Test Bank for Precalculus Functions and Graphs 4th Edition Dugopolski 0321789431 9780321789433 Full link download: Test Bank: https://testbankpack.com/p/test-bank-for-

precalculus-functions-and-graphs-4th-editiondugopolski-0321789431-9780321789433/ Solution

Manual:

https://testbankpack.com/p/solution-manual-for-precalculus-functions-and-graphs-4th-edition-dugopolski-0321789431-9780321789433/

	opolski's <i>Precalculus Functions and Graphs</i> pter 2 Test Form A	Name:	13
Dete	rmine whether each equation defines C as a	function of B .	
1.	$B \Box 3C = 2$	2.	$\mathbf{B} = \mathbf{C}^{\#} \ \Box \ \mathbf{2C} + 1$
1.		2.	
State	e the domain and range of each relation.		,
3.	$C = 2B \Box 3 $	4.	$\mathbf{B} = \mathbf{\hat{E}}_{\underline{\mathbf{C}} \square "}$
3.	domain:	4.	domain:
	range:		range:
Sket	ch the graph of each function.		
5.	$B \square \#C \infty \%$	6.	$C = \tilde{E}_{\overline{B} \square}$ "
9	10	11	12

7.	$C \in \square D B \square "\tilde{N}^{\#} \square \#$	8.	$0 (B) = \alpha_{\#}^{B} \square "\beta 09 < B \square \#$ $\# \square B\beta 09 < B \#$
			$\# \square B 09 < B \#$

Let	Let $0(B) = B^{\#} + B$ and $1(B) = 2B + 1$. Find and simplify each of the following expressions.						
9.	0(4)	10.	1 [□] "(B)	11.	(0 % 1)(2)	12.	<u>1ÐB□2Ñ□1ÐBÑ</u> 2

Solve each problem.

State the intervals on which $0\overline{\partial}BN \cong \overline{\partial}B \square \$N^{\#} \square$ " is increasing. 13.

13. _____

Discuss the symmetry of the graph of the function $0\partial B\tilde{N} \otimes B^{\$} \square B^{\$}$ 14.

14.

State the solution set to the inequality $\mathbb{D}B \square "\tilde{N}^{\#} \square$ " using interval notation. 15.

15.

16. Pete's Print Shop charges \$60 for printing 300 business cards and \$80 for printing 500 business cards. What is the average rate of change of the cost of printing as the number of cards goes from 300 to 500?

16. _____

17. The area of a rectangle is 30 square feet. Write the perimeter of this rectangle as a function of the length of one of its sides, B.

17. _____

18. The grade on Walker's math test varies directly with the number of hours he spends studying for the test. If he studies only 2 hours, he makes a 62. What will his score be if he studies for 3 hours?

9.____

10. _

Determine whether each equation defines C as a function of B.	
-	
1. $\#B \square \%C @ \$$ 2. $B @ 1C1$	
1 2	_
State the domain and range of each relation.3. $C \propto 1 \# B 1 \square$ 4. $B \propto C^{\#} \square$	
3. domain: 4. domain: range: range: range:	
Sketch the graph of each function. $-$ 5. $B \square C @ $ 6. $C @ È_B \square$	#
7. $0 (B) = \alpha_{\#B}^{"} \square B 09 < B \square "$ #B □ "B 09 < B " 8. C $\alpha D B \square \#$	Ň# □ ''
Let $0(B) \approx EB \square \&$ and $1(B) \approx \& B \square$ ". Find and simplify each of the follow 9. $0(4)$ 10. 1^{\square} "(B) 11. $(0 \% 1)(2)$	ing. 12. ^{<u>1ÐB□2Ň□1ÐBŇ</u> 2}
9 10 11	12

Solve each problem.

13. State the intervals on which $0 \partial B\tilde{N} \oplus \partial B \square "\tilde{N}^{\#} \square \#$ is increasing.

14. Discuss the symmetry of the graph of the function $0 \partial BN \oplus B^{*} \square B^{\#}$

14. _____

13. _____

15. State the solution set to the inequality $DB \square "N^{\#} \square$ " using interval notation.

15. _____

16. Pete's Print Shop charges \$50 for printing 500 business cards and \$90 for printing 1000 business cards. What is the average rate of change of the cost of printing as the number of cards goes from 500 to 1000?

16. _____

17. The perimeter of a rectangle is 10 square feet. Write the area of this rectangle as a function of the length of one of its sides, B.

17. _____

18. The grade on Walker's math test varies directly with the number of hours he spends studying for the test. If he studies only 2 hours, he makes a 50. What will his score be if he studies for 3 hours?

 9. _____
 10. _____
 11. _____
 12. _____

0	opolski's <i>Precalculus Functions and Graphs</i> pter 2 Test Form C		e:
Dete	ermine whether each relation defines C as a	function of B .	
1.	$\ddot{\mathrm{O}}\mathrm{D}\$$ "Ñß $\mathrm{D}\#\mathrm{B}$ % Nß $\mathrm{D}\$\mathrm{B}$ #Ñ \times	2.	$B^{\#} \Box C^{\#} \mathfrak{ e} "$
1.		2.	
Stat	e the domain and range of each relation.		
3.	$\mathbf{C} \ \mathbf{\mathfrak{e}} \ \mathbf{\mathfrak{H}} \mathbf{B} \ \square \ "\mathbf{\tilde{N}}^{\#} \ \square \ \#$	4.	$0 (B) = \mathfrak{a} \overset{\Box}{=} \overset{\#B}{=} \overset{\Box}{=} \overset{\$\emptyset}{=} \overset{0.9 < B}{=} \overset{\bullet}{=} \overset{\bullet}{:} \overset{\bullet}{=} \overset{\bullet}{=} \overset{\bullet}{=} \overset{\bullet}{:} \overset{\bullet}{:}$
3.	domain: range:	4.	domain: range:
Sket	tch the graph of each function.		
5.	$C \propto \frac{\#}{\$} B \square$ "	6.	$C \ \mathfrak{E} \ \mathfrak{D}B \ \square \ \#\tilde{\mathbb{N}}^{\#} \ \square \ "$
7.	C œ 1 B 1 □ \$	8.	$C \propto \dot{E}^{+} B^{\#}$
	$D(\mathbf{B}) \mathbf{x} # \mathbf{B}^{\#} \Box \mathbf{B} \Box " and 1(\mathbf{B}) \mathbf{x} \overset{\mathbf{\hat{E}}}{\underline{\&} \Box \mathbf{B}} \cdot \mathbf{Fin}$ 1 \overline{v} □ "* \tilde{N} 10. 1 ^{□"} (B)		
		18	
9	10.	10	12
· •	Copyright ©2013 Pearson I		
	···· ··· ··· ··· ·····················		

Solve each problem.

- **13.** State the intervals on which $0 DB\tilde{N} \approx |B \square 2| \square 3$ is increasing.
- 13. ______ 14. Let $0(B) = B \Box 2$, $1(B) = B^{\#}$ and $2(B) = B \Box 1$. Write $7(B) = B^{\#} \Box 2B + 1$ as a composition of appropriate functions chosen from 0, 1, and 2.

14. _____

15. State the solution set to the inequality $DB \square "N^{\#} \square$ " using interval notation.

15. _____

16. Jane's Advertising charges \$500 for 1200 flyers and \$780 for 1600 flyers. What is the average rate of change of the cost of the advertising as the number of flyers goes from 1200 to 1600?

16. _____

17. Write the area of a square as a function of the length of one of its diagonals, ...

17.

18. The cost of constructing a 5-foot by 7-foot deck is \$192.50. If the cost varies jointly as the length and width, then what does an 8-foot by 10-foot deck cost?

 9.
 10.
 11.
 12.

	polski's <i>Precalculus Functions and Graphs</i> ter 2 Test Form D	Name	19
Deter 1.	mine whether each relation defines C as a function ÖÐ\$B #ÑB Ð#B \$ÑB Ð"B \$Ñ×	of B. 2.	$B^{\#} \square C \mathfrak{a} $
1.		2.	
State	the domain and range of each relation.		
3.	$C \mathfrak{E} \overline{\mathfrak{E}}_{\% \square B^{\#}}$	4.	$1 (B) = \alpha \frac{B \Box "B 09 < B \Box $}{\#B \Box (B 09 < B \ddot{Y} $}$
3.	domain: range:	4.	domain: range:
Sketcl 5.	h the graph of each function. C $\alpha \Box = \frac{2}{3}B$	6.	$C \ \mathfrak{E} \ \square \ \mathfrak{D}B \ \square \ \mathfrak{S}\widetilde{N}^{\#} \ \square \ "$
7.	C œ B [#] □ \$	8.	$C \propto \tilde{E}_{\#\& \square B^{\#}}$
	B) \oplus B [#] \square B and 1(B) \oplus #B \square ". Find and simplify \square 1 \tilde{N} \tilde{D} # \tilde{N} 10. 1 \square "(B) 11. (1)		
	18		
9	10 11		12
	Converight @2013 Degreen Education	Inc	

Copyright ©2013 Pearson Education. Inc.

Solve each problem.

- **13.** State the intervals on which $0 \partial B\tilde{N} \otimes 2 \Box B^{\#}$ is increasing.
- **14.** Let $0(B) = \partial B \square \$ \tilde{N}^{\square} \hat{I}^{\#}$, $1(B) = \#B \square \$$ and $2(B) = \underbrace{\stackrel{13.}{\underline{E}_{\#}B}}_{\underline{E}_{\#}B}$. Write $\mathcal{T}(B) = \underbrace{\stackrel{"}{\underline{E}_{\#}B}}_{\underline{E}_{\#}B}$ as a

composition of appropriate functions chosen from 0, 1, and 2.

14. _____

15. State the solution set to the inequality $DB \square \% \tilde{N}^{\#} \square$ " using interval notation.

15. _____

16. Jane's Advertising charges \$500 for 1200 flyers and \$820 for 1600 flyers. What is the average rate of change of the cost of the advertising as the number of flyers goes from 1200 to 1600?

16. _____

17. Write the area of a square as a function of the length of one of its diagonals, ...

17. _____

18. The cost of constructing a 5-foot by 7-foot deck is \$148.75. If the cost varies jointly as the length and width, then what does an 8-foot by 10-foot deck cost?

 9.
 10.
 11.
 12.

Name:

Multiple Choice: Choose the best answer for each of the following.

1.	A. C œ lB \square #l \square "	ing define C as a fund C. B œ # D. B [#] □ C [#] c		E. BœlCl F. B ^{\$} □ C œ #
2.	a. A, B, E What is the domain	b. A, C, E of the relation: C œ	$\stackrel{c. B, D, F}{E_{B \Box}"}$	d. A, B, F
3.	a. [□1,) Find B, if 0 ĐBÑ œ È	$\frac{b. [0, _)}{B \square \$} \text{ and } 0 \text{ DBN } \mathfrak{a} \$.$	c. [1,)	d. (□β)
	a. 0	b. 12	c. undefined	d. 6
4.		e of $0 \oplus B^{\tilde{N}} \approx \alpha = \begin{bmatrix} B & \Box \\ \Box & B & \Box \\ B & \Box \end{bmatrix}$ b. $(\Box _ \beta _)$		(0, <u>)</u> d. [1, 2)
5.	Explain how to use	the graph of $C \propto B^{\#} t$	o get the graph o	of C \oplus $BB \square \# N^{\#} P$
	a. Translate 2 ub. Translate 2 u			te 2 units right te 2 units up
6.	Solve the inequality	νkB□"k□ 2 Ϋ ! byι	using its graph.	
	a. (□,3] □1] □	b. [□1, 3]	c. (🗆,	[3,) d.[3,)
7.	Find the domain of and $1 \propto \{(\Box 1, 0), (0, \Box)\}$	$0 \Box 1 \text{ if } 0 \propto \{(\Box 1, 0), 5, (3, 2)\}.$	$, (\Box 2, 4), (3, 6) \}$	
	a. $\{\Box 1, 3\}$	b. $\{\Box 1, \Box 2, 0, 3\}$	c. $\{\Box 1, 0, 3\}$	d. {□1, □2, 3}
8.	If $0 \overline{D}B\tilde{N} \cong B^{\#} \Box$ "and	l 1ĐBÑ œ B □ ", find Š	$S_{\frac{0}{1}} < D \square$ "N.	
	a. 0	b. □2	c. □ B □ "	d. undefined
Q	The area of a recta	ngle is 20 square feet	Write the neri	neter of this

9. The area of a rectangle is 20 square feet. Write the perimeter of this rectangle as a function of the length of *one* of its sides, B.

a.	T œ #B \square # [^] #! [%]	c. T	$\mathfrak{a} #B \square #C \square #!$
	$T \propto \#B \square \#D"! \square BN$	d. T	$\mathfrak{a} #B \square #C$

22 10.	Use $0^{\Box''}$ to find the	range of $0 \overline{DBN} \propto \frac{\#B}{B}$	<u>"</u> •	Form 2E
	a. $(\Box _, \Box 3)$ b. $(\Box _, 0)$	□ (□3,) (0,)	c. $(\Box _$ d. $(\Box _$	$(-, 2) \square (2, (-, -)) \square (-, -)$
11.	-	of a circle, <, as a fun re . is the diameter of		umference G,
		b. G œ 1<#	c. < α É $\underline{\underline{G}}$	d. $< \alpha \frac{G}{G}$
12.	#1 Find the constant of square of > and - œ	f variation for the fol % when $> \infty$ &.	lowing: - varie	es inversely as the
	a. 20	b. 100	c. <u>&</u>	d. <u>#&</u>
			%	%
13.		th the appropriate va a building in ya 3).		
	a. C œ \$'8	b. 8 œ <u>\$'</u>	c. C œ <u>\$'</u>	d. 8 œ \$'C
14.	Find Đ0 ‰ 1ÑĐBÑ if O	$\tilde{DBN} \propto B^{\#} \square$ " and 1 \tilde{DBN}	8 Ñœ\$B□&.	
	a. \$B [#] □ #	b. \$B [#] □ "!B □)	c. $*B^{\#} \square $	\square #% d. $\square\frac{\%}{\$}$ and $\square3$
15.	If a function is even	, then it is:		
	a. levelb. not invertible			etric to the B-axis etric to the origin
16.	If $1 \overline{\partial} B \widetilde{N} = \frac{B \square''}{\#B \square \$}$, fir	nd 1^{\square} "ÐBÑ.		
	a. <u>\$B □ ''</u>	b. [#] B□\$	c. 2BC + 3B +	1 d. $\frac{B \square "}{}$
	" 🗆 #B	$B \square$ "		□#B
17.	Determine the symm	netry of the graph of	$0(\mathbf{B}) = \mathbf{B}^{\$} \Box \% \mathbf{B}$	
	a. Symmetric tob. Symmetric to		•	etric to the origin nmetry

18. Jane's Advertising charges \$500 for 1200 flyers and \$780 for 1800 flyers.

What is the average rate of change of the cost of the advertising as the number of flyers goes from 1200 to 1800?

a. \$280.00 b. \$0.23 c. \$0.16 d. \$0.47

Name:

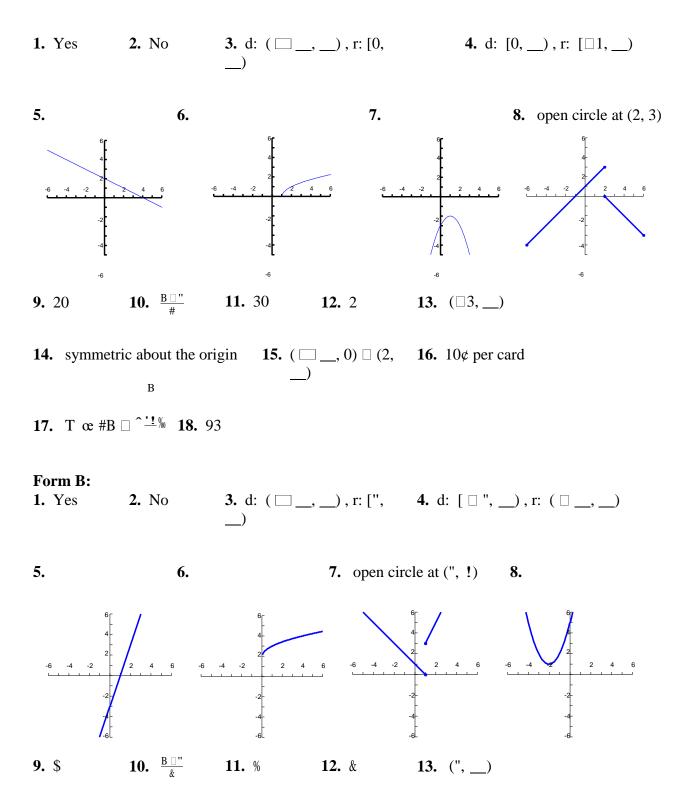
Multiple Choice: Choose the best answer for each of the following.

1.	Which of the follow A. C œ lB □ #l □ " B. %B □ #C œ \$			E. B ∞ 1C1 F. B ^{\$} \square C ∞ #
	a. B, D, F	b. A, C, E	c. A, B, F	d. A, B, E
2.	What is the domain	of the relation: C \propto $^{]}$	È <u>B □ "</u> ?	
3.	a. [□1,) Find B, if 0 ĐBÑ œ È	$\frac{b. [0, _)}{B \square \%} \text{ and } 0 \overline{\partial} B \widetilde{N} \mathfrak{C} \$.$	c. [1,)	d. (□β)
	a. 13	b. 0	c. undefined	d. 7
4.	Determine the rang	$\mathbf{e} \mathbf{of} 0 (\mathbf{B}) = \mathbf{e} \mathbf{e} \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix}$	□ "\$ 09< B ! □ #\$ 09< B □ !	
	a. [1, 2) (□₿0)	b. (□β)	c. 🗆	(0,) d.[1,)
5.	Explain how to use	the graph of $C \propto B^{\#}$ to	get the graph	of $C \propto B^{\#} \Box \#$.
	a. Translate 2 unb. Translate 2 un			ate 2 units right ate 2 units up
6.		IB □ #l □ " Ÿ ! by u b. [1, 3]		[1, <u>)</u> d.[□3, □1]
7.	Find the domain of and 1 œ {(□1, 0), (0	$0 \Box 1 \text{ if } 0 \propto \{(\Box 1, 0), , 5), (3, 2)\}.$. (□2, 4), (3, 6) }	
	a. { 🗆 1, 🗆 2, 3 }	b. $\{\Box 1, \Box 2, 0, 3\}$	c. $\{\Box 1, 0, 3\}$	d. {□1, 3}
8.	If $0 \overline{D}B\tilde{N} \propto B^{\#} \Box$ " and	d 1ĐBÑ œ B □ ", find Š	$\tilde{S}_{1} \stackrel{0}{\to} D \square "\tilde{N}.$	
	a. 0	b. □2	c. undefined	d. □ B □ "
9.		ngle is 20 square feet. ion of the length of <i>or</i>	-	

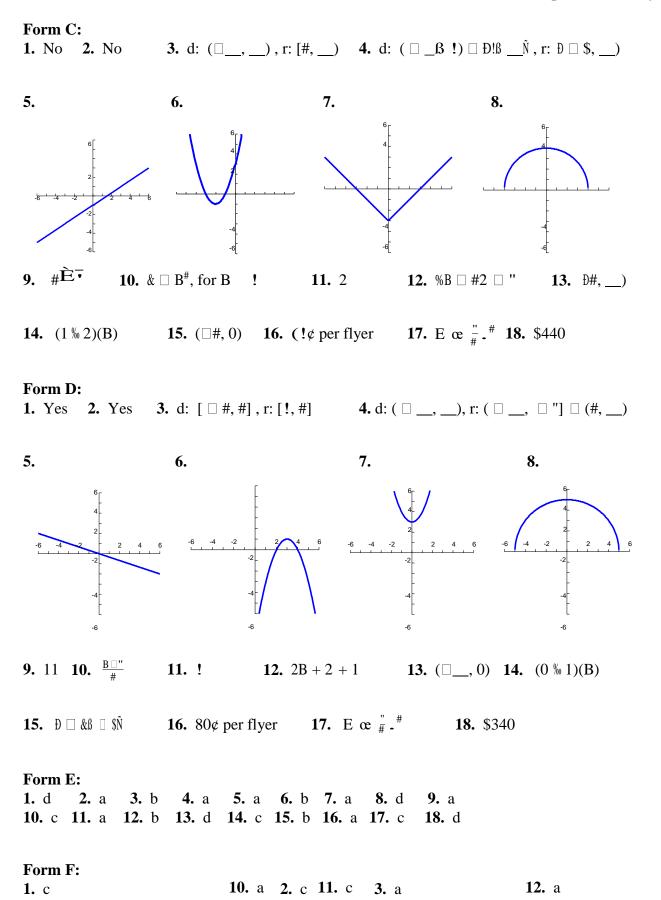
a. T \mathfrak{C} #B \square # \mathfrak{D} "! \square B \mathbb{N}

23

b.	T $\mathfrak{a} \# B \square \#^{\frac{\#!}{B}}$	с.	T $\mathfrak{a} #B \square #C$
	D	d.	T $\mathfrak{C} #B \square #C \square #!$


Use $0^{\,\square\,"}$ to find the range of $0\, \bar{D}B\tilde{N} \propto \frac{\$B \ \square \ "}{B \ \square \ \#}$. 10. a. (□__, 3) □ (3, __) b. (□__, 0) □ (0, __) c. $(\Box, 2) \Box (2, _)$ d. $(\Box, -, -)_{\#} \Box (-, _)$ 11. Express the radius of a circle, <, as a function of its circumference G, given $G \propto 1$., where . is the diameter of the circle. a. $< \alpha \acute{\mathbf{E}}^{\underline{\mathbf{G}}}$ b. G œ 1<# G d. $< \alpha \frac{G}{G}$ c. < œ 1 #1 1 12. Find the constant of variation for the following: - varies inversely as the square of > and - ∞ % when > ∞ &. с. <u>&</u> d. <u>#&</u> b. 20 a. 100 % 13. Write a formula with the appropriate variation constant that describes the variation of the length of a building in yards (C) with the length of a building in inches (8). a. 8 œ <u>\$'</u> b. C œ <u>\$'</u> c. 8 œ \$'C d. C œ \$'8 С Find $\overline{D}0 \ \% 1 \widetilde{N} \overline{D} B \widetilde{N}$ if $0 \overline{D} B \widetilde{N} \propto B^{\#} \Box$ "and $1 \overline{D} B \widetilde{N} \propto \$ B \Box \&$. 14. b. $*B^{\#} \square \$!B \square \#\%$ c. $\$B^{\#} \square "!B \square$) d. $\square \frac{\%}{\$}$ and $\square 3$ a. \$B[#] □ # 15. If a function is even, then it is: a. level c. not invertible b. symmetric to the B-axis d. symmetric to the origin If $1\overline{D}B\tilde{N} \propto \frac{B \square''}{\#B \square}$, find $1^{\square''}\overline{D}BN$. 16. d. <u>\$B □ "</u> b. <u>\$B □ "</u> <u>#B 🗆 \$</u> a. c. 2BC + 3B + 1" 🗆 #B B □ " **□#**B **Determine the symmetry of the graph of** $0(B) = B^{\#} \square \%B$. 17. Symmetric to the origin a. Symmetric to the C-axis c. Symmetric to B $\infty \square \#$ No symmetry b. d.

