$

2) A rock is dropped from a tall building and its distance (in feet) below the point of release is recorded as accurately as possible at various times after the moment of release. The results are shown in the table. Find the regression equation of the best model.

x (seconds after	1	2	3	4	5	6		
y (distance in feet)	16	63	146	255	403			
A) y = 15.95x ²			B) y	= - 14	48.4 ·	+ 112x	C) $y = -74.9 + 290 \ln x$	D) $y = 13.0 e^{0.686x}$

3) An engineer collects data showing the speed s of a given car model and its average miles per gallon M. Use a graphing calculator to plot the scatter diagram. What is the quadratic function of best fit?

Speed, s	mph, M	
20	18	
30	20	
40	23	
50	25	
60	28	
70	24	
80	22	
A) M(s)	$= -0.0063x^2 + 0.720x + 5.142$	B) $M(s) = -0.631x^2 + 0.720x + 5.142$
C) M(s)	$= 0.063x^2 + 0.720x + 5.142$	D) $M(s) = -6.309x^2 + 0.720x + 5.142$

4) The number of housing starts in one beachside community remained fairly level until 1992 and then began to increase. The following data shows the number of housing starts since 1992 (x = 1). Use a graphing calculator to plot a scatter diagram. What is the quadratic function of best fit?

Year, x	Housing Starts, H	
1	200	
2	205	
3	210	
4	240	
5	245	
6	230	
7	220	
8	210	
A) H(:	$x) = -2.679x^2 + 26.607x + 168.571$	B) $H(x) = 2.679x^2 + 26.607x + 168.571$
C) H(:	$x) = -2.679x^2 - 26.607x + 168.571$	D) $H(x) = -2.679x^2 + 26.607x - 168.571$

5) The number of housing starts in one beachside community remained fairly level until 1992 and then began to increase. The following data shows the number of housing starts since 1992 (x = 1). Use a graphing calculator to plot a scatter diagram. What is the quadratic function of best fit?

Year, x	Housing Starts, H
1	200

1	200
2	210
3	230
4	240
5	250
6	230
7	215
8	208

A) $H(x) = -3.268x^2 + 30.494x + 168.982$	B) $H(x) = 3.268x^2 + 30.494x + 168.982$
C) $H(x) = -3.268x^2 - 30.494x + 168.982$	D) $H(x) = -3.268x^2 + 30.494x - 168.982$

6) A small manufacturing firm collected the following data on advertising expenditures (in thousands of dollars)

and total revenue (in thousands of dollars).

Advertising, x	Total Revenue, R
25	6430
28	6432
31	6434
32	6434
34	6434
39	6431
40	6432
45	6420

Find the quadratic function of best fit.

A) $R(x) = -0.091x^2 + 5.95x + 6337$	B) $R(x) = -0.024x^2 + 7.13x + 6209$
C) $R(x) = -0.31x^2 + 2.63x + 6128$	D) $R(x) = -0.015x^2 + 4.53x + 6123$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

7) The following data represents the total revenue, R (in dollars), received from selling x bicycles at Tunney's Bicycle Shop. Using a graphing utility, find the quadratic function of best fit using coefficients rounded to the nearest hundredth.

Number of Bicycles,	Total Revenue, R (in
0	0
22	27,000
70	46,000
96	55,200
149	61,300
200	64,000
230	64,500
250	67,000

8) The following table shows the median number of hours of leisure time that Americans had each week in various years.

Year	1973	1980	1987	1993	
Median # of Leisure hrs per	26.2	19.2	16.6	18.8	19.5

Use x = 0 to represent the year 1973. Using a graphing utility, determine the quadratic regression equation for the data given. What year corresponds to the time when Americans had the least time to spend on leisure?

2.7 Complex Zeros of a Quadratic Function

1 Find the Complex Zeros of a Quadratic Function

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

question. Find the complex zeros of the quadratic function.

1) $f(x) = x^2 - 9$ A) $x = 3, x = -3$	B) x = 3	C) x = -3	D) x = 9
2) $G(x) = x^2 + 25$ A) $x = -5i, x = 5i$	B) x = 5i	C) x = 5	D) $x = -5, x =$
3) $h(x) = x^2 + 8x + 25$ A) $x = -4 - 3i$, $x = -4 + 3i$ C) $x = -4 + 3i$		B) x = -4 - 9i, x = -4 + 9i D) x = -7, x = -1	
4) $g(x) = 5x^2 - x + 4$ A) $x = \frac{1}{2} \frac{1}{2} \sqrt{-\frac{79}{10}}i$ $x = \frac{1}{10} = 10$	B) x =ñ 79	C) $x = \sqrt{\frac{1}{2}} \pm \frac{-79}{5} i$	D) $x = -\frac{1}{5}$

5)
$$F(x) = x^2 - 6x + 45$$

A) $x = 3 \pm 6i$ B) $x = 6 \pm 12i$ C) $x = 9, x = -3$ D) $x = -3 \pm 6i$

Without solving, determine the character of the solutions of the equation.