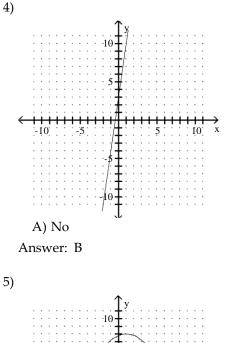
24


18. Jane's Advertising charges \$500 for 1200 flyers and \$780 for 1800 flyers. What is the average rate of change of the cost of the advertising as the number of flyers goes from 1200 to 1800? a. \$0.16 b. \$0.47 c. \$280.00 d. \$0.23

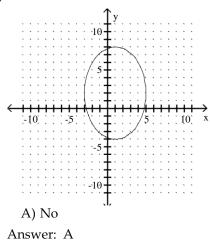
CHAPTER 2

Form A:

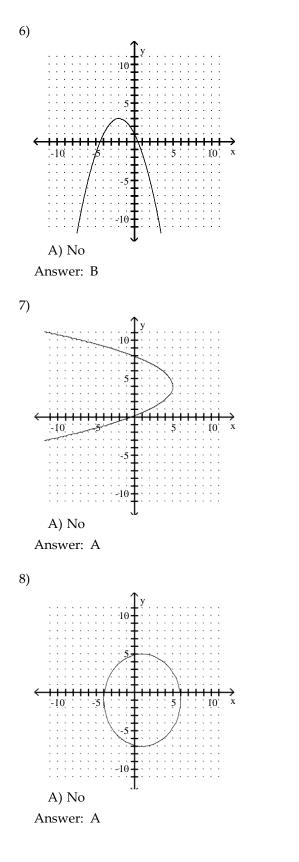
17. E œ &B \square B[#] **18.** (&


4. d	5.	6.	7. d	8. c	9
13. c	b	d	16. b	17. d	•
	14.	15. c			
	b				
					b
					1
					8
					•

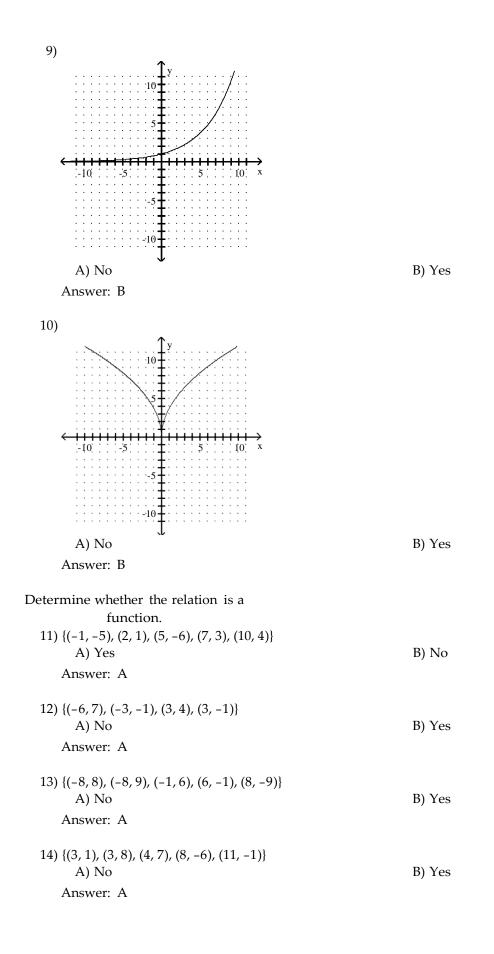
b


MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

For the given pair of variables determine whether a is a function of b, b is a function of a, both, or neither. 1) a is the number of years of formal education of an adult living in the United States, and b is his or her age in years. A) a is a function of b B) Both C) b is a function of a D) Neither Answer: D 2) a is the radius of any spherical bowling ball, and b is its volume. A) b is a function of a D) a is a function of B) Both C) Neither b Answer: B 3) a is the savings account number of a customer at a bank, and b is the number of years the account has been active. A) Neither B) b is a function of a C) a is a function of b D) Both Answer: B


Use the vertical line test to determine whether y is a function of x.

B) Yes


B) Yes

B) Yes

B) Yes

15) {(-5, 4), (-1, 3), (1, 4), (6, -5)} A) Yes Answer: A	B) No
16) {(-7, 7), (-7, 6), (1, -7), (5, 7), (8, 2)} A) Yes Answer: B	B) No
17) {(-6, 4), (-3, -9), (-1, 1), (4, -3)} A) Yes Answer: A	B) No
18) {(-6, 1), (-3, -1), (2, 5), (2, -3)} A) No Answer: A	B) Yes
19) $ \begin{array}{c} x & y \\ \overline{5} & 14 \\ 9 & 12 \\ 5 & 7 \\ 2 & 2 \\ A \end{array} $ Answer: B 20) $ \begin{array}{c} x & y \\ -2 & 7 \\ -1 & 10 \end{array} $	B) No
1 7 2 10 A) Yes Answer: A	B) No
Determine whether the equation defines y as a function of x. 21) $y = 9x + 5$ A) Yes Answer: A	B) No
22) y = -x A) No Answer: B	B) Yes
23) $y = x^2 + 3$ A) Yes Answer: A	B) No
24) $x = y^3$ A) No	B) Yes

Answer: B

25) $y = 8x^2 - 9x - 9$ A) No Answer: B	B) Yes
26) y = 2 A) No Answer: B	B) Yes
27) $x = y^2 - 2$ A) Yes Answer: B	B) No
28) $y^2 = (x - 3)(x + 9)$ A) No Answer: A	B) Yes
29) $y = \sqrt[4]{x}$ A) Yes Answer: B	B) No
30) $x = \begin{vmatrix} 4y \\ A \end{vmatrix}$ A) Yes Answer: B	B) No
Find the domain and	
range. 31) {(-5, -11), (-9, -10), (12, 7), (6, 2), (-3, 3)} A) D = {3, 12, 7, 6, 2}; R = {-9, -10, -5, -11, -3} 2} C) D = {-9, -5, -3, 12, 6}; R = {-10, -11, 3, 7, 2} 6} Answer: C	B) D = {-9, -10, -5, -11, -3}; R = {3, 12, 7, 6, D) D = {-10, -11, 3, 7, 2}; R = {-9, -5, -3, 12,
32) {(-4, 7), (-4, 6), (-9, -2), (-1, -4), (2, 3)} A) D = {-9, -3, -1, -4, 2}; R = {-2, -4, 6, 3, 7} C) D = {-9, -9, -1, -4, 2}; R = {-2, -4, 6, 3, 7} Answer: D	B) D = {-2, -4, 6, 3, 7}; R = {-9, -9, -1, -4, 2} D) D = {-9, -1, -4, 2}; R = {-2, -4, 6, 3, 7}
33) {(2, 1), (6, 3), (-6, 6), (-6, 8)} A) D = {2, 6, -6, 6}; R = {1, 3, 6, 8} C) D = {1, 3, 6, 8}; R = {2, 6, -6} 8} Answer: B	B) D = {2, 6, -6}; R = {1, 3, 6, 8} D) D = {2, 6, -6, -6}; R = {1, 3, 6,
34) {(9, -2), (-2, 2), (2, 3), (-3, 7)} A) $D = \{-3, -2, 2, 9\}; R = \{7, 2, 2, 3, -2\}$ $-2\} C) D = \{-3, -2, 2, 9\}; R = \{7, 2, 3, -2\}$ $2, 9\}$ Answer: C	B) D = {-3, -2, 2, 9}; R = {7, 7, 2, 3, D) D = {7, 2, 3, -2}; R = {-3, -2,

35)
$$y = 4x - 11$$

A) $D = (-\infty, \infty); R = [0, \infty)$
C) $D = (-\infty, \infty); R = (-\infty, \infty)$
Answer: C

B) $D = (-\infty, \infty)$; $R = [-11, \infty)$ D) $D = [0, \infty)$; $R = (-\infty, \infty)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		36) $y = 8x^{6}$ A) $D = [0, \infty); R = [-8, \infty)$ $\infty) C) D = (-\infty, \infty); R = (-\infty, \infty)$ $[8, \infty)$ Answer: B	∞)	B) $D = (-\infty, \infty)$; $R = [0, D) D = (-\infty, \infty)$; $R =$	
A) $D = [0, \infty); R = [0, 7]$ B) $D = (-\infty, \infty); R = (-\infty, m); R = (-\infty, m); R = (-\infty, m); R = (-\infty, m); R = [1, m]$ Answer: C 39) $x = y $ A) $D = (-\infty, \infty); R = (-\infty, m)$ C) $D = [0, \infty); R = (-\infty, m)$ Answer: C Evaluate. 40) If $f(x) = (x - 7)^2$, find $f(3)$. A) -16 B) 100 C) -8 D) $D = [0, \infty); R = [0, \infty)$ Answer: D 41) If $f(x) = 4x + 4 $, find $f(-9)$. A) -13 B) 5 C) 13 D) -5 Answer: D 42) If $f(x) = 5x^2 - 4x - 2$, find $f(6)$. A) 156 B) 154 C) 174 D) 4 Answer: B 43) If $f(x) = x^3 + 6x^2 + 4x - 3$, find $f(4)$. A) 176 B) 53 C) 97 D) 173 Answer: D 44) If $f = \{(2, -6), (5, -3), (6, -1)\}$ and $g(x) = 4x + 9$, find $f(5) + g(5)$. A) 10 B) 26 C) 34 D) 62 Answer: B 45) Find $g(a + 1)$ when $g(x) = \frac{1}{5}x - 3$. A) $\frac{a - 14}{2}$ B) $\frac{a + 14}{2}$ C) $\frac{1}{a} - 5$ D) $\frac{1}{a} - 3$		A) $D = (-\infty, \infty); R = [-3, \infty)$ C) $D = [-3, \infty); R = [0, \infty)$)
$\begin{array}{c} 39) x = \left y \right \\ A) D = (-\infty, \infty); R = (-\infty, \infty) \\ C D = \left[0, \infty \right); R = (-\infty, \infty) \\ Answer: C \end{array} \qquad B) D = (-\infty, \infty); R = \left[0, \infty \right) \\ D) D = \left[0, \infty \right); R = \left[0, \infty \right) \\ Answer: C \end{array}$ Evaluate. $\begin{array}{c} 40) If f(x) = (x - 7)^{2}, find f(3). \\ A) - 16 & B) 100 & C - 8 & D \\ Answer: D & D & D \\ Answer: D & D & D \\ Answer: D & D & D \\ 41) If f(x) = \frac{1}{x} x + \frac{1}{x}, find f(-9). \\ A) - 13 & B + 5 & C + 13 & D \\ Answer: D & D & D \\ 42) If f(x) = 5x^{2} - 4x - 2, find f(6). \\ A) 156 & B + 154 & C + 174 & D \\ Answer: B & D & D \\ 43) If f(x) = x^{3} + 6x^{2} + 4x - 3, find f(4). \\ A + 176 & B + 53 & C + 97 & D \\ 43) If f(x) = x^{3} + 6x^{2} + 4x - 3, find f(4). \\ A + 176 & B + 53 & C + 97 & D \\ 44) If f = \left\{ (2, -6), (5, -3), (6, -1) \right\} and g(x) = 4x + 9, find f(5) + g(5). \\ A + 100 & B + 26 & C + 34 \\ Answer: B & D \\ 45) Find g(a + 1) when g(x) = \frac{1}{5}^{1}x - 3. \\ A = \frac{14} & B + \frac{a + 14}{2} & C + \frac{1}{a} - 5 & D + \frac{1}{a} - 3 \end{array}$		A) $D = [0, \infty); R = [0, 7]$ ∞) C) $D = (-\infty, \infty); R = \{7\}$ $\{1\}$			
40) If $f(x) = (x - 7)^2$, find $f(3)$. A) -16 B) 100 C) -8 D) 16 Answer: D 41) If $f(x) = -\frac{1}{x} + 4 $, find $f(-9)$. A) -13 B) 5 C) 13 D) -5 Answer: D 42) If $f(x) = 5x^2 - 4x - 2$, find $f(6)$. A) 156 B) 154 C) 174 D) 4 Answer: B 43) If $f(x) = x^3 + 6x^2 + 4x - 3$, find $f(4)$. A) 176 B) 53 C) 97 D) 173 Answer: D 44) If $f = \{(2, -6), (5, -3), (6, -1)\}$ and $g(x) = 4x + 9$, find $f(5) + g(5)$. A) 10 B) 26 C) 34 D) 62 Answer: B 45) Find $g(a + 1)$ when $g(x) = \frac{1}{5}x - 3$. A) $\frac{a - 14}{2}$ B) $\frac{a + 14}{2}$ C) $\frac{1}{a} - 5$ D) $\frac{1}{a} - 3$		39) $x = y $ A) $D = (-\infty, \infty); R = (-\infty, \infty)$ C) $D = [0, \infty); R = (-\infty, \infty)$			
40) If $f(x) = (x - 7)^2$, find $f(3)$. A) -16 B) 100 C) -8 D) 16 Answer: D 41) If $f(x) = -\frac{1}{x} + 4 $, find $f(-9)$. A) -13 B) 5 C) 13 D) -5 Answer: D 42) If $f(x) = 5x^2 - 4x - 2$, find $f(6)$. A) 156 B) 154 C) 174 D) 4 Answer: B 43) If $f(x) = x^3 + 6x^2 + 4x - 3$, find $f(4)$. A) 176 B) 53 C) 97 D) 173 Answer: D 44) If $f = \{(2, -6), (5, -3), (6, -1)\}$ and $g(x) = 4x + 9$, find $f(5) + g(5)$. A) 10 B) 26 C) 34 D) 62 Answer: B 45) Find $g(a + 1)$ when $g(x) = \frac{1}{5}x - 3$. A) $\frac{a - 14}{2}$ B) $\frac{a + 14}{2}$ C) $\frac{1}{a} - 5$ D) $\frac{1}{a} - 3$	Fyalu	ate			
A) -13B) 5C) 13D) -5Answer: D42) If $f(x) = 5x^2 - 4x - 2$, find $f(6)$. A) 156B) 154C) 174D) 4Answer: B43) If $f(x) = x^3 + 6x^2 + 4x - 3$, find $f(4)$. A) 176B) 53C) 97D) 173Answer: D44) If $f = \{(2, -6), (5, -3), (6, -1)\}$ and $g(x) = 4x + 9$, find $f(5) + g(5)$. A) 10D) 6245) Find $g(a + 1)$ when $g(x) = \frac{1}{5}x - 3$. A) $\frac{a - 14}{2}$ B) $\frac{a + 14}{2}$ C) $\frac{1}{a} - 5$ D) $\frac{1}{a} - 3$	Litara	40) If $f(x) = (x - 7)^2$, find $f(3)$. A) -16	B) 100	C) -8	D) 16
A) 156B) 154C) 174D) 4Answer: B43) If $f(x) = x^3 + 6x^2 + 4x - 3$, find $f(4)$. A) 176B) 53C) 97D) 173Answer: D44) If $f = \{(2, -6), (5, -3), (6, -1)\}$ and $g(x) = 4x + 9$, find $f(5) + g(5)$. A) 10D) 6244) If $f = \{(2, -6), (5, -3), (6, -1)\}$ and $g(x) = 4x + 9$, find $f(5) + g(5)$. B) 26D) 6245) Find $g(a + 1)$ when $g(x) = \frac{1}{5}x - 3$. A) $\frac{a - 14}{2}$ B) $\frac{a + 14}{2}$ C) $\frac{1}{2}a - 5$ D) $\frac{1}{2}a - 3$		A) -13	B) 5	C) 13	D) -5
A) 176 B) 53 C) 97 D) 173 Answer: D 44) If $f = \{(2, -6), (5, -3), (6, -1)\}$ and $g(x) = 4x + 9$, find $f(5) + g(5)$. A) 10 B) 26 C) 34 D) 62 Answer: B 45) Find $g(a + 1)$ when $g(x) = \frac{1}{5}^{1}x - 3$. A) $\frac{a - 14}{2}$ B) $\frac{a + 14}{2}$ C) $\frac{1}{a} - 5$ D) $\frac{1}{a} - 3$		A) 156		C) 174	D) 4
A) 10 B) 26 C) 34 D) 62 Answer: B 45) Find $g(a + 1)$ when $g(x) = \frac{1}{5}x - 3$. A) $\frac{a - 14}{2}$ B) $\frac{a + 14}{2}$ C) $\frac{1}{a} - 5$ D) $\frac{1}{a} - 3$		A) 176		C) 97	D) 173
A) $\frac{a-14}{2}$ B) $\frac{a+14}{2}$ C) $\frac{1}{a}a-5$ D) $\frac{1}{a}a-3$		A) 10	and g(x) = 4x + 9, find f(5) + B) 26	g(5). C) 34	D) 62
A) $\frac{a-14}{2}$ B) $\frac{a+14}{2}$ C) $\frac{1}{a}a-5$ D) $\frac{1}{a}a-3$		45) Find $g(a + 1)$ when $g(x) = \frac{1}{5}x - 3$.			
		6		C) $\frac{1}{2}a - 5$	D) $\frac{1}{a-3}$
					,

Answer: A

46) Find $g(a - 1)$ when $g(x) = 4x + 2$.			
A) $\frac{1}{4}a + 2$	B) 4a + 1	C) 4a – 2	D) 4a + 2
Answer: C			
47) Find f(a + 3) wh			
	B) $a^2 + 8$	C) $a^2 + 9$	D) $a^2 + 6a + 14$
Answer: D			
	en $f(x) = 4x^2 + 5x - 3$.		
	4 B) $-3k^2 + 4k - 4$	C) $4k^2 - 7k + 6$	D) $4k^2 - 3k + 6$
Answer: A			
49) If $f(x) = 2x^2 + x$,	find $f(x + h) - f(x)$.		
A) $4xh + 2h^2$	B) $4xh + 2h^2 + 2x$	$+ h$ C) $4xh + 2h^2 + h$	D) $2h^2 + h$
Answer: C			
Solve the problem.50) A deep sea diving bell is being lowered at a constant rate. After 12 minutes, the bell is at a depth of 400 feet.After 50 minutes the bell is at a depth of 1600 feet. What is the average rate of lowering per minute?A) 24.0 ft per minuteB) 0.03 ft per minuteC) 32.0 ft per minuteD) 31.6 ft per			
minute	<i>,</i> ,		
Answer: D			
 51) In January 1983, Anna starts a new job and makes an annual salary of \$38,000. By January 1986 her annual salary has increased to \$46,200, and by January 1996 it has increased to \$240,200. What is the average rate of change of her salary between January 1986 and January 1996? A) \$25,220 per year B) \$15,554 per year C) \$20,220 per year D) \$19,400 per year 			
Answer: D			
Find the difference quotient, $\frac{f(x+h)-f(x)}{it. h}$, for the function and simplify			
52) $f(x) = 7x - 11$	11		
A) -7h	B) $\frac{11}{7}$	C) 7	D) 11
Answer: C			
53) $g(x) = 10x^2 + 10x^2$			
A) $10x + 6 + 2$	0h B) $20x + 10$	C) $20xh + 10h + 10h^2$	D) $20x + 10 + 10h$
Answer: D	٨	*	
54) $q(x) = \frac{15}{x+13}$	A n	r :	
-15		А	- <u>-195</u>
A) $\frac{-15}{(x+h+13)}$			B) $\frac{-195}{(x+h+13)(x+13)}$
	e		

C)
$$\frac{15}{(x+13)}$$
 (x + h + 13)(x D) $\frac{-15}{(x+15)^2}$

55)
$$a(x) = \sqrt{4x + 12}$$

A) $\frac{2}{\sqrt{x + h + 3} - \sqrt{x + 3}}$
C) $\frac{6}{\sqrt{x + h + 3} + \sqrt{x + 3}}$
Answer: D
56) $p(x) = 2 - 8x^{3}$
A) $-8(3x^{2} + 3xh + h^{2})$
B) $\frac{2}{2\sqrt{x + 3}}$
D) $\frac{2}{\sqrt{x + h + 3} + \sqrt{x + 3}}$
C) $-8(3x^{2} - 3x - h)$
D) $-8(x^{2} - xh - h^{2})$
Answer: A

Solve the problem.

57) Suppose that a rectangular yard has a width of x and a length of 8x. Write the perimeter P as a function of x.

A) P = 18x B) $P = 8x^2$ C) P = 9x D) $P = 18x^2$ Answer: A

58) Suppose that a circular coin has a circumference of C, a radius of r, and a diameter of d. Write C as a function of d.

A) C = πd^2	B) C = $2\pi d$	C) C = $\underline{\underline{d}}$	D) C = πd
		π	

Answer: D

59) Elissa wants to set up a rectangular dog run in her backyard. She has 30 feet of fencing to work with and wants to use it all. If the dog run is to be x feet long, express the area of the dog run as a function of x.

A) $A = 14x - x^2$ B) $A = 15x - x^2$ C) $A = 17x^2 - x$ D) $A = 16x - x^2$ Answer: B

60) Bob wants to fence in a rectangular garden in his yard. He has 64 feet of fencing to work with and wants to use it all. If the garden is to be x feet wide, express the area of the garden as a function of x.

A)
$$A = 32x - x^2$$

Answer: A
B) $A = 34x^2 - x$
C) $A = 31x - x^2$
D) $A = 33x - x^2$

61) Sue wants to put a rectangular garden on her property using 90 meters of fencing. There is a river that runs through her property so she decides to increase the size of the garden by using the river as one side of the rectangle. (Fencing is then needed only on the other three sides.) Let x represent the length of the side of the rectangle along the river. Express the garden's area as a function of x.

A)
$$A = 44x - \frac{1}{4}x^2$$
 B) $A = 46x - 2x^2$ C) $A = 45x^2 - x$ D) $A = 45x_{\overline{2}} \frac{1}{2}x^2$

Answer: D

62) A rectangular sign is being designed so that the length of its base, in feet, is 18 feet less than 4 times the height,

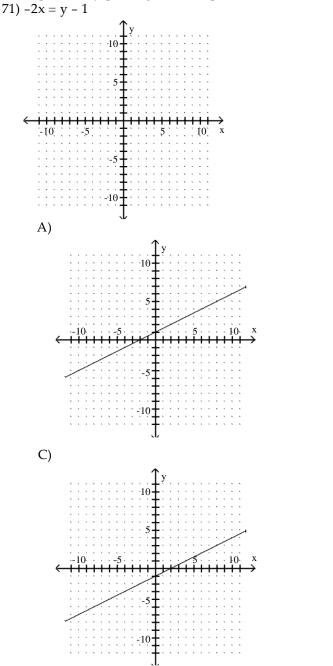
h. Express the area of the sign as a function of h.

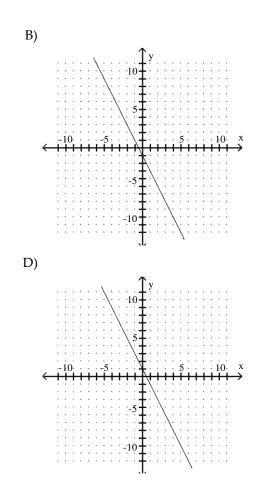
A)
$$A = -18h^2 + 2h$$

Answer: C
B) $A = 18h - 2h^2$
C) $A = -18h + 4h^2$
D) $A = -18h + h^2$

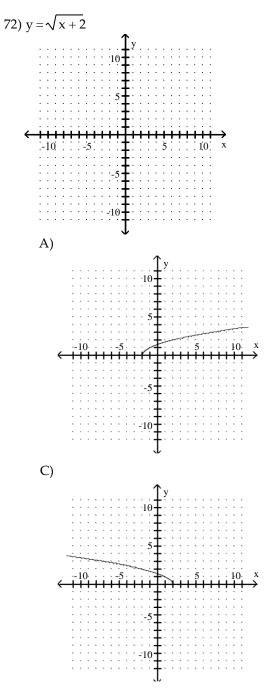
63) Assume that the sales of a ce sales were \$4500 in 1982 and sales S(x).				
A) $S(x) = 58,500x + 4500$ C) $S(x) = 11,700x + 63,000$		B) $S(x) = 58,500x + 63,000$ D) $S(x) = 11,700x + 4500$)	
Answer: D				
64) Let $C(x) = 600 + 20x$ be the co- dollar, to produce 50 items.	ost to manufacture x items.	Find the average cost per i	tem, to the nearest	
A) \$248	B) \$1625	C) \$32	D) \$1550	
Answer: C				
65) Let R(x) = -19x + 175 repre		ts present in a large class, w	here x represents the	
of hours of study required w	number reekly. What is the rate of c	hange of the number of stud	lents in the class with	
respect	certy. What is the face of e	hange of the number of stat	tento in the clubb with	
to the number of hours of stu	ıdy?			
A) -19	B) 19	C) 175	D) -175	
Answer: A				
66) The cost of manufacturing a	66) The cost of manufacturing a molded part is related to the quantity of parts produced during a production run.			
When 100 parts are produced average cost per part?	d, the cost is \$300. When 30	00 parts are produced, the co	ost is \$1900. What is the	
A) \$9.00 per part part	B) \$0.13 per part	C) \$5.33 per part	D) \$8.00 per	
Answer: D				
67) Suppose the sales of a particular brand of appliance satisfy the relationship $S(x) = 60x + 3300$, where $S(x)$ represents the number of sales in year x , with $x = 0$ corresponding to 1982. In what year would the sales be 3720?				
A) 1986	B) 1989	C) 1987	D) 1988	
Answer: B				
 68) The mathematical model C = 700x + 50,000 represents the cost in dollars a company has in manufacturing x items during a month. How many items were produced if costs reached \$470,000? A) 469,300 items B) 743 items C) 600 items D) 529 items 				
Answer: C	,	,	,	
69) The revenue in dollars from	the sale of concert tickets a	t x dollars each is given by t	he function	
$R(x) = 19,000x - 500x^2$. Find		· ·		
A) At 20 per ticket, reven price.	ue is increasing at \$105 pe	er dollar change in ticket		
 B) At 20 per ticket, revenue is decreasing at \$105 per dollar change in ticket price. C) At 20 per ticket, revenue is increasing at \$1050 per dollar change in ticket price. 				
D) At 20 per ticket, reven	<u> </u>	follar change in ticket price. per dollar change in ticket		
price. Answer: D				

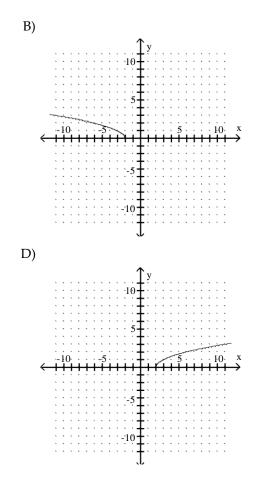
70) The amount of tin A (in square inches) needed to make a tin can with radius r inches and volume 23 cubic

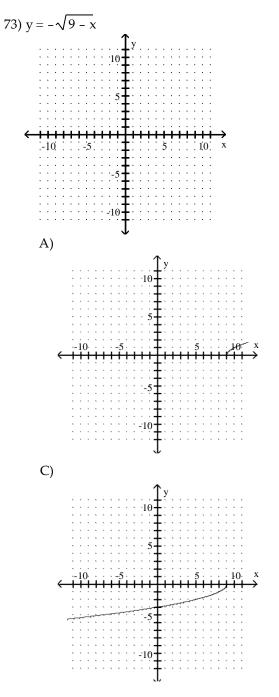

inches can be found by the function $A(r) = \frac{46}{0.1} + 2\pi r^2$. Find the difference quotient when r = 2.2 in. and h = 0.1. r

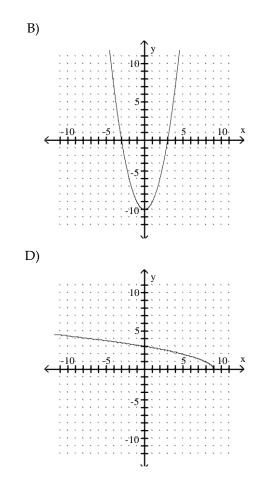

Use 3.14 for π . Interpret the result.

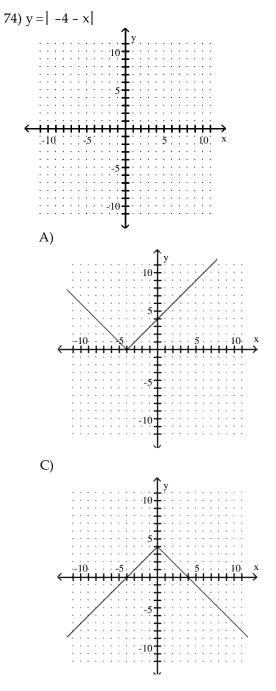
A) At r = 2.2 in., A is decreasing at 19.2 in.² per 1 in. increase in r. B) At r = 2.2 in., A is decreasing at 192 in.² per 1 in. increase in r. C) At r = 2.2 in., A is increasing at 192 in.² per 1 in. increase in r. D) At r = 2.2 in., A is increasing at 19.2 in.² per 1 in.

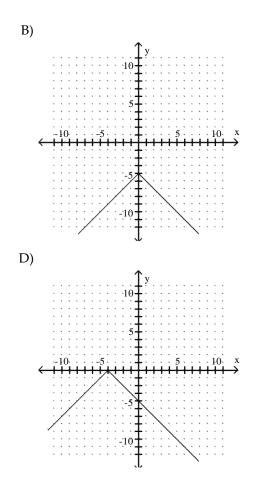

Answer: D

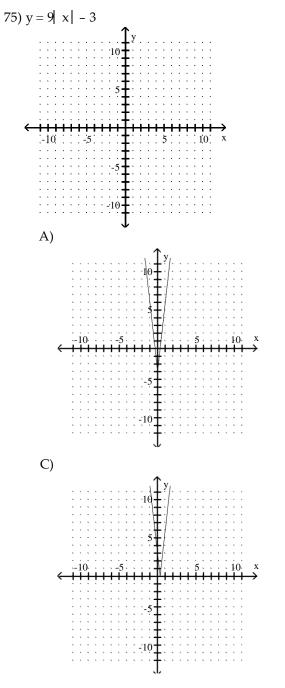

Graph the equation by plotting ordered pairs of numbers.



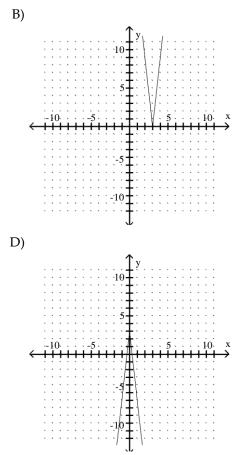

Answer: D

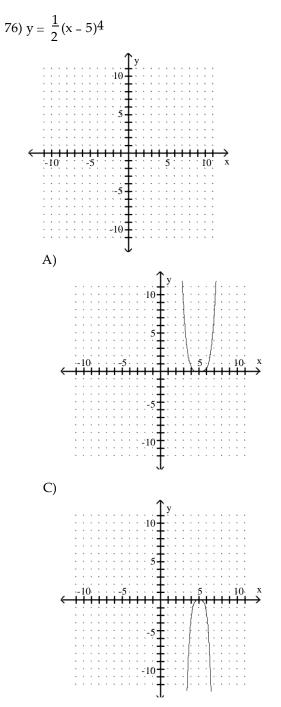



Answer: A

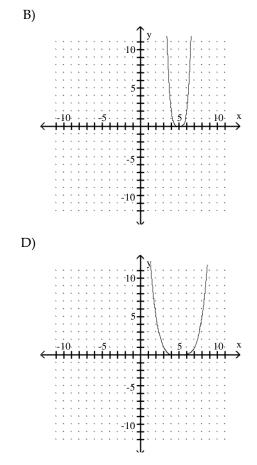


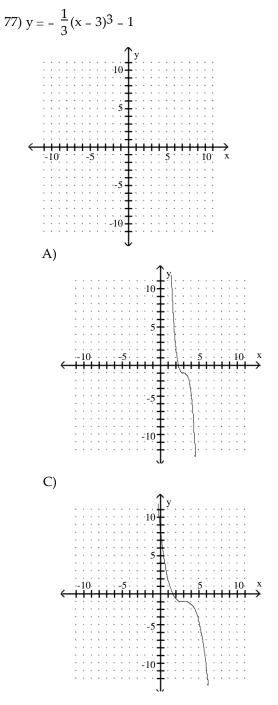
Answer: C

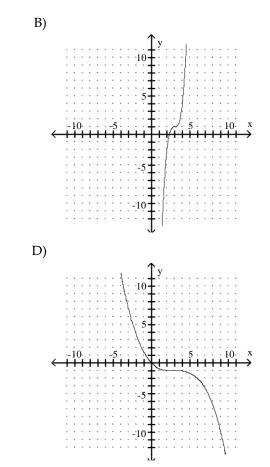


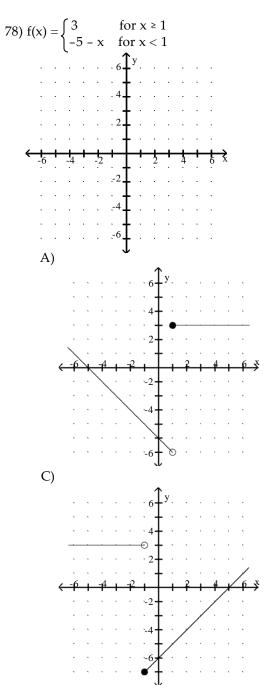


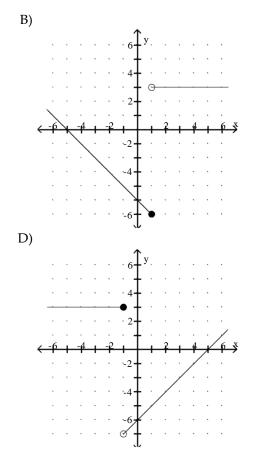
Answer: A

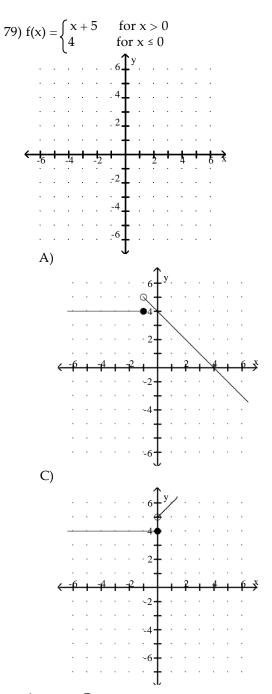


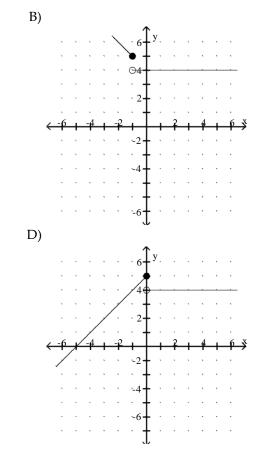


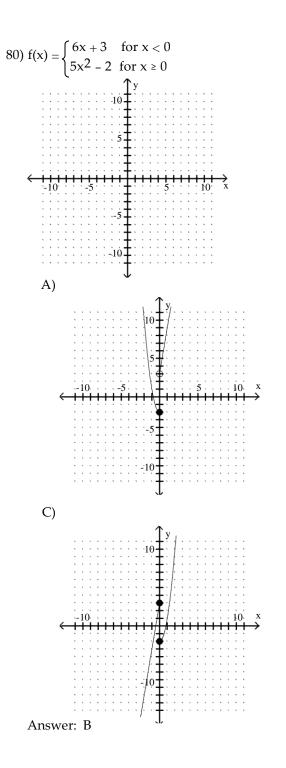


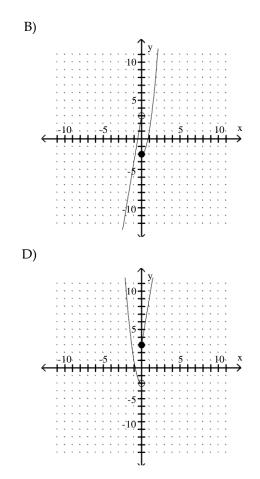


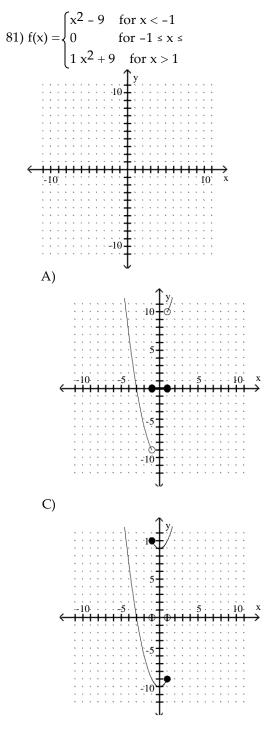


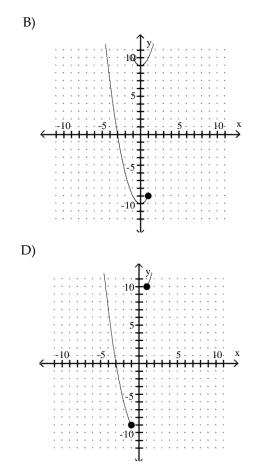

Graph the function.