6) $x^2 + 4x + 3 = 0$

- A) two unequal real solutions
- B) a repeated real solution

Page 87

C) two complex solutions that are conjugates of each other

7) $f(x) = x^2 - 9x - 3$ A) two unequal real solutions B) a repeated real solution C) two complex solutions that are conjugates of each other 8) $x^2 + 6x + 9 = 0$ A) a repeated real solution B) two unequal real solutions C) two complex solutions that are conjugates of each other 9) $x^2 - 2x + 4 = 0$ A) two complex solutions that are conjugates of each other B) two unequal real solutions C) a repeated real solution 10) $x^2 - 3x - 3 = 0$ A) two unequal real solutions B) a repeated real solution C) two complex solutions that are conjugates of each other Solve the problem. 11) 5 + 4i is a zero of a quadratic function with real coefficients. Find the other zero. D) -5 - 4i

Equations and Inequalities Involving the Absolute Value Function 2.8

B) 4i - 5

1 Solve Absolute Value Equations

A) 5 - 4i

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the

C) 9

question. Solve the equation.

1) $ x = 2$ A) $\{-2, 2\}$	B) {2}	C) {-2}	D) {4}
2) x = 0.14 A) -0.14, 0.14	B) {0.14}	C) {-0.14}	D) {-7, 7}
 3) b + 5 - 5 = 4 A) {-14, 4} 4) 6m + 2 = 3 	B) Ø	C) {4}	D) {-4, 14}
$A) \begin{cases} 5 & 1 \\ -\frac{1}{6'} & 6 \end{cases}$	B) Ø	$C) \begin{cases} 1 & 5 \\ -\frac{1}{6}, -\frac{1}{6} \end{cases}$	$D) \left\{ \begin{array}{c} 5 & \underline{1} \\ -\underline{2}, 2 \end{array} \right\}$
$5) \left \frac{1}{4} \mathbf{x} - 6 \right = 4$			
A) {8, 40}	B) {8}	C) {40}	D) {8, 40, 0}
$\begin{array}{l} 6) \mid 4x \mid = 0 \\ A) \{0\} \end{array}$	B) {0, 4}	C) {-4, 4}	D) {-4, 0}

7)
$$|7x| = 5$$

A) $\left\{ \frac{5}{-7}, \frac{5}{7} \right\}$
B) $\left\{ \frac{5}{7} \right\}$
C) $\left\{ -\frac{5}{7} \right\}$
D) $\left\{ -\frac{7}{5}, \frac{7}{5} \right\}$
8) $|x+8| - 2 = 14$
A) $\{-24, 8\}$
B) $\{20, 8\}$
C) $\{-4, 8\}$
D) $\{-8, 8\}$
9) $|x^2 - 9x + 20| = 0$
A) $\{5, 4\}$
B) $\{-5, -4\}$
C) $\{-10, -8\}$
D) $\{10, 8\}$
10) $|32x| = 4x^2$
A) $\{0, 8, -8\}$
B) $\{0, 8\}$
C) $\{0, -8\}$
D) No real solutions

2 Solve Absolute Value Inequalities

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve.

1) If f(x) = |x| (solid line)and g(x) = 5 (dashed line), find when f(x) = g(x) and when f(x) > g(x).

Solve the inequality. Express your answer using interval notation. Graph the solution set. 2) |x| < 3

\leftrightarrow \mapsto	+ +		-+	+	-+	-+	+	-+	-+	-+	→	
A) (-3,3	5)											
-7 - B) (-∞, 3	6 -5 3]	-4 -3	-2	-1	0	1	2) ₃	4	5	6	+ → 7
< I I -7 - C) (-∞, -	⊢ I 6 -5 -3)∪(I I -4 -3 3,∞)	-2	-1	0	1	2	3	4	5	6	<u>→</u> 7
< I I -7 - D) [-3, 3	 6 -5	I) -4 -3	-2	-1	0	1	2	3	4	5	6	7
-7 -	6 -5	-4 -3	-2	-1	0	1	2	3	4	5	6	$\xrightarrow{7}$
3) $ x > 3$												
3) x > 3	+ +			+	-+		-+	+	+	-+	÷	
$(-\infty, -\infty)$	<mark>-3)∪(</mark>	 3, ∞)		+		+	+	+	+	+	÷	
3) x > 3 ← → → ← A) (-∞, - <1 ↓ -7 → B) [3, ∞]	-3)∪(1 65	- i -i 3,∞) <u>i)</u> -4 -3	-2	+				-+ 	+ 	+ 5	→	+
3) $ x > 3$ A) $(-\infty, -\infty)$ $(-\infty) -\infty$ $(-\infty) -\infty$ A) $(-\infty) -\infty$ $(-\infty) -\infty$ C) $(-3, 3)$	-3) U (6 -5) 6 -5	3,∞) 1) -4 -3 1 1 -4 -3		-1 -1 -1		+ 1 1	+ 2 1 2	1 3 1 3			→ 6 6	$\overrightarrow{7}$
3) $ x > 3$ A) $(-\infty, -\infty)$ $(-\infty) -\infty$ $(-\infty) -\infty$ A) $(-\infty) -\infty$ $(-\infty) -\infty$ C) $(-3, 3)$ (-3, 3) (-3, 3)	$-3) \cup ($ $-3) \cup ($ $-3) \cup ($ -5) -5	3,∞) -4 -3 1 1 -4 -3 -4 -3 -4 -3	-2 -2 -2 -2 -2	1 -1 -1 -1					+ 4 1 4	+ 5 1 5 5	→ 6 6 6 6 6	→ 7 1 7 7

 \rightarrow A) (-2, 2) -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 B) [−2, ∞) -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 C) $(-\infty, -2) \cup (2, \infty)$ D) (-∞, ∞) 5) |x| < -4 \rightarrow A) (-4, 4) -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 B) (-∞, -4] -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 C) $(-\infty, -4) \cup (4, \infty)$ \leftarrow_7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 D)Ø

 $(-\infty, 3)$ $(-\infty, -3) \circ r (3, \infty)$ $(-\infty, -3) \circ r (3, \infty)$ (-0, -3, 3) $(-0, -3, -3) \circ r (3, \infty)$ $(-0, -3, -3) \circ r (3, \infty)$

B) (8, ∞)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

C) (-8,8)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

D) (-∞, -8] or [8, ∞)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

8) $ x - 10 < 2$ A) (8, 12)	
(++++) ++++++++++++++++++++++++++++++++	
B) $(-12, -8)$	
C) (-∞, 12)	
<?5?1?1?1?1?1?1.	
-10 -5 0 5 10 15 20 25	
9) $ x + 1 > 12$ A) $(-\infty, -13) \cup (11, \infty)$	
(-10 -5 0 5 10 15 20 25 30)	
B) $(-11, 13)$	
C) (-13, 11)	
$\leftarrow (++++++++++++++++++++++++++++++++++++$	
← 11 11 11 11 11 11 11 11 11 11 11 11 11	

A) [-7, 11]
-5 0 5 10 15 20 B) (-7, 11)
(
III <u>II III IIII</u> I -15 I 0 I I 5 I 10 I 15 I 20 D) Ø
-10 -5 0 5 10
$ x + 9 + 3 \ge 6$
A) (-∞, -12] ∪ [-6, ∞)
-10 -5 0 5 10 15 B) [-12, -6]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

C) (-12, -6)

13)

(1 1 1 1 1)		+++++	+++++	+++++	-
-10	-5	0	5	10	15
D) [-6, ∞)					

					<u></u>
-10	-5	0	5	10	15

A) 2

Ch. 2 Linear and Quadratic Functions

Answer Key

2.	1 Properties of Linear Functions and Linear Models
1	Graph Linear Functions
	1) Å
	2) A
	3) A
	4) A
	5) A
	6) A
	7) A
	8) Δ
	$O(\Lambda)$
	10) A
	10) A
	12) A
	12) A
	16) A 14) A
	$15) \Delta$
	16) A
2	10) A
2	1) A
	1) A
	2) A 2) A
	3) A 4) A
	4) A 5) A
	(\mathbf{A})
2	0) A Determine Whether a Linear Franction is Laurencing Decreasing or Constant
3	Determine whether a Linear Function is increasing, Decreasing, or Constant
	2) A
	3) A
	4) A
	5) A
	6) A
	7) A
4	Find the Zero of a Linear Function
	2) A
	3) A
	4) A
	5) A
	6) A
	/) A
	8) A
	9) A
	10) A 11) A
	11) A 12) A
	12) A 12) A
2	13) A Build Linear Madala (new Waltal David di
5	build Linear Models from Verbal Descriptions

1) A

2) A

More time spent studying may increase test scores.

As the latitude increases, the one-day temperatures decrease. 6) A

7) A 8) A

Page 86

Line of best fit = -0.68x + 82.91

- 17) A
- 18) A
- 19) A
- 20) A
- 21) \$347.29

22) The slope is 12.75 which means that the amount Tom saves increases \$12.75 each month.