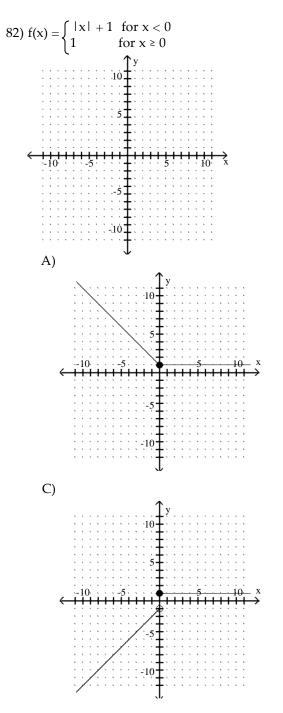


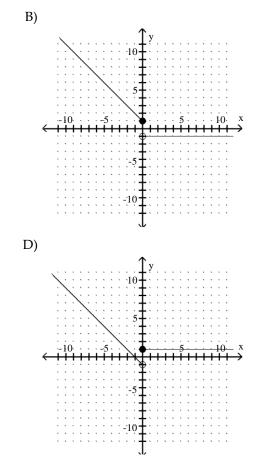

Answer: A

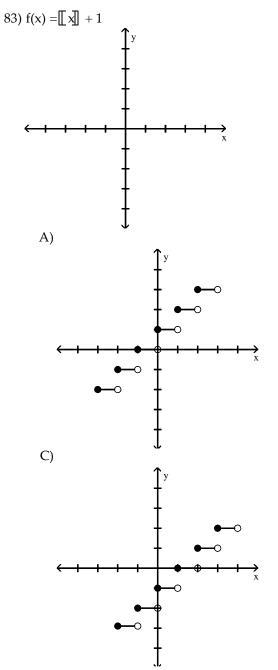


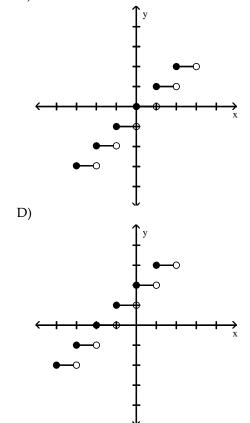


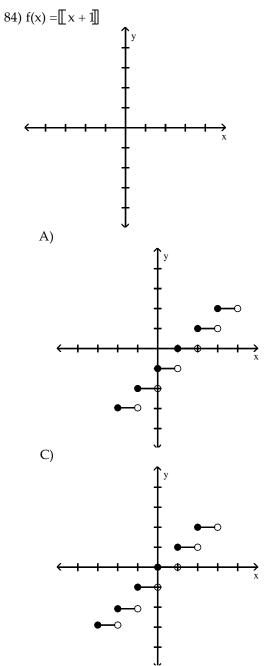

Answer: C

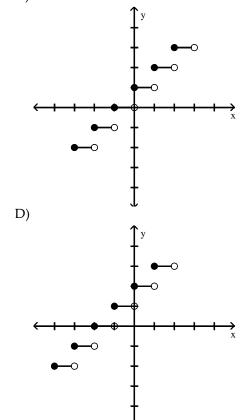


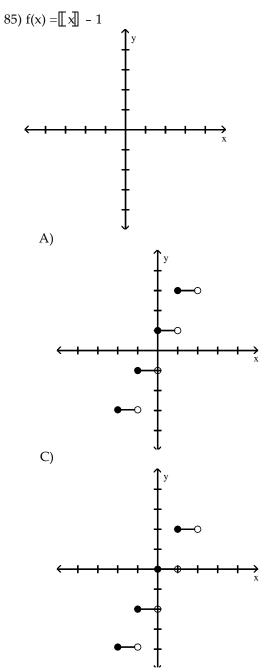


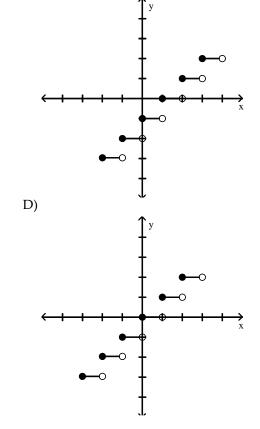

Answer: A

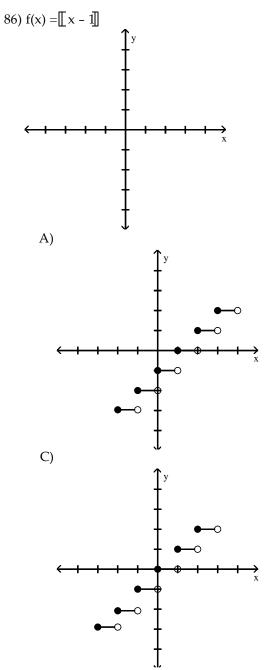


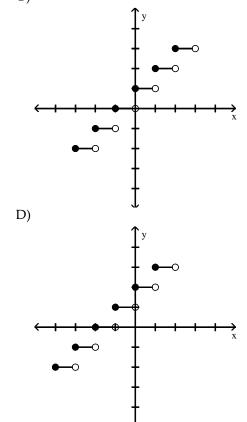

Answer: A

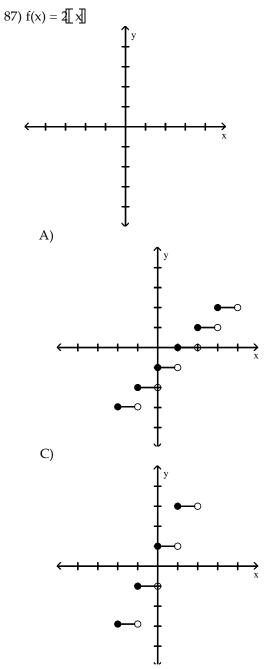


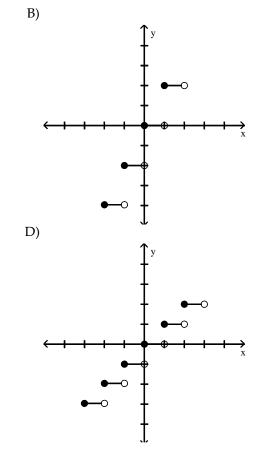


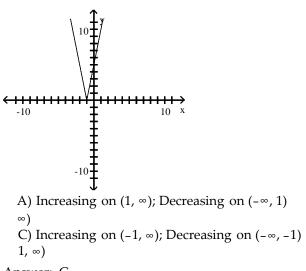


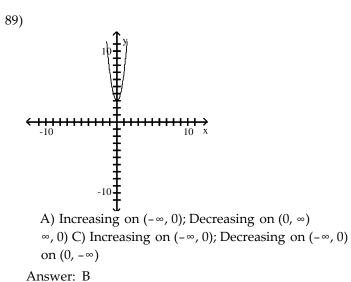







Answer: B

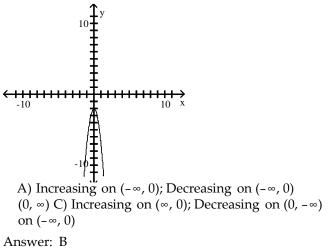




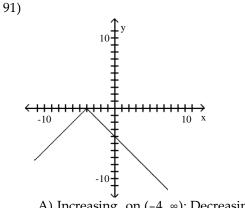
Answer: B

Determine the intervals on which the function is increasing, decreasing, and constant. 88)

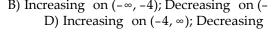
Answer: C



B) Increasing on $(-\infty, 1)$; Decreasing on $(1, \infty)$


D) Increasing on $(-\infty, -1)$; Decreasing on

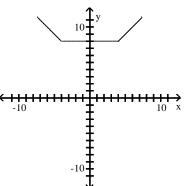
B) Increasing on $(0, \infty)$; Decreasing on (– D) Increasing on $(\infty, 0)$; Decreasing



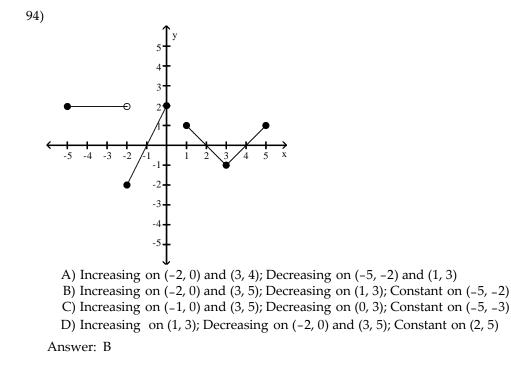
B) Increasing on $(-\infty, 0)$; Decreasing on D) Increasing on $(0, \infty)$; Decreasing

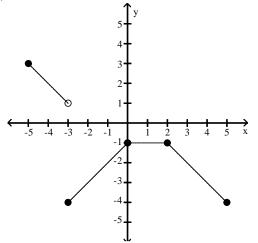
A) Increasing on $(-4, \infty)$; Decreasing on $(-\infty, -4)$ B) Increasing on $(-\infty, -4)$; Decreasing on ∞ , -4) C) Increasing on (- ∞ , -4); Decreasing on (-4, ∞) on (-4, ∞)

92)


Answer: C

B) Increasing on $(0, \infty)$; Decreasing on (-D) Increasing on $(-\infty, \infty)$





A) Increasing on $(-\infty, 4)$; Decreasing on $(-\infty, -4)$; Constant on (4, -4); ∞) B) Increasing on (4, ∞); Decreasing on (- ∞ , -4); Constant on (-4, 4) C) Increasing on $(4, \infty)$; Decreasing on $(-4, \infty)$; Constant on (-4, 4) D) Increasing on $(-\infty, 4)$; Decreasing on $(-4, \infty)$; Constant on $(4, \infty)$

95)

A) Increasing on (-3, -1); Decreasing on (-5, -2) and (2, 4); Constant on (-1, 2) B) Increasing on (-3, 1); Decreasing on (-5, -3) and (0, 5); Constant on (1, 2)

C) Increasing on (-5, -3) and (2, 5); Decreasing on (-3, 0); Constant on (0, 2) D) Increasing on (-3, 0); Decreasing on (-5, -3) and (2, 5); Constant on (0, 2)

Answer: D

Find the domain and range.

96)
$$f(x) = \sqrt{x^2 - 81}$$

A) $D = (-\infty, -9] \cup [9, \infty)$, $R = (-\infty, \infty)$
C) $D = (-\infty, -9] \cup [9, \infty)$, $R = [0, \infty)$
Answer: C
B) $D = [-9, 9]$, $R = [0, \infty)$
D) $D = (-\infty, \infty)$, $R = [0, \infty)$

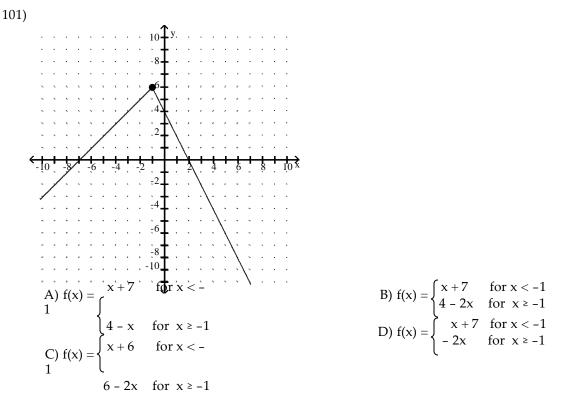
97)
$$f(x) = \frac{x+9}{|_{+9}} x_{|}$$
A)
$$D = (-\infty, -9) \cup (-9, \infty), R = [0, \infty)$$
B)
$$D = (-\infty, 9) \cup (9, \infty), R \notin -1$$
C)
$$D = (-\infty, 9) \cup (9, \infty), R \notin -1$$
D)
$$D = (-\infty, -9) \cup (-9, \infty), R \notin -1$$
Answer: D

Identify the intervals on which the given function is increasing, decreasing, or constant. 98)

 $f(x) = \begin{cases} x+6 & \text{for } x < -3 \\ \sqrt{9-x^2} & \text{for } -3 \le x \le 3 \\ -2 & \text{for } x > 3 \end{cases}$ A) inc (-3, 0) B) inc (-∞, -3), (0, 3) dec (-3, 0) dec (-3, 0) const (-∞, -3), (-3, 0) dec (-3, 0) const (3, ∞) ∞) C) inc (-∞, -3), (-3, 0) dec (0, 3), (-3, 0) dec (0, 3), (-3, 0) dec (0, 3), (-3, 0) dec (0, 3) const (3, ∞) \end{cases}

Answer: D

99)

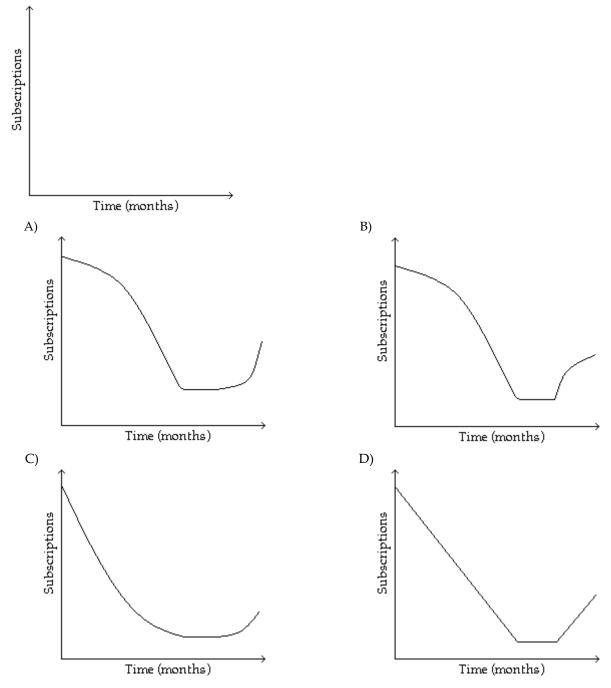

C) inc $(-\infty, -5)$, (0, D) inc (-5, 0)1) dec $(-\infty,$ dec (-5, 0), (1, 5) const (0, $\infty)$ ∞)

C) $f(x) = \begin{array}{c} 3 & \text{for } x < 1 \ x \\ -1 & \text{for } x \ge 1 \end{array}$

B)
$$f(x) = \begin{pmatrix} 3 & \text{for } x < 0 \\ & \text{Answer: A} \end{pmatrix}$$
 D) $f(x) = \begin{cases} 1 - x \\ 0 - x \\ \\ \end{cases}$

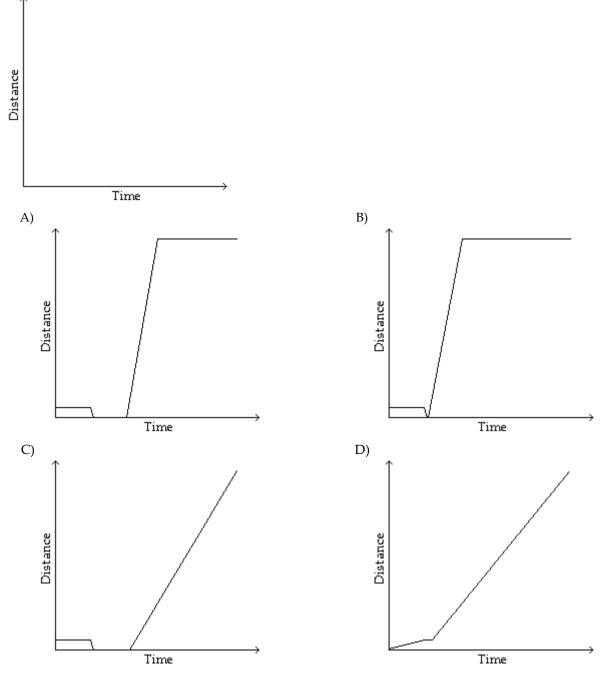
for $x \ge 0$

for $x \le 1$ for x > 1


Use the minimum and maximum features of a graphing calculator to find approximately the intervals on which the function is increasing or decreasing. Round your values to two decimal places, if necessary.

102) $y = -3x^2 - 4x + 1$ A) inc $(-\infty, -0.67)$, dec $(-0.67, \infty)$ B) dec (-∞, -0.67), inc (-0.67, ∞) C) inc (-1.55, -0.67), dec (-0.67, -1.55, ∞) D) inc (-∞, -1.55), dec (-1.55, ∞) Answer: A 103) $y = x^4 - 9x^2 + 18$ A) dec (-∞, -2.45), (-1.73, 1.73), (2.45, B) dec (-∞, -2.12), (2.12, ∞) ∞) inc (-2.45, -1.73), (1.73, inc (-2.12, 2.12) 2.45) C) dec (-∞, -2.12), (0, D) inc (-∞, -2.12), (0, 2.12) 2.12) dec (-2.12, 0), (2.12, inc (-2.12, 0), (2.12, ∞) ∞) Answer: C 104) y = |x + 1| + |x - 4| - 10A) inc (10, ∞), dec (- ∞ , 1) B) inc $(1, \infty)$, dec $(-\infty, 4)$ C) inc $(-\infty, -1)$, dec $(4, \infty)$ D) inc $(4, \infty)$, dec $(-\infty, -1)$

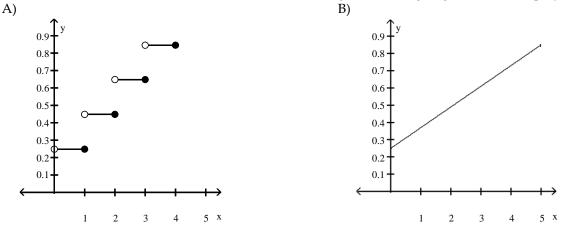
Answer: D


Sketch a graph to represent the situation described.

105) Subscriptions to a magazine fell rapidly during the first three months of the year 2000. During the next three months, subscriptions continued to fall but more and more slowly. After that, subscriptions were constant for two months, and then for the next two months subscriptions rose again, very slowly at first and then more quickly.

106) Janice jogged twice around a circular race track, which took her 4 minutes, then jogged to the center of the track and rested for 4 minutes before walking home slowly at a constant rate, which took her 12 minutes. Sketch a graph of her distance from the center of the race track as a function of time. Assume that the route she takes home is a straight line from the center of the race track.

Answer: C


Solve the problem.

107) Employees of a publishing company received an increase in salary of 5% plus a bonus of \$600. Let S(x) represent the new salary in terms of the previous salary x. Find the value of S(19,000).

	A) \$17,524	B) \$19,600	C) \$29,100	D) \$20,550
--	-------------	-------------	-------------	-------------

Answer: D

108) Assume it costs 25 cents to mail a letter weighing one ounce or less, and then 20 cents for each additional ounce or fraction of an ounce. Let L(x) be the cost of mailing a letter weighing x ounces. Graph y = L(x).

Answer: A

109) A video rental company charges \$3 for the first day, and \$2 for each additional day, for renting video tape. Use the greatest integer function and write an expression for renting a video tape for x days.
A) y = [[2x + 3]]
B) y + 3 = [1x]
C) y = 2x + 3
D) y = [2x -]1 + 3

Answer:	D
1 11 13 VV C1.	$\boldsymbol{\nu}$

110) Suppose a car rental company charges \$134 for the first day and \$84 for each additional or partial day. Let S(x)

represent the cost	of renting a car for x days. Find	l the value of S(4.5).	
A) \$428	B) \$470	C) \$512	D) \$378
Answer: B			

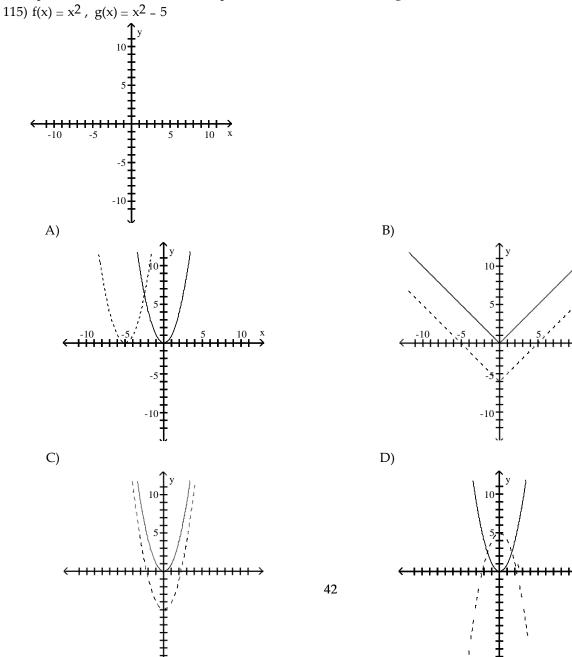
111) Suppose a life insurance policy costs \$16 for the first unit of coverage and then \$4 for each additional unit of coverage. Let C(x) be the cost for insurance of x units of coverage. What will 10 units of coverage cost?

A) \$40	B) \$56	C) \$52	D) \$24
Answer: C			

112) A salesperson gets a commission of \$1600 for the first \$10,000 of sales, and then \$800 for each additional \$10,000 or partial of sales. Let S(x) represent the commission on x dollars of sales. Find the value of S(75,000).
A) \$7600
B) \$6000
C) \$6800
D) \$7200

```
Answer: D
```

113) The function $E(x) = 0.0049x^3 - 0.0058x^2 + 0.175x + 1.02$ gives the approximate total earnings of a company, in millions of dollars, where x = 0 corresponds to 1996, x = 1 corresponds to 1997, and so on. This model is valid for the years from 1996 to 2000. Determine the earnings for 1998. Round to the nearest hundredth when necessary.

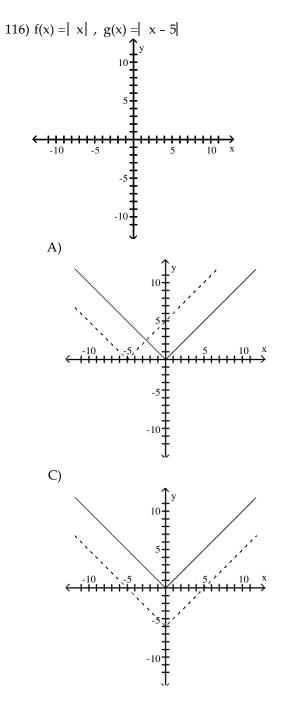

```
A) $1.39 millionB) $1.63 millionC) $1.43 millionD) $1.19 millionAnswer: A
```

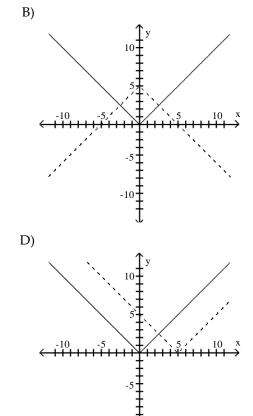
114) A rectangular box with volume 188 cubic feet is built with a square base and top. The cost is \$1.50 per square foot for the top and the bottom and \$2.00 per square foot for the sides. Let x represent the length of a side of the base. Express the cost of the box as a function of x. Give the function and state its domain.

A)
$$C(x) = 3x^2 + \frac{75}{2}$$

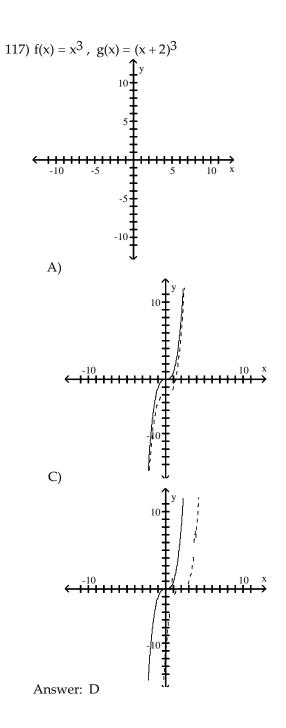
x
Domain: $\{x \mid x > \frac{15}{04} \times x\}$
A) $C(x) = 3x^2 + \frac{15}{04} \times x$
C) $C(x) = 3x^2 + \frac{15}{04} \times x^2$
Domain: $\{x \mid x > 0\}$
Domain: $\{x \mid x > 0\}$
Domain: $\{x \mid x > 0\}$

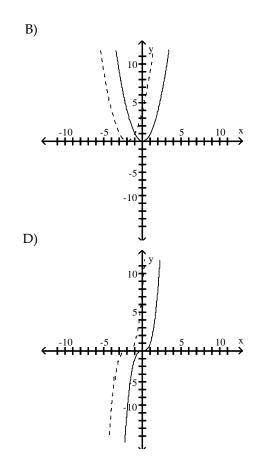
Answer: C

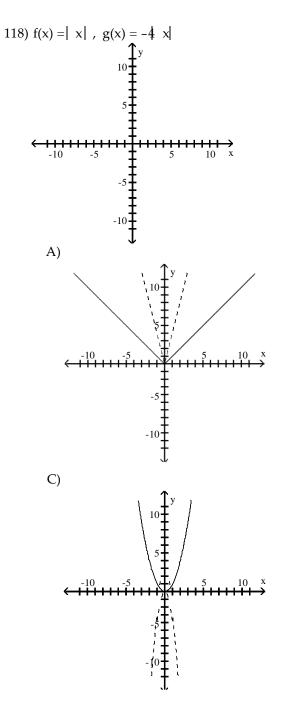

Graph the pair of functions on the same plane. Use a dashed line for g(x).