23) 53.56

24) The slope is about -0.12616 which means that the winning time is decreasing by 0.12616 of a second each year. 25) 1840

26) The slope is about 206.1 which means that the number of employees is increasing by about 206 employees each year.

2.3 Quadratic Functions and Their Zeros

1 Find the Zeros of a Quadratic Function by Factoring

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) A
- 7) A
- 8) A
- 9) A
- 10) A
- 11) A

2 Find the Zeros of a Quadratic Function Using the Square Root Method

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A

3 Find the Zeros of a Quadratic Function by Completing the Square

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) A

4 Find the Zeros of a Quadratic Function Using the Quadratic Formula

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) D

5 Find the Point of Intersection of Two Functions

- 1) A
- 2) A
- 3) A
- 4) A

6 Solve Equations That Are Quadratic in Form

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) A
- 7) A
- 8) A
- 9) A
- 10) A
- 11) A
- 12) A
- 13) A

2.4 Properties of Quadratic Functions

1 Graph a Quadratic Function Using Transformations

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) A
- 7) A
- 8) A
- 9) A
- 10) A
- 11) A
- 12) A
- 13) A
- 14) A
- 15) A

2 Identify the Vertex and Axis of Symmetry of a Quadratic Function

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) A
- 7) A
- 8) A
- 9) A
- 10) A

3 Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) A
- 7) A
- 8) A
- 9) A
- 10) A
- 11) A
- 12) A
- 13) A
- 14) A
- 15) A
- 16) A
- 17) A
- 18) A

- 19) A 20) A
- 21) A
- 22) A
- 23) A
- 24) A
- 25) A

26) A

- 4 Find a Quadratic Function Given its Vertex and One Other Point
 - 1) A
 - 2) A

5 Find the Maximum or Minimum Value of a Quadratic Function

- 1) A
- 2) A
- 3) A 4) A
- 5) A
- 6) A
- 7) A
- 8) A
- 9) A
- 10) A
- 11) A
- 12) A
- 13) A
- 14) A
- 15) A
- 16) A
- 17) A
- 18) A
- 19) A 20) A
- 20) A
- 21) A 22) A
- 22) A 23) A
- 23) A 24) A
- 24) A 25) The height is community
- 25) The height is approximately 17 ft.
- 26) A 27) A

2.5 Inequalities Involving Quadratic Functions

1 Solve Inequalities Involving a Quadratic Function

- 1) A
- 2) A
- 3) A
- 4) A
- 5) A
- 6) A
- 7) A
- 8) A 9) A
- 9) A 10) A
- 10) A 11) A
- 11) A 12) A
- 13) B

14) A

- 15) A
- 16) A
- 17) A
- 18) A
- 19) A
- 20) A

22) A
23) A
24) A
25) A
26) A
2.6 Building Quadratic Models from Verbal Descriptions and from Data
1 Build Quadratic Models from Verbal Descriptions
1) A
2) A
3) A
4) A
5) A
6) A
7) A
8) A
2 Build Ouadratic Models from Data
1) A
2) A
3) A
4) A
5) A
6) A
7) $R(x) = -1.65x^2 + 634.42x + 7089.93$
8) $M(x) = 0.04x^2 + 26.02 + 1088$
$\frac{1}{2} \sum_{x=1}^{2} \frac{1}{2} \sum_{x=1}^{2} \frac{1}$
2.7 Complex Zeros of a Quadratic Function
1 Find the Complex Zeros of a Quadratic Function
1) A
2) A
3) A
4) A
5) A
6) A
7) A
7) A 8) A 9) A
7) A 8) A 9) A
7) A 8) A 9) A 10) A 11) A
7) A 8) A 9) A 10) A 11) A 2.8. Equations and Inequalities Involving the Absolute Value Eurotion
7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A
7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations 1) A 2) A 3) A 4) A 5) A 6) A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A A A A A A A A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A A (A) A (A) A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A A A A A B A A
7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations 1) A 2) A 3) A 4) A 5) A 6) A 7) A 8) A 9) A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A A A 2 Solve Absolute Value Inequalities
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A A A A 2 Solve Absolute Value Inequalities A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A A A 2 Solve Absolute Value Inequalities A A
 7) A 8) A 9) A 10) A 11) A 2.8 Equations and Inequalities Involving the Absolute Value Function 1 Solve Absolute Value Equations A A A A A 2 Solve Absolute Value Inequalities A A A

4) D
5) D
6) A
7) A
8) A
9) A
10) A
11) A
12) A
13) A
14) A

15) A 16) D