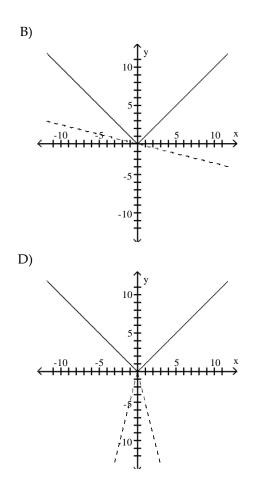


-10	-5	5	10 x	-10	-5 ,	5	10	х
	-5				-5			
	-10				′-10	L 1		
						۱.		

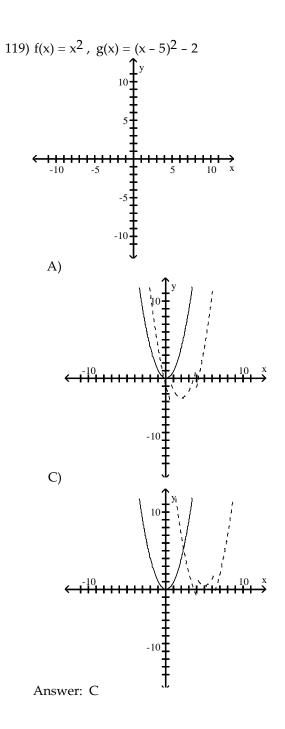

Answer: C

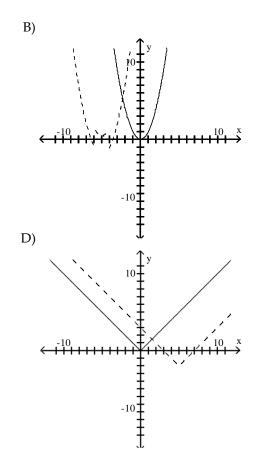

r P

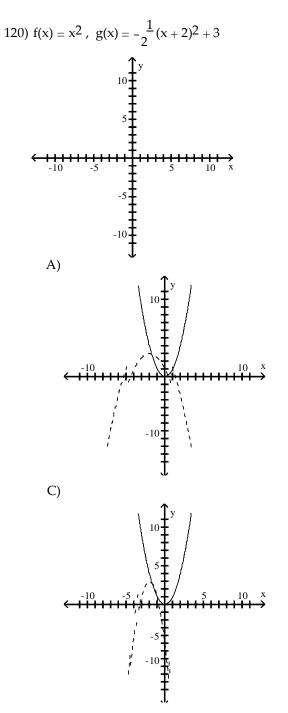


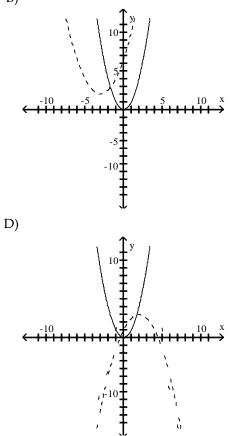


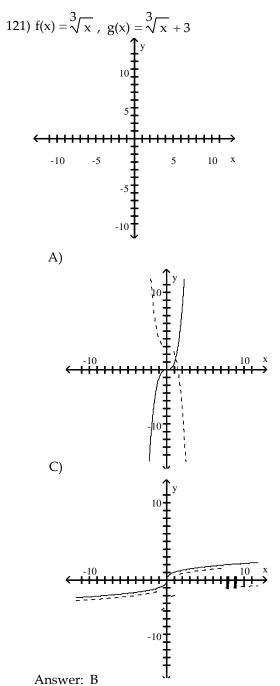
Answer: D

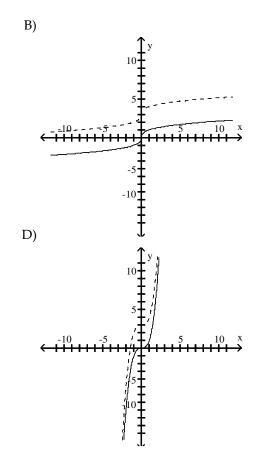


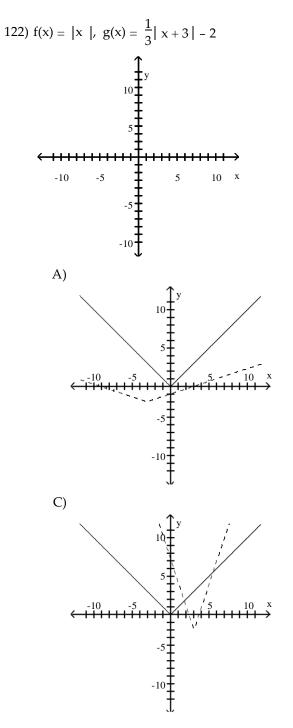


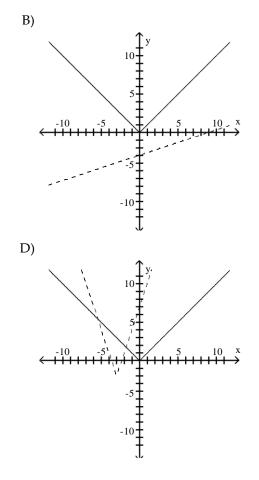


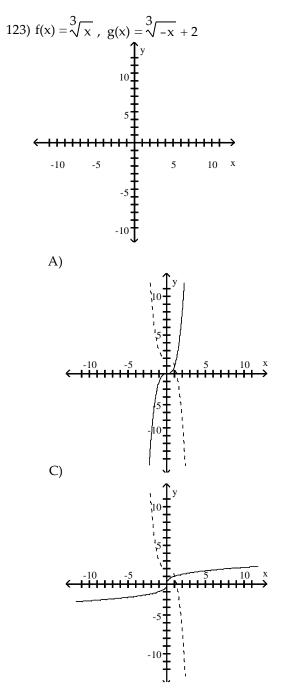

Answer: D

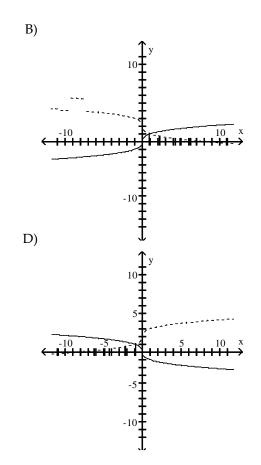


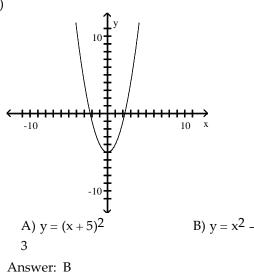


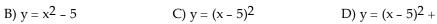


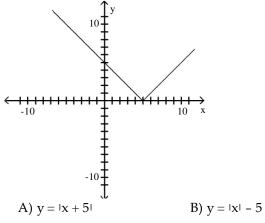

Answer: A



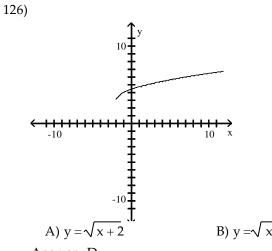


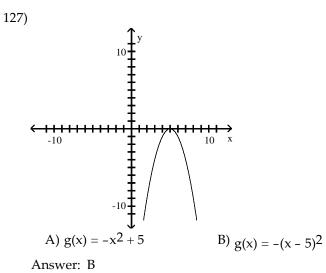

Answer: A



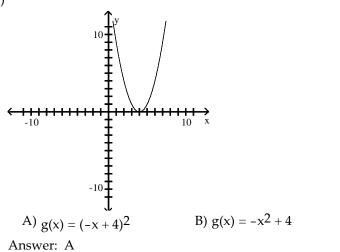

Answer: B

Match the function with the graph. 124)

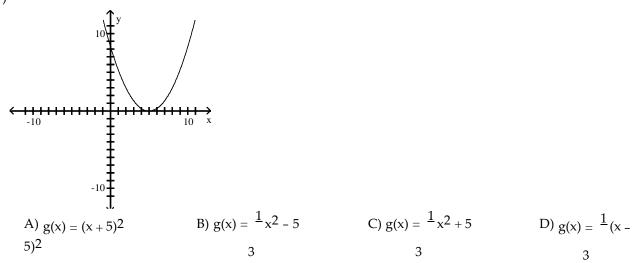


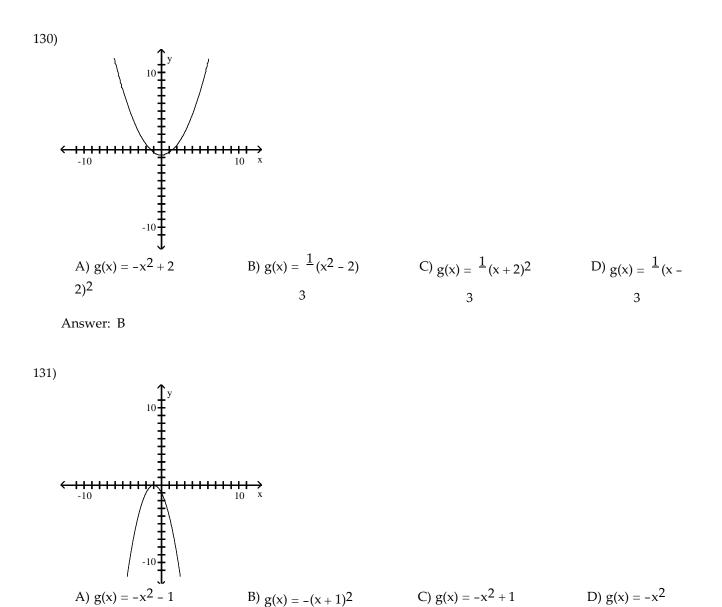

C) $y = x - 5 $	D) $y = x - 5 + 1$
-,,	

Answer: C


B) $y = \sqrt{x-2}$ C) $y = \sqrt{x+3}$ D) $y = \sqrt{x+2+3}$

C)
$$g(x) = (x+5)^2$$
 D) $g(x) = -x^2 - 5$


128)


B) $g(x) = -x^2 + 4$ C) $g(x) = (-x - 4)^2$ D) $g(x) = -x^2 - 4$

1 110 11 01

129)

Answer: D

Answer: B

Write the equation of the graph after the indicated transformation(s).

132) The graph of $y = \sqrt{x}$ is translated 3 units to the right. A) $y = \sqrt{x+3}$ B) $y = \sqrt{x}+3$ C) $y = \sqrt{x}-3$ D) $y = \sqrt{x-3}$ Answer: D

133) The graph of $y = x^2$ is translated 7 units to the left and 6 units downward. A) $y = (x - 6)^2 + 7$ B) $y = (x + 7)^2 - 6$ C) $y = (x - 7)^2 - 6$ D) $y = (x + 6)^2 - 7$ Answer: B

134) The graph of $y = x^2$ is vertically stretched by a factor of 5, and the resulting graph is reflected across the x-axis.

A)
$$y = 5x^2$$

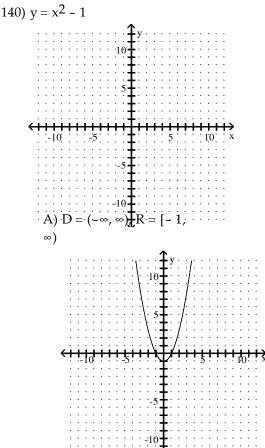
Answer: B
B) $y = -5x^2$
C) $y = 5(x - 5)x^2$
D) $y = (x - 5)^2$

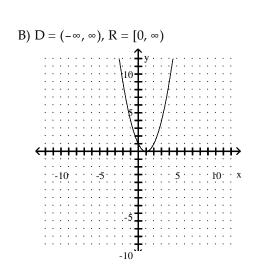
135) The graph of $y = x^3$ is shifted 3.0 units to the right and then vertically shrunk by a factor of 0.3. A) $y = 0.3(x - 3.0)^3$ B) $y = 0.3x^3 + 3.0$ C) $y = 0.3(x + 3.0)^3$ D) $y = 3.0(x - 0.3)^3$ Answer: A 136) The graph of y = |x| is vertically stretched by a factor of 5.1. This graph is then reflected across the x-axis. Finally, the graph is shifted 0.42 units downward.

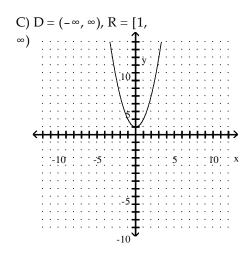
B) y = 5.1 k - 0.42 C) y = -5|1|x - 0.42 D) y = 5.1 + x - 0.42A) y = 5.1 x - 0.420.42

Answer: C

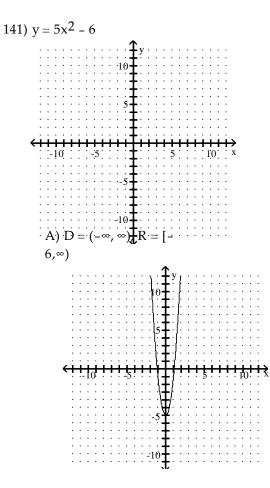
137) The graph of y = \sqrt{x} is shifted 2 units to the left. Then the graph is shifted 9 units upward. B) $y = \sqrt{x+2+9}$ C) $y = \sqrt{x+9+2}$ A) $v = \sqrt{x - 2} + 9$ D) $y = \sqrt{x+2}$ Answer: B

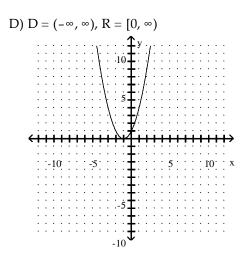

138) The graph of y $\sqrt[3]{x}$ is shifted 1.2 units to the left. This graph is then vertically stretched by a factor of 7.6.

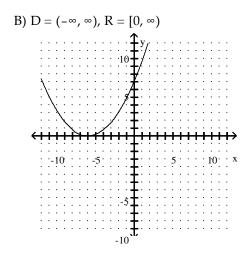

Finally, the graph is reflected across the x-axis. A) $y = -7.6\sqrt[3]{x + 1.2}$ B) $y = -7.6\sqrt[3]{x - 1.2}$ C) $y = 7.6^{3}x + 1.2$ D) $y = -1.2\sqrt[3]{x + 7.6}$ Answer: A

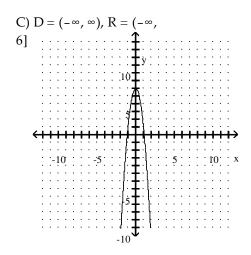

139) The graph of y = |x| is reflected across the y-axis. This graph is then vertically stretched by a factor of 4.6. Finally, the graph is shifted 4 units downward.

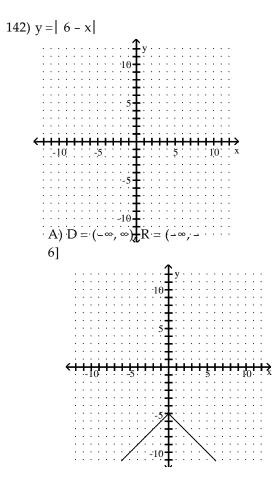
A) y = -4.6 x - 4Answer: C

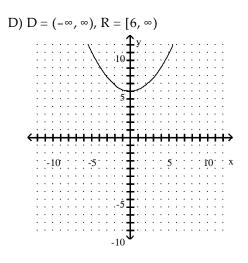

Use transformations to graph the function and state the domain and range.

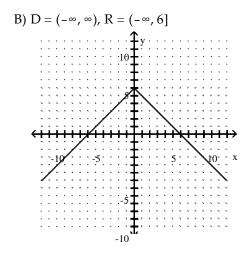


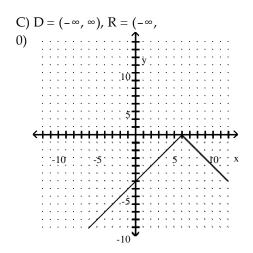


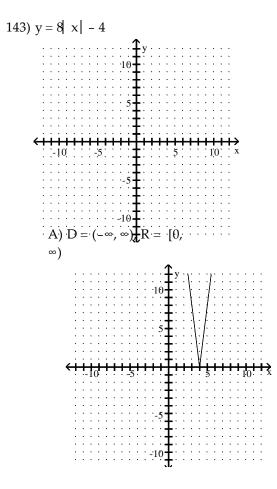


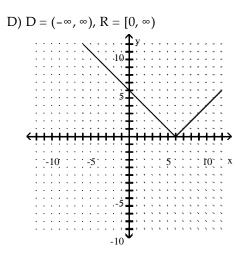


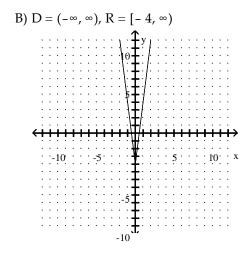


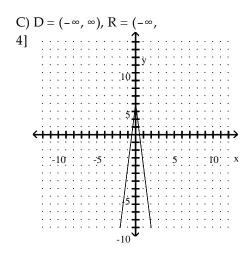


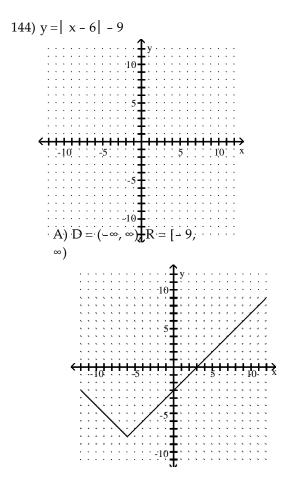


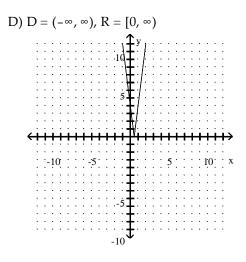


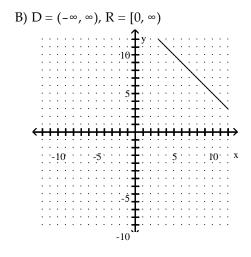


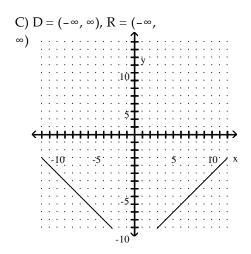


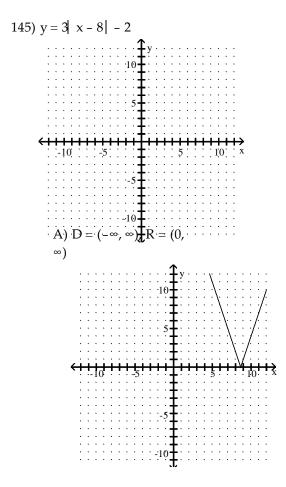


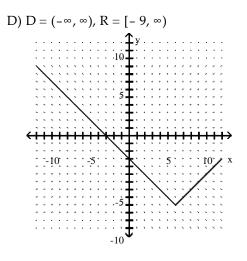


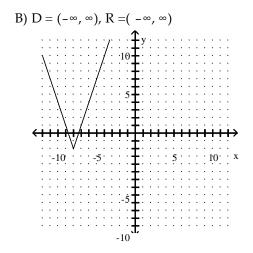


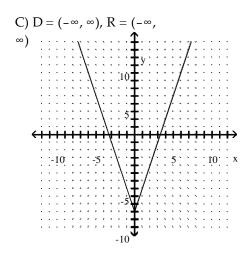


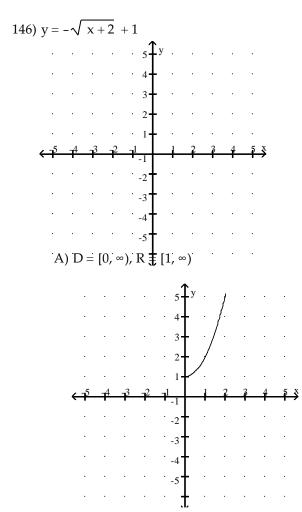


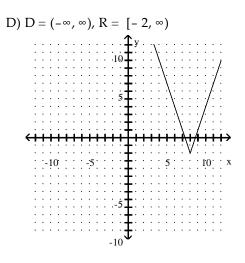


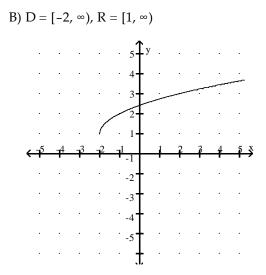


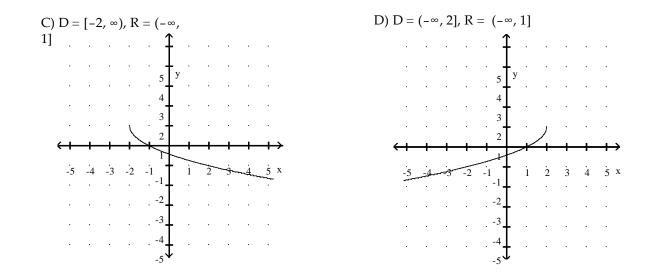




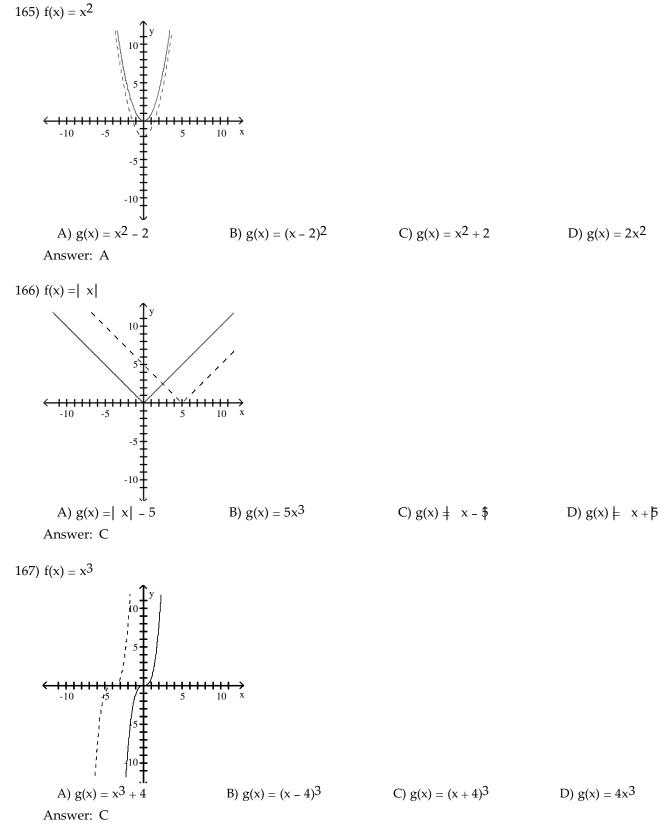


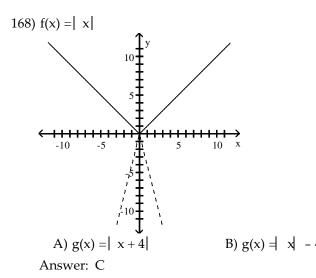




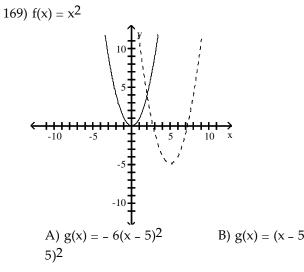


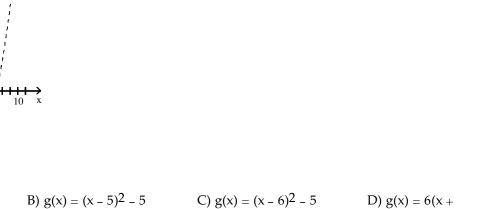
List the symmetries of the given function, if there are any. Otherwise, state "No

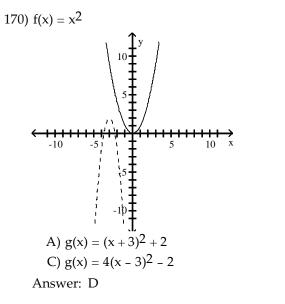

	symmetry.		
147) $f(x) = -3x^2 + 4$ A) y-axis symmetry	B) Origin	C) x-axis	D) No
Answer: A			
148) f(x) = 3x + 2 A) x-axis symmetry Answer: B	B) y-axis	C) Origin	D) No
149) $f(x) = -4x^3$			
A) y-axis symmetry	B) x-axis	C) Origin	D) No
Answer: C			
150) $f(x) = 4x^2 + 2$ A) x-axis, y-axis Answer: C	B) Origin	C) y-axis	D) x-axis
151) $f(x) = -8x^3 + 7x$ A) x-axis axis Answer: C	B) x-axis, origin	C) Origin	D) x-axis, y-
152) $f(x) = -4x^5 + 4x^3$ A) x-axis, y-axis, origin C) y-axis Answer: B		B) Origin D) No symmetry	


symmetry".

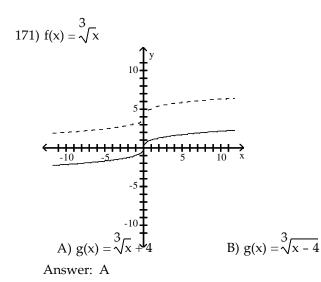
153) $f(x) = -0.13x^2 + x + 2$ A) Origin symmetry	B) y-axis	C) x-axis	D) No
Answer: B			
154) $f(x) = -7x^4 - 6x + 8$ A) x-axis symmetry	B) Origin	C) x-axis, origin	D) No
Answer: D			


155) $f(x) = x + 8 $ A) $x = 8$ Answer: D	B) y-axis	C) x = -8, origin	D) x = -8
156) $f(x) = x + \frac{1}{x^2}$ A) Origin symmetry	B) y-axis, origin	C) y-axis	D) No
Answer: D			
Determine whether the function is e	even, odd, or neither.		
157) $f(x) = 4x^2 - 5$ A) Neither Answer: C	B) Odd		C) Even
158) $f(x) = (x + 9)(x + 9)$ A) Odd Answer: C	B) Even		C) Neither
159) $f(x) = -5x^3 + 3x$ A) Even Answer: B	B) Odd		C) Neither
160) $f(x) = -8x^5 + 8x^3$ A) Even Answer: C	B) Neither		C) Odd
161) $f(x) = 0.29x^2 + x + 3$ A) Neither Answer: C	B) Odd		C) Even
162) $f(x) = -9x^4 + 5x - 8$ A) Even Answer: B	B) Neither		C) Odd
163) $f(x) = \begin{vmatrix} x^2 + x \end{vmatrix}$ A) Even Answer: C	B) Odd		C) Neither
164) $f(x) = x^3 - \frac{1}{1}$			
x A) Neither Answer: C	B) Even		C) Odd

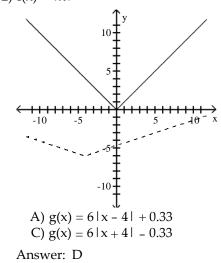

The graph of the given function is drawn with a solid line. The graph of a function, g(x), transformed from this one is drawn with a dashed line. Find a formula for g(x).



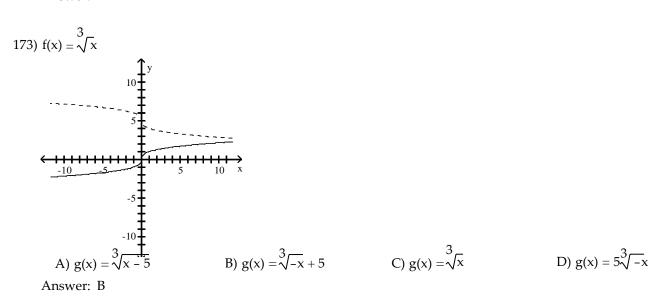
B) $g(x) = \frac{1}{x} - 4$ C) $g(x) = -\frac{1}{4} + \frac{1}{x}$ D) $g(x) = \frac{1}{x} - \frac{1}{4}$



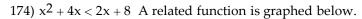
Answer: B

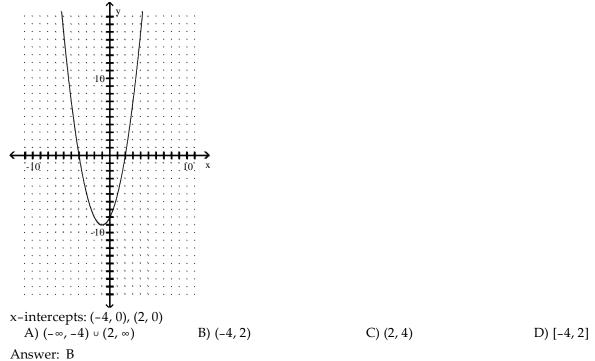


B) $g(x) = -4(x+3)^2$ D) $g(x) = -4(x+3)^2 + 2$

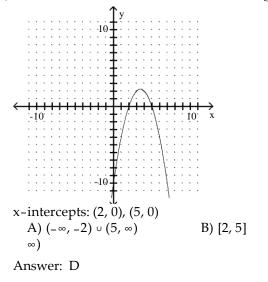


C)
$$g(x) = \sqrt[3]{x+4}$$
 D) $g(x) = 4\sqrt[3]{x}$

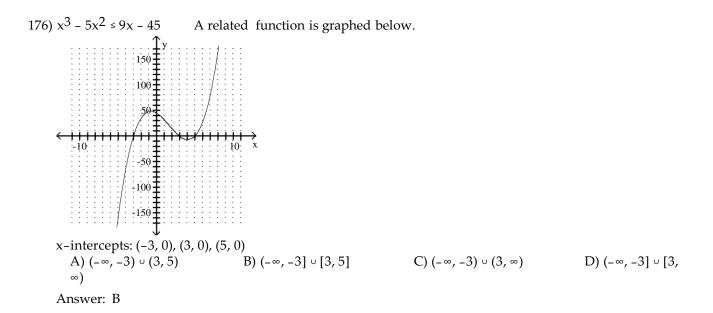

172) f(x) = |x|

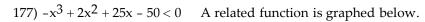


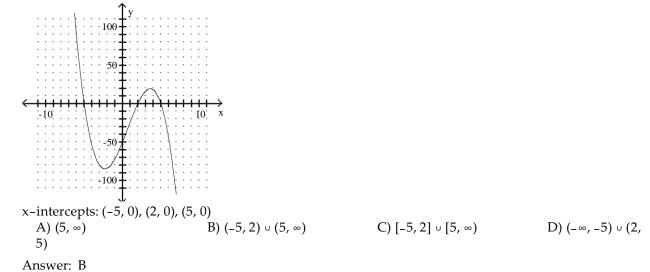
B) $g(x) = 0.33 x - 4 $	+ 6
D) $g(x) = 0.33 x + 4 $	



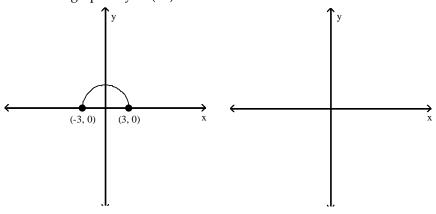
Solve the inequality by reading the given graph. State the solution set using interval notation.

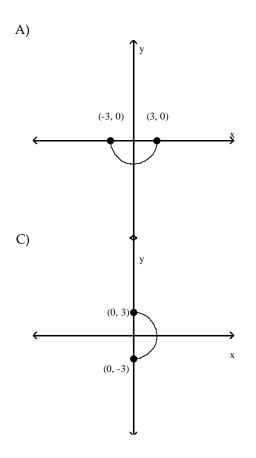


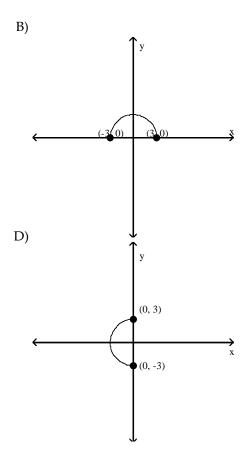



175) $-x^2 + 2x \le -5x + 10$ A related function is graphed below.

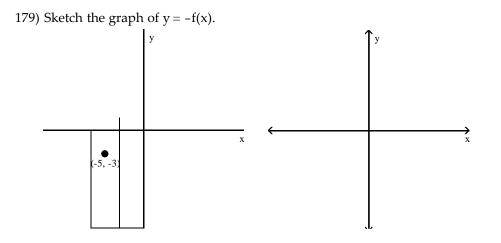
C) $(2, 5) \cup (5, \infty)$ D) $(-\infty, 2] \cup [5, \infty)$

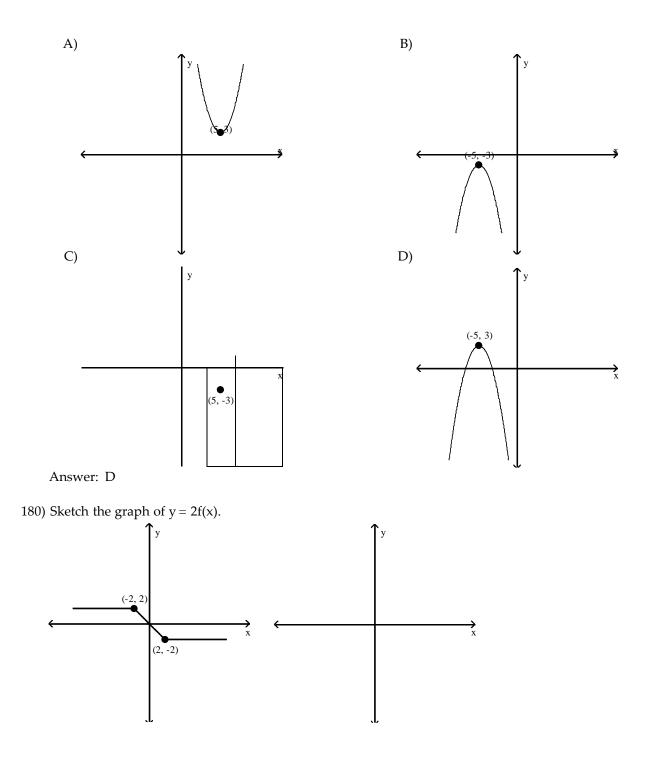


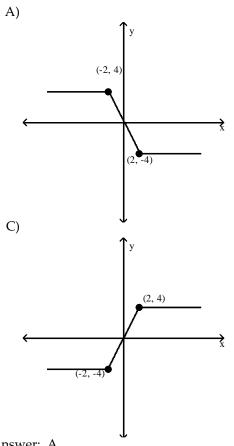


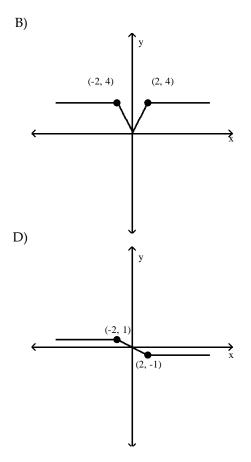


Graph the following function by transforming the given graph of y = f(x).

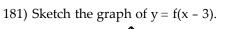

178) Sketch the graph of y = f(-x).

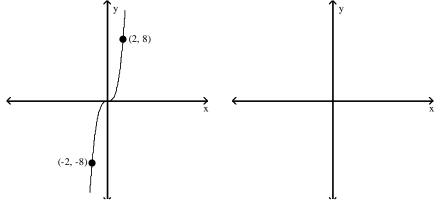


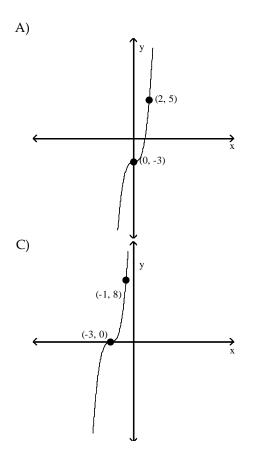


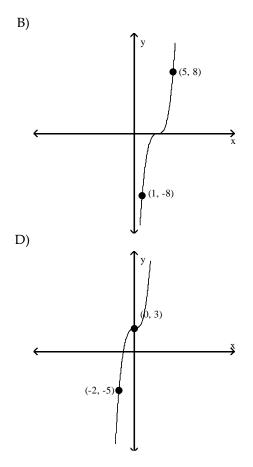


Answer: B

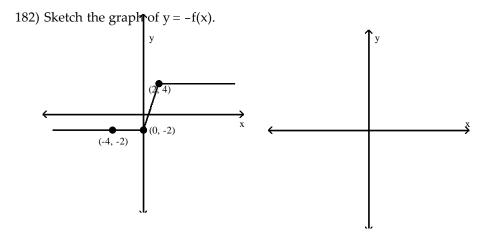


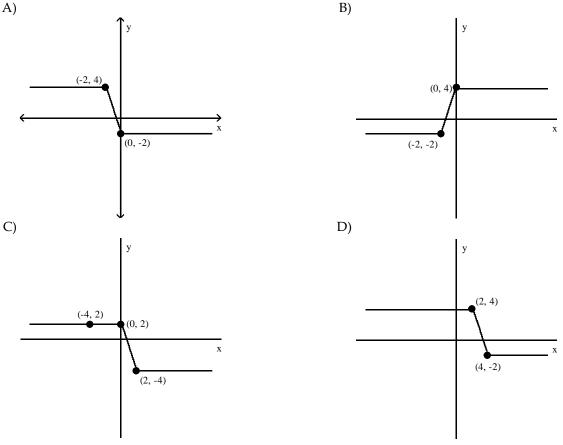






Answer: A





Answer: B

Answer: C

Solve the problem.

183) The function $h = -16t^2 + 48t + 200$ gives the height h, in feet, of a coin tossed upward from a balcony 200 ft high with an initial velocity of 48 ft/sec. During what interval of time will the coin be at a height of at least 40 ft?

 A) $0 \le t \le 5$ B) $5 \le t \le 10$ C) $0 \le t \le 1$ D) $4 \le t \le 5$

 Answer: A
 A

184) The function $h(t) = -16t^2 + 144t - 288$ gives the height h, in feet, of a flare fired from the bottom of a gorge 288 feet deep with an initial velocity of 144 ft/sec. The flare fired is visible only when it is above the rim. During what interval can the flare be seen?

A) 3 < t < 6	B) 9 < t < 12	C) 6 < t < 9	D) 0 < t < 3
Answer: A			

185) The profit made when t units are sold, t > 0, is given by $P = t^2 - 23t + 132$. Determine the number of units to be sold for which P < 0 (a loss is taken).

A) t = 11 or t = 12 Answer: C B) t < 11 or t > 12 C) 11 < t < 12 D) t > 0

186) If a rocket is propelled upward from ground level, its height in meters after t seconds is

```
given by h = -9.8t^2 + 78.4t. During what interval of time will the rocket be higher than 117.6 m?
```

```
A) 6 < t < 4 B) 0 < t < 2 C) 2 < t < 6 D) 4 < t < 8
```

Answer: C

187) A rectangular enclose width cannot exceed	are must have an area of at leas the length, within what limits r	t 4200 yd ² . If 260 yd of fen nust the width of the enclo	cing is to be used, and the sure lie?
A) 60 ≤ w ≤ 70	B) $0 \le w \le 60$	C) 60 ≤ w ≤ 65	D) 65 ≤ w ≤ 70
Answer: C			
Evaluate.			
188) Find (f + g)(-3) given A) 3	f(x) = x + 3 and $g(x) = x + 6$. B) -3	C) –15	D) -9
Answer: A			
189) Find (f – g)(–4) given A) –50	$f(x) = -4x^2 + 7$ and $g(x) = x - 3$. B) -56	C) -58	D) 61
Answer: A			
190) Find (f · g)(-4) given A) 26 Answer: D	$f(x) = x + 3$ and $g(x) = 4x^2 + 12x$ B) -154	+ 6. C) -490	D) -22
191) Find (f/g)(-2) given f A) $\frac{14}{11}$	(x) = 4x - 6 and g(x) = $3x^2 + 14x$ B) $-\frac{3}{11}$	(x + 5). C) - $\frac{4}{11}$	D) $\frac{3}{2}$
Answer: A			
192) Given $f(x) = 5x - 2$ ar A) $-2x^2 + 7$ Answer: D	ad $g(x) = -7x + 9$, find $(f + g)(x)$. B) $12x - 7$	C) -3x + 11	D) -2x + 7
193) Given $f(x) = 3x - 4$ ar A) $-5x^2 + 12$ Answer: D	id $g(x) = -8x + 8$, find $(f - g)(x)$. B) $11x + 12$	C) -5x - 4	D) 11x - 12
194) Given $f(x) = 4x + 4$ ar A) $x^2 - 10x + 3$ C) $5x^3 + 30x^2 + 4x$ Answer: B	ad $g(x) = x^2 + 6x - 7$, find $(f \cdot g)($	x). B) 4x ³ + 28x ² - 4x - D) x ³ - 28x ² - 22x -	-
Find the indicated function. 195) Let $f = \{(-7, 8), (-4, - A), (-7, 17), (9, 1), C, (-7, 17), (0, -1), C, (-14, 17), (0, -1), (-1$	8), (9, 4)} and g ={ (-7, 9), (4, - 6), (18, 1)}	8), (9, -3) . Find f + g. B){ (-7, 17), (-4, -16 D) (-14, 17), (18, }	5), (9, 1 }
196) Let $f = \{ (-6, 3), (5, -2) \\ A \} \{ (36, -3), (30, -1) \\ 21 \} (C) (-6, -3), (9, -3) \}$), (9, 3)} and g ={ (-6, -1), (6, 6 2), (81, -21)} }21)), $(9, -7)$. Find $f \cdot g$. B((-6, -3), (5, -12) {D) (36, -3), (81,), (9, - } }21)

Answer: C

For the pair of functions, perform the indicated operation. 197) f(x) = 4x - 3, g(x) = 7x - 9Find f – g. A) 11x - 12 B) -3x + 6C) -3x - 12 Answer: B 198) $f(x) = 2x^2 - 5x$, $g(x) = x^2 - 2x - 15$ Find f/g. B) $\frac{2x^2 - 5x}{x^2 - 2x - 15}$ A) $\frac{2x-5}{-2}$ C) $\frac{2x}{x+1}$ Answer: B 199) f(x) = 4 - 9x, g(x) = -2x + 9Find f + g. A) -11x + 13B) -2x + 4C) -7x + 13Answer: A 200) $f(x) = \sqrt{4x+3}$, $g(x) = \sqrt{9x-16}$ Find $f \cdot g$. A) $(3x - 4)(\sqrt{4x + 3})$ 16) $\sqrt[4]{}(4x + \sqrt{3})(-9x - 16)$ B) (4x + 3)(9x -D) (4x + 3)(3x)- 4)

Answer: C

201)
$$f(x) = 5x + 8$$
, $g(x) = 4x - 9$
Find $f \cdot g$.
A) $20x^2 + 23x - 72$
B) $20x^2 - 72$
C) $9x^2 - 13x - 1$
D) $20x^2 - 13x - 72$
Answer: D

D) 3x - 6

D) $\frac{2-x}{15}$

D) 2x

Find the specified domain. 202) For f(x) = 2x - 5 and $g(x) = \sqrt{x+8}$, what is the domain of f + g? A) $[-8, \infty)$ B) $[8, \infty)$ C) (-8, 8) D) $[0, \infty)$ Answer: A

203) For
$$f(x) = 2x - 5$$
 and $g(x) = \sqrt{x + 7}$, what is the domain of f/g?
A) $[0, \infty)$ B) $(-7, \infty)$ C) $(-7, 7)$ D) $[7, \infty)$
Answer: B

204) For
$$f(x) = 2x - 5$$
 and $g(x) = \sqrt{x + 9}$, what is the domain of $f \circ g$?

 A) $(-9, 9)$
 B) $[-9, \infty)$

 C) $[0, \infty)$
 D) $[9, \infty)$

 Answer: B

205) For f(x) = 2x - 5 and $g(x) = \sqrt{x + 4}$, what is the domain of $g \circ f$? A) [0.5, ∞) B) [∞,0.5) C) (-4, 4) D) [4, ∞) Answer: A

206) For
$$f(x) = x^2 - 36$$
 and $g(x) = 2x + 3$, what is the domain of $f - g$?
A) $[0, ∞)$ B) $(-∞, ∞)$ C) $(-6, 6)$ D) $[6, ∞)$
Answer: B

A) -53 Answer: B B) 297

C) -3365

D) 9

216) Find (g ∘ f)(-8) when A) -535	$f(x) = 8x - 2$ and $g(x) = 6x^2 + 2x - B$ B) 25,997	7. C) 2886	D) -570
Answer: B			
217) Find (h • g • f)(29) wh	then $f(x) = \frac{x-1}{7}$, $g(x) = 5 - x^2$, and 1	$h(x) \models x - 7 $.	
A) 18	B) -4	C) -18	D) 4
Answer: A			
218) (g • f)(x): f(x) = $\frac{x-10}{2}$	$\frac{1}{2}, g(x) = 2x + 10$		
A) x + 20	B) x - 5	C) x	D) 2x + 10
Answer: C			
219) $(g \circ f)(x)$: $f(x) = 4x^2 +$	$3x + 8 - \alpha(x) = 3x - 4$		
-	B) $12x^2 + 9x + 28$	C) $12x^2 + 9x + 20$	D) $4x^2 + 9x +$
20	,	-)	,
Answer: C			
Find the requested composition	on of functions		
	and $g(x) = 5x - 1$, find $(f \circ g)(x)$.		
A) $30x + 54$	B) $30x + 5$	C) 30x + 17	D) 30x + 10
Answer: B			
221) Given $f(x) = -6x + 8$	and $g(x) = 3x + 5$, find $(g \circ f)(x)$.		
A) -18x - 19	B) -18x + 38	C) -18x + 29	D) 18x + 29
Answer: C	2		
222) Given $f(x) = \frac{2}{x-4}$ and	d $g(x) = \frac{3}{5x}$, find $(f \circ g)(x)$.		
A) $\frac{3x-12}{10x}$	B) $\frac{2x}{3-20x}$	C) $\frac{10x}{3 - 20x}$	D) $\frac{10x}{3+20x}$
10x	3 - 20x	3 - 20x	3 + 20x
Answer: C			
223) Given $f(x) = \frac{x-5}{7}$ and $f(x) = \frac{x-5}{7}$			
1)(/	<i></i>		
A) x	B) x - ⁵ / ₇	C) 7x + 30	D) x + 10
	7		
Answer: A			
224) Given $f(x) = \sqrt{x} + ax$	nd $g(x) = 8x - 10$, find (f •	1	1
A) $2\sqrt{2x+1}$	$\frac{g(x) = 8x - 10, \text{ find } (f \circ B) 8 x + 6 - 10}{B x + 6 - 10}$	$\frac{\sqrt{2}}{2x-1}$	D) $8^{\sqrt{x-4}}$
Answer: C			,

225) Given $f(x) = 4x^2 + 6x + 3$ and g(x) = 6x - 6, find $(g \circ f)(x)$.

A) $4x^2 + 6x - 3$ 12 Answer: B

226) Given
$$f(x) = \frac{5}{f_{1}(x)} and g(x) = 7x^{6}$$
, find $(g \circ A)$
A) $\frac{109,3}{75x^{6}}$
B) $\frac{5}{7x^{6}}$
C) $\frac{7x^{6}}{5}$

Find functions f and g so that $F(x) = (f \circ g)(x)$.

227)
$$F(x) = \frac{1}{x^2 - 2}$$

A) $f(x) = \frac{1}{x}$, $g(x) = x^2 - 2$
C) $f(x) = \frac{1}{x^2}$, $g(x) = x - 2$

228)
$$F(x) = |7x + 5|$$

A) $f(x) = -|x|$, $g(x) = 7x + 5$
C) $f(x) = |-x|$, $g(x) = 7x - 5$
Answer: B

229)
$$F(x) = \frac{8}{x^2} + 2$$

A) $f(x) = \frac{8}{x^2}$, $g(x) = 2$
C) $f(x) = x$, $g(x) = \frac{8}{x} + 2$

Answer: D

230)
$$F(x) = \frac{2}{\sqrt{3x+10}}$$

A) $f(x) = \sqrt{3x+10}$, $g(x) = 2$

C) f(x) = 2, $g(x) = \sqrt{3+10}$

Answer: B

231)
$$F(x) = (8x - 6)^5$$

A) $f(x) = 8x^5$, $g(x) = x - 6$
C) $f(x) = 8x - 6$, $g(x) = x^5$
Answer: D

232)
$$F(x) = \sqrt{37x^2 + 67}$$

A) $f(x) = 37x^2 + 67$, $g(x) = \sqrt{x}$
B) $f(x) = \sqrt{37x + 67}$, $g(x) = \sqrt{x}$

B)
$$f(x) = \frac{1}{x^2}$$
, $g(x) = \frac{1}{2}$
D) $f(x) = \frac{1}{2}$, $g(x) = x^2 - 2$

D) $\frac{7x^6}{15,625}$

B)
$$f(x) \neq x$$
, $g(x) = 7x + 5$
D) $f(x) = x$, $g(x) = 7x + 5$

B)
$$f(x) = \frac{1}{x}, g(x) = \frac{8}{x} + 2$$

D) $f(x) = x + 2, g(x) = \frac{8}{x^2}$

B)
$$f(x) = \frac{2}{\sqrt{x}}$$
, $g(x) = 3x + 10$
D) $f(x) = \frac{2}{10x}$, $g(x) = 3x + \frac{2}{10x}$

= x2

C)
$$f(x) = \sqrt{x}, g(x) = 37x^2 + 67$$

D)
$$f(x) = \sqrt{37x^2}, g(x) = \sqrt{67}$$

Answer: C

Use the two given functions to write y as a function of x.

233) y = -7t + 6, t = -4x - 4A) y = 28x - 4Answer: D B) y = 28x + 2C) y = -7x + 34D) y = 28x + 34

234)
$$y = 2m^2 + 8$$
, $m = x - 3$
A) $y = 2x^2 - 6x + 17$
Answer: D
B) $y = 2x^2 + 26$
C) $y = 2x^2 - 12x + 18$
D) $y = 2x^2 - 12x + 26$

Find the function from the given verbal description of the function.

235) If m is the square of n and y is m minus 5, then write y as a function of n.

A) $y = (n-5)^2$ Answer: B B) $y = n^2 - 5$ C) $y = 5 - n^2$ D) y = 2n - 5

236) If w is equal to the square root of x, y is the sum of w and 1, and z is y divided by 6, then write z as a function of x.

A)
$$z = \frac{\sqrt{k+1}}{6}$$
 B) $z = \frac{\sqrt{x}}{6} + 1$ C) $z = \frac{\sqrt{k+1}}{6}$ D) $z = \sqrt{\frac{x+1}{6}}$

Answer: A

Solve the problem.

237) A balloon (in the shape of a sphere) is being inflated. The radius is increasing at a rate of 4 cm per second. Find a

function, r(t), for the radius in terms of t. Find a function, V(r), for the volume of the balloon in terms of r. Find

 $(V \circ r)(t)$.

A)
$$(V \circ r)(t) = \frac{1024\pi/t}{3}$$

B) $(V \circ r)(t) = \frac{112\pi t^3}{3}$
C) $(V \circ r)(t) = \frac{256\pi t^3}{3}$
D) $(V \circ r)(t) = \frac{320\pi t^2}{3}$

Answer: C

238) At Allied Electronics, production has begun on the X-15 Computer Chip. The total revenue function is given by $R(x) = 46x - 0.3x^2$ and the total cost function is given by C(x) = 11x + 15, where x represents the number of boxes of computer chips produced. The total profit function, P(x), is such that P(x) = R(x) - C(x). Find P(x).

	-	
A) $P(x) = 0.3x^2 + 35x - 30$		B) $P(x) = 0.3x^2 + 24x - 45$
C) $P(x) = -0.3x^2 + 35x - 15$		D) $P(x) = -0.3x^2 + 24x + 15$
Answer: C		

239) At Allied Electronics, production has begun on the X-15 Computer Chip. The total revenue function is given by $R(x) = 42x - 0.3x^2$ and the total profit function is given by $P(x) = -0.3x^2 + 33x - 12$, where x represents the number of boxes of computer chips produced. The total cost function, C(x), is such that C(x) = R(x) - P(x). Find C(x).

A) $C(x) = -0.3x^2 + 18x + 12$	B) $C(x) = 10x + 17$
C) $C(x) = 9x + 12$	D) $C(x) = 11x + 8$

Answer: C

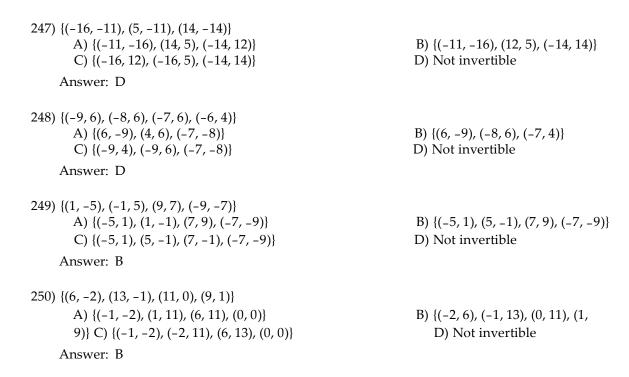
- 240) At Allied Electronics, production has begun on the X-15 Computer Chip. The total cost function is given by C(x) = 9x + 16 and the total profit function is given by $P(x) = -0.3x^2 + 35x - 16$, where x represents the number of boxes of computer chips produced. The total revenue function, R(x), is such that R(x) = C(x) + P(x). Find R(x).
 - A) $R(x) = 43x 0.6x^2$ B) $R(x) = 44x + 0.3x^2$ C) $R(x) = 46x 0.3x^2$ D) $R(x) = 44x 0.3x^2$
 - Answer: D
- 241) A stone is thrown into a pond. A circular ripple is spreading over the pond in such a way that the radius is increasing at the rate of 4.7 feet per second. Find a function, r(t), for the radius in terms of t. Find a function, A(r), for the area of the ripple in terms of r. Find (A r)(t).

A) $(A \circ r)(t) = 22.09\pi^2 t$	B) $(A \circ r)(t) = 22.09\pi t^2$
C) $(A \circ r)(t) = 4.7\pi t^2$	D) $(A \circ r)(t) = 9.4\pi t^2$

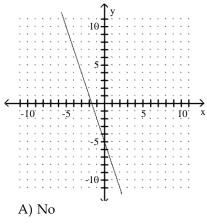
242) Ken is 6 feet tall and is walking away from a streetlight. The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 4.2 feet per second. Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time. Find a function, S(d), which gives the length of Ken's shadow in terms of d. Then find (S • d)(t).

A) $(S \circ d)(t) = 3.99t$ A) $(S \circ d)(t) = 2.31t$ Answer: D

- 243) Ken is 6 feet tall and is walking away from a streetlight. The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 5.2 feet per second. Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time. Find a function, S(d), which gives the length of Ken's shadow in terms of d. Then find (S d)(t). What is the meaning of (S d)(t)?
 - A) $(S \circ d)(t)$ gives the length of Ken's shadow in terms of his distance from the streetlight.
 - B) $(S \circ d)(t)$ gives the length of Ken's shadow in terms of time.
 - C) $(S \circ d)(t)$ gives the time in terms of Ken's distance from the streetlight.
 - D) $(S \cdot d)(t)$ gives the distance Ken is from the streetlight in terms of time.
 - Answer: B
- 244) The volume of water added to a circular drum of radius r is given by V_W = 30t, where V_W is volume in cu ft and t is time in sec. Find the depth of water in a drum of radius 4 ft after adding water for 12 sec. (Round result to one decimal place.)


A) 14.4 ft B) 22.6 ft C) 2.7 ft D) 7.2 ft Answer: D

245) A retail store buys 160 VCRs from a distributor at a cost of \$170 each plus an overhead charge of \$25 per order.


The retail markup is	30% on the total cost. Find the	e profit on the sale of one V	CR.
A) \$50.95	B) \$51.05	C) \$51.00	D) \$5105.00
Answer: B			

Determine whether the function is invertible. If it is, find the inverse.

246) {(10, -17), (17, -6), (4, -8)}	
A) {(-17, 10), (-6, 17), (-8, 4)}	B) {(-17, 10), (4, 17), (-8, -6)}
C) {(10, -6), (10, 17), (-8, 4)}	D) Not invertible
Answer: A	



Use the horizontal line test to determine whether the function is one-to-one. 251)

Answer: B

B) Yes

Determine whether or not the function is one-to-one. 255) f(x) = 6x - 2A) Yes B) No

B) No

B) No

Answer: A

	$f(x) = x^2 - 3$ A) Yes Answer: B	B) No
	$f(x) = 5x^3 - 6$ A) Yes Answer: A	B) No
	$f(x) = x^3 + 2$ A) No Answer: B	B) Yes
	$f(x) = 5x^2 + x$ A) No Answer: A	B) Yes
	$(x) = -\sqrt[3]{x + 82}$ A) No Answer: B	B) Yes
	$f(x) = \frac{6}{x - 2}$ A) No Answer: B	B) Yes
262) f	$f(x) = \frac{x+91}{x-21}$ A) Yes Answer: A	B) No
263) Т tempe	whether the function is invertible. The function that pairs the temperature at 3:00 pm in your erature in	city in degrees Fahrenheit with the
	legrees Celsius. A) Yes Answer: A	B) No
	The function that pairs students' ID numbers with their G A) No Answer: A	PAs. B) Yes
Solve. 265) F	Find f ⁻¹ for the function f = {(-5, -7), (5, 6), (-3, 4)}. A) Not invertible C) $\left\{ \left(-\frac{1}{2}, -\frac{1}{2} \right), \left(\frac{1}{2}, \frac{1}{2} \right), \left(-\frac{1}{2}, \frac{1}{2} \right) \right\}$ 5 7 $\left\{ 5 - \frac{1}{2}, -\frac{1}{2} \right\}$	B) {(-7, 6, 4)} D) {(-7, -5), (6, 5), (4, -3)}

Answer: D

266) Find f ⁻¹ (8) and (f ⁻¹ • f)(2) f A) {-5, -8}	for the function f = {(9, -6), B) {8, -8}	$(2, -8), (-5, 8)\}.$ C) $\left\{\frac{1}{8}, \frac{1}{8}\right\}$	D) {-5, 2}
Answer: D			
Determine whether the function is i 267) $f(x) = x^3 - 1.2x^2 + 0.48x - 3$ A) No Answer: B 268) $f(x) = \sqrt[3]{(x-1)} - \sqrt[3]{(x+2)}$	nvertible by inspecting its	s graph on a graphing calcula B) Yes	tor.
A) Yes Answer: B Find the inverse of the function. 269) $f(x) = 8x - 5$		B) No	
A) $f^{-1}(x) = \frac{x}{5} + 5$	B) $f^{-1}(x) = \frac{x+1}{2}$	C) $f^{-1}(x) = \frac{x-5}{2}$	D) Not invertible
- 8	8	8	
Answer: B 270) $f(x) = 1 - 4x$		1	1
A) $f^{-1}(x) = -\frac{1}{2} - \frac{1}{2}$	B) $f^{-1}(x) = 5 - x$ <u>x</u>	C) $f^{-1}(x) = \frac{1}{2}$ -	D) $f^{-1}(x) = \frac{1}{2} + \frac{x}{2}$
4 4		4 4	4 4
Answer: C			
271) $f(x) = \frac{x}{5} - 4$			
A) $f^{-1}(x) = x + 9$ Answer: D	B) $f^{-1}(x) = 5x + 4$	C) $f^{-1}(x) = 5x - 20$	D) $f^{-1}(x) = 5x + 20$
272) $f(x) = x^2 - 13, x \ge 0$ A) $f^{-1}(x) = \sqrt{x - 13}$ Answer: D	B) $f^{-1}(x) = x^2 + 13$	C) $f^{-1}(x) = \sqrt{x^2 + 13}$	D) f ⁻¹ (x) $\sqrt[4]{x+13}$
273) $f(x) = x^2 - 9, x \le 0$ A) $f^{-1}(x) = -\sqrt{x+9}$ 9 Answer: B	B) $f^{-1}(x) = \sqrt{x+9}$	C) $f^{-1}(x) = x^2 + 9$	D) $f^{-1}(x) = \sqrt{x^2 + x^2}$
274) $f(x) = -x^2 + 4, x \ge 0$ A) $f^{-1}(x) = x^2 + 4$ 4 Answer: B	B) $f^{-1}(x) = \sqrt{4 - x}$	C) $f^{-1}(x) = \sqrt{x+4}$	D) $f^{-1}(x) = \sqrt{x^2 + x^2}$

275) $f(x) = (x - 19)^2, x \ge 19$			
A) $f^{-1}(x) = \sqrt{x+19}$ 19	B) $f^{-1}(x) = \sqrt{x + 19}$	C) $f^{-1}(x) = x^2 + 19$	D) $f^{-1}(x) = \sqrt{x^2 + x^2}$

276) f(x) = (x - 17)² + 1, x > 17
A) f⁻¹(x) =
$$\sqrt{x + 17^{-1}}$$

C) f⁻¹(x) = $\sqrt{x + 17^{-1}}$
A) f⁻¹(x) = $\sqrt{x + 1 - 17}$
Answer: B
277) f(x) = (x + 11)² - 3, x > -11
A) f⁻¹(x) = 3x² + 11
C) f⁻¹(x) = $\sqrt{x + 3} - 11$
Answer: C
278) f(x) = $\sqrt{x + 5}$
A) f⁻¹(x) = $\sqrt{x - 5}$
B) f⁻¹(x) = $\sqrt{x - 1}$
Answer: C
279) f(x) = $\sqrt{3} - 4$
A) f⁻¹(x) = $\sqrt{3} - 4$
B) f⁻¹(x) = $\sqrt{x - 4}$
A) f⁻¹(x) = $\sqrt{3} - 4$
B) f⁻¹(x) = $\sqrt{3} - 4$
C) f⁻¹(x) = $\sqrt{x - 4}$
D) Not invertible
Answer: C
280) f(x) = 3x³ - 6
A) f⁻¹(x) = x² - 16
B) f⁻¹(x) = -x² + 4
A) f⁻¹(x) = x² - 16
B) f⁻¹(x) = -x² + 4
A) f⁻¹(x) = x² - 16
B) f⁻¹(x) = -(x + 6)²
C) f⁻¹(x) = (x - 6)²
D) f⁻¹(x) = (x + 6)²
A) f⁻¹(x) = x + 5
B) f⁻¹(x) = x² + 5
C) f⁻¹(x) = x² - 5
D) Not invertible
Answer: B
283) f(x) = \sqrt{x - 5} for x = 5
A) f⁻¹(x) = x² + 5
A) f⁻¹(x) = x + 5
B) f⁻¹(x) = x² + 5
A) f⁻¹(x) = x + 5
Answer: B
284) f(x) = $\frac{6}{x + 9}$
A) f⁻¹(x) = $\frac{e^{x} + 6}{x + 9}$
A) f⁻¹(x) = $\frac{e^{x} + 6}{x}$
B) f⁻¹(x) = $\frac{-9x + 6}{x}$
C) f⁻¹(x) = $\frac{9x + 6x}{x}$
D) Not invertible

285)
$$f(x) = \frac{-7x - 4}{-5x - 3}$$

A) $f^{-1}(x) = \frac{-7x - 4}{-5x - 3}$
B) $f^{-1}(x) = \frac{3x - 4}{-5x + 7}$
C) $f^{-1}(x) = \frac{-5x + 7}{3x - 4}$
D) Not invertible

Answer: B
286)
$$f(x) = \sqrt{4x + 3}$$

A) $f^{-1}(x) = \frac{x^2}{4} - 3$ for $x \ge 0$
B) $f^{-1}(x) = \frac{x^2 - 3}{4}$ for $x \ge 0$
C) $f^{-1}(x) = \frac{(x - x)^2}{4}$ for $x \ge 0$
D) $f^{-1}(x) = \frac{2x - 3}{4}$

287)
$$f(x) = \sqrt[3]{\frac{x}{5}} - 7$$

A) $f^{-1}(x) = 5(x^3 + 7)$ B) $f^{-1}(x) = [5(x + 7)]^3$ C) $f^{-1}(x) = 15(x + 7)$ D) $f^{-1}(x) = 5(x + 7)^3$
Answer: D

Decide whether or not the functions are inverses of each other.

288)
$$f(x) = -\frac{1}{5}x$$
, $g(x) = -5x$
A) No
Answer: B

289)
$$f(x) = 3x - 2$$
, $g(x) = \frac{x+3}{2}$
A) Yes
Answer: B

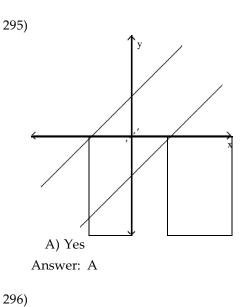
290)
$$f(x) = 9x - 9$$
, $g(x) = \frac{1}{9}x + 1$
A) Yes
Answer: A

291)
$$f(x) = \frac{2}{x+3}g(x) = \frac{3x+2}{x}$$

A) No
Answer: A
B) Yes

292)
$$f(x) = 4x + 16$$
, $g(x) = \frac{1}{4}x - 4$

A) No Answer: B B) Yes


293)
$$f(x) = \sqrt{2 - x}$$
, $g(x) = 2 - x^2$
A) No
Answer: B

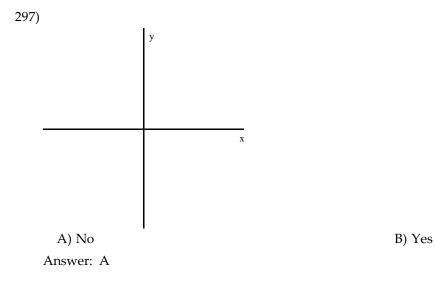
B) Yes

294)
$$f(x) = \sqrt[3]{4x-5}$$
, $g(x) = \frac{x^3+5}{4}$

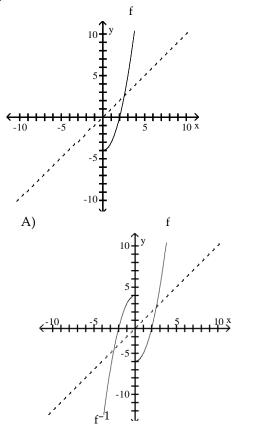
A) No

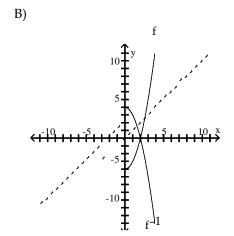
Answer: B

у

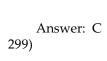

х

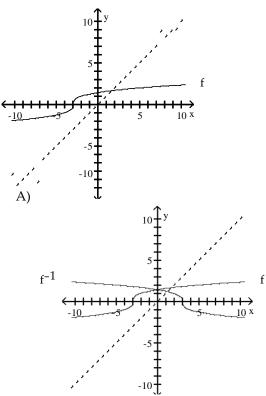
A) No Answer: B

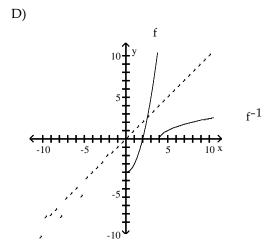

B) Yes

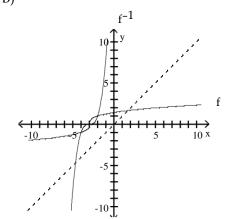

B) No

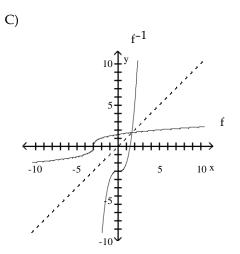
B) Yes

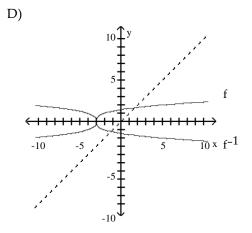



The graph of a function f is given. On the same axes, sketch the graph of f^{-1} . 298)

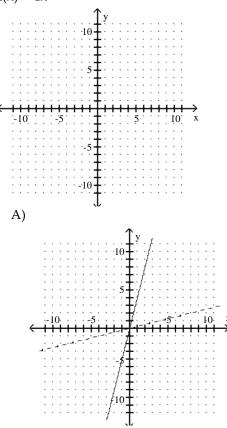


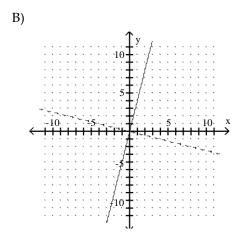


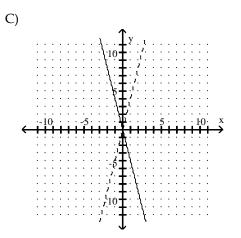




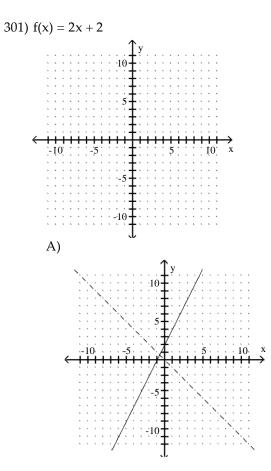
B)

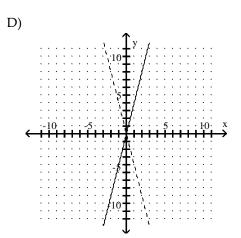


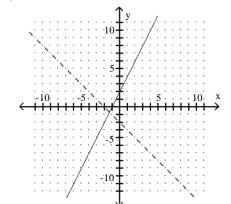


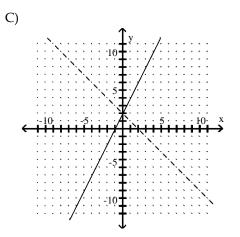


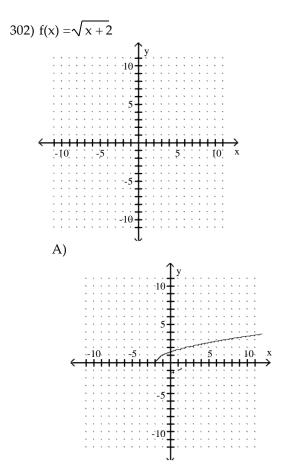
Answer: C

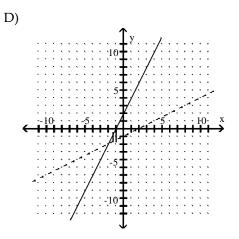

Graph the function as a solid curve and its inverse as a dashed curve. 300) f(x) = 4x

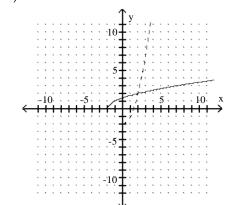


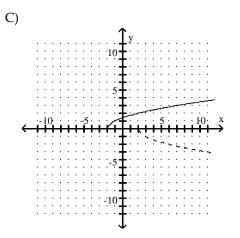


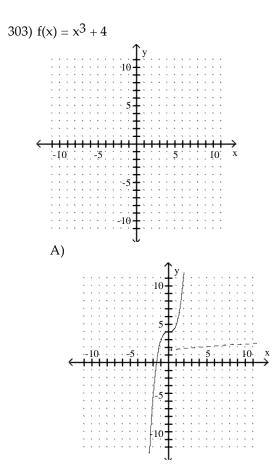


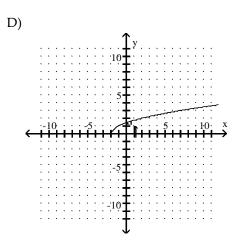


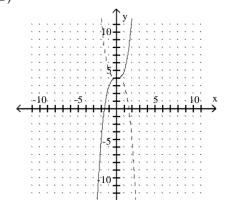

B)

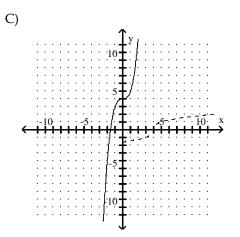


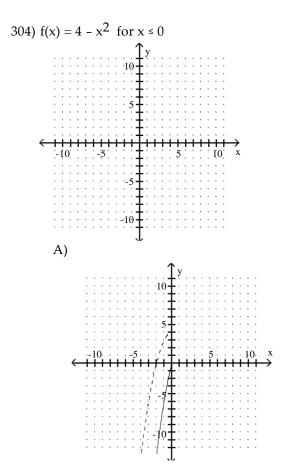


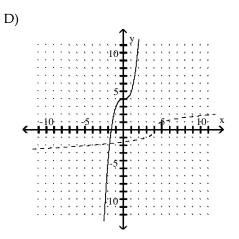



B)

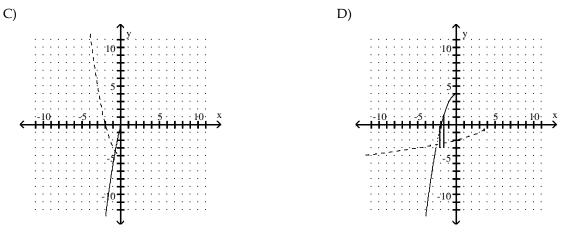



Answer: B








Answer: D

-10

Answer: D

Find a formula for the inverse of the function described below.

305) A size-4 dress in Country C is size 38 in Country D. A function that converts dress sizes in Country C to those in Country D is f(x) = x + 34.

A) $f^{-1}(x) = x + 34$ B) $f^{-1}(x) = \frac{x}{34}$ C) $f^{-1}(x) = x - 34$ D) $f^{-1}(x) = \frac{x}{-34}$

Answer: C

306) A size-12 dress in Country C is size 64 in Country D. A function that converts dress sizes in Country C to those in Country D is f(x) = 2(x + 20).

A)
$$f^{-1}(x) = \frac{x-20}{2}$$

B) $f^{-1}(x) = \frac{x}{2} + 20$
C) $f^{-1}(x) = x - 20$
D) $f^{-1}(x) = \frac{x}{2} - 20$
2

Answer: D

307) A size-46 dress in Country C is size 3 in Country D. A function that converts dress sizes in Country C to those in Country D is $f(x) = \frac{x}{2} - 20$

A)
$$f^{-1}(x) = 2(x - 20)$$

Answer: C
B) $f^{-1}(x) = x + 20$
C) $f^{-1}(x) = 2(x + 20)$
D) $f^{-1}(x) = 2x + 20$

308) 32° Fahrenheit = 0° Celsius. A function that converts temperatures in Celsius to those in Fahrenheit is $f(x) = \frac{9}{2}x + 32$.

A)
$$f^{-1}(x) = \frac{5}{2}(x - 32)$$

B) $f^{-1}(x) = \frac{9}{2}x + 32$
C) $f^{-1}(x) = x + 32$
D) $f^{-1}(x) = \frac{5}{2}(x + 32)$
9
5
9

Answer: A

309) An organization determines that the cost per person of chartering a bus is given by the formula

$$C(x)=\frac{300+7x}{x},$$

where x is the number of people in the group, and C(x) is in dollars.

A)
$$C^{-1}(x) = \frac{300}{x-7}$$
 B) $C^{-1}(x) = \frac{7}{x-300}$ C) $C^{-1}(x) = \frac{300}{x+7}$ D) $C^{-1}(x) = \frac{300+x}{7}$

Answer: A

Write a formula to express the relationship. Use k as the constant of variation.

310) The perimeter P of an equilateral triangle varies directly as the side s.

A)
$$P = 3s$$
 B) $P = 3s^2$ C) $P = ks$ D) $P = \frac{s}{3}$

Answer: C

311) The area of an equilateral triangle varies directly as the square of the side s.

A)
$$A = k^2 s$$
 B) $A = \frac{k}{s^2}$ C) $A = ks^2$ D) $A = \frac{k}{s^2}$

Answer: C

312) The height h of a triangle with a fixed area varies inversely as the base b.

A)
$$h = kb$$

B) $h = b$
k
C) $b = kh$
D) $h = k$
k
b

Answer: D

- 313) John kept track of the time it took him to drive to college from his home and the speed at which he drove. He found that the time t varies inversely as the speed r.
 - A) t = krB) $t = \frac{r}{k}$ C) $t = \frac{c}{k}$ D) r = kt

Answer: C

314) The height h of a cone with a fixed volume varies inversely as the square of its radius r.

A) $r^2 = kh$ B) $h = \frac{r^2}{k}$ C) $h = kr^2$ D) $h = \frac{k}{r^2}$

Answer: D

315) The surface area of a sphere S varies directly as the square of its radius r.

A)
$$S = \frac{r^2}{k}$$
 B) $S = k^2 r$ C) $S = kr^2$ D) $S = \frac{k}{r^2}$

Answer: C

316) The altitude h of an equilateral triangle varies directly as one side s.

A)
$$h = B$$
 $h = ks$
s B $h = ks$
c) $h = D$ $h = ks^2$
k

Answer: B

317) The cost c of a turkey varies directly as its weight w.

A)
$$c = \frac{W}{k}$$
 Answer: D B) $c = kw^2$

$$c = D c = kw$$

w

318) The area of a triangle varies jointly as the base and the height.

A)
$$A = \frac{kb}{h}$$
 B) $A = bh$ C) $A = k(b+h)$ D) $A = kbh$

Answer: D

319) The force of attraction between an object of fixed mass and a second object of mass m varies directly as m and inversely as the square of the distance d between the two objects.

A) F = <u>km</u>	B) F = <u>k</u>	C) $F = kmd^2$	D) $F = \frac{k}{md^2}$
d ²	<u>m</u> d		inte
Answer: A			

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Translate the given formula to English.

320) C = $2\pi r$, where C is the circumference of a circle of radius r

Answer: The circumference of a circle varies directly as the radius.

321) A = $(\frac{1}{2})$ bh, where A is the area of a triangle with given base and height

Answer: The area of a triangle varies jointly as the height and base.

322) P = nb, where P is the perimeter of a regular polygon with n sides each of length b.

Answer: The perimeter of a regular polygon varies jointly as the side length and number of sides.

- 323) $f = \frac{m^2 v}{velocity v r}$, where f is the centripetal force of an object of mass m moving along a circle of radius r at
 - Answer: The centripetal force of an object varies jointly as mass squared and velocity and inversely as the radius of the circle it moves along.
- 324) $r = \frac{d}{t}$, where r is the rate by which distance d is covered in time t t

Answer: Rate varies directly as distance and inversely as time.

325) P = $\frac{NkT}{temperature T V}$, where P is the gas pressure of N molecules in a volume V at

Answer: Pressure varies jointly as temperature and number of molecules and inversely as volume.

- 326) I = PRT, where I is the simple interest on a principal of P dollars at a rate of interest R per year Answer: Simple interest varies jointly as principal, rate of interest, and time.
- 327) f-stop = $\frac{f}{D}$, where f-stop is camera setting with a lens with focal length f and diaphragm opening D D

Answer: A camera's f-stop varies directly as the lens focal length and inversely as the diaphragm opening. $\underline{km_1m_2}$

328) $F = \frac{km_1m_2}{d^2}$, where F is the force of attraction between two objects with masses m₁ and m₂ respectively and d

is the distance between the two objects

Answer: Force of attraction varies jointly as m₁ and m₂ and inversely as the square of d.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the constant of variation and construct the function that is expressed in each statement.

A) $y = 28x$	B) $y = 5x$	C) $y = 4x$	D) $y = \frac{10}{10}$
			<u>19</u> <u>6</u>
Answer: C			Х
330) y varies directly as x: y			
A) $y = 39x$	B) $y = 0.31x$	C) $y = 3.25x$	D) y = 3.25y
Answer: C			
331) y varies directly as x: y	= 1, when $ x = 0.8$		
331) y varies directly as x: y A) y = $\frac{0}{\underline{8}}$	B) y = 1.25x	C) $y = \frac{1}{1.25}x$	D) $y = 1x$
<u>8</u>		1.25	
Х			
Answer: B			
332) y varies directly as x: y =			
A) $y = 1.4x$	B) $x = 2.8y$	C) $y = 2.8x$	D) x = 1.4y
Answer: C			
333) y varies inversely as x:	y = 27, when x = 3		
A) y = <u>3</u>	B) $y = 9x$	C) y $= \frac{9}{9}$	D) y = 8
A) $y = \frac{3}{0}$		<u>2</u> x	<u>8</u> <u>1</u>
x			 X
Answer: D			
334) y varies inversely as x:	v = 7, when $x = 16$		
A) $v =$	B) v =	C) $y = 112x$	D) $y = 2$
$\frac{0.4}{4 \text{ x}}$	<u>11</u>		<u> </u>
_	<u>2</u> x		<u>3</u> x
Answer: B			
335) y varies inversely as x:	y = 0.1, when x = 0.2		
A) $y = 0$	B) $y = 0.5x$	C) $y = 0$	D) $y = 0.0$
$\frac{0}{5}$		<u>0.</u> <u>3</u>	$\frac{0.0}{2}$ x
<u>s</u> x		<u>5</u> x	
Answer: D			
Allower. D			

336) y varies inversely as x: y = 5.25, when x = 0.52

A) $y = \frac{2.7}{3x}$	B) $y = \frac{3.1}{3x}$	C) y = 10.1x	D) y = $\frac{10.}{1_x}$
			X

Answer: A

337) y varies jointly as x and the square of w: y = 133.77, when x = 3.9 and w = 3.5.

A)
$$y = 9.8xw$$

 $2.8xw^2$
Answer: D

338) y varies directly as the square root of x and inversely as w: y = -30.16, when x = 33.64 and w = -0.5. C) $y = \frac{15.08\sqrt{x}}{w}$ B) $y = \frac{2.6\sqrt{x}}{w}$ A) v =D) $y = 10.4\sqrt{x} w$ <u>87.46</u> <u>4</u> w Answer: B Solve the problem. 339) If m varies directly as p, and m = 48 when p = 8, find m when p is 7. A) m = 49 B) m = 64C) m = 36D) m = 42 Answer: D 340) If y varies inversely as x, and $y = \frac{9}{5}^{2}$ when $x = \frac{1}{3}^{2}$, find y when $x_{6} = \frac{1}{2}$. A) $y = \frac{9}{10}$ B) $y = \frac{1}{10}$ C) $y = \frac{3}{5}$ D) $y = \frac{18}{5}$ Answer: D 341) If f varies jointly as q^2 and h, and f = 54 when q = 3 and h = 3, find k. A) k = 6C) k = 3D) k = 48 B) k = 2Answer: B 342) If f varies jointly as q^2 and h, and f = 36 when q = 3 and h = 2, find q when f = 160 and h = 5. C) q = 5D) q = 4A) q = 3B) q = 2Answer: D 343) If f varies jointly as q^2 and h, and f = -16 when q = 2 and h = 2, find f when q = 4 and h = 5. A) f = -40B) f = -10C) f = -160D) f = -32 Answer: C 344) If f varies jointly as q^2 and h, and f = -96 when q = 4 and h = -3, find k. D) k = -3A) k = 3B) k = 2C) k = 4Answer: B 345) If f varies jointly as q^2 and h, and f = 96 when q = 4 and h = 2, find f when q = 2 and h = 6. A) f = 36B) f = 12 C) f = 72 D) f = 18Answer: C 346) If s varies directly as t^2 , and s = 80 when t = 4, find s when t is 6. A) s = 180 B) s = 20 C) s = 24 D) s = 120 Answer: A 347) If x varies inversely as y^2 , and x = 2 when y = 18, find x when y = 6. A) x = 12B) x = 3C) x = 72D) x = 18Answer: D

348) If y varies directly as x and inversely as the square root of w, and y = 72 when x = 8 and w = 12, find y when x = 5 and w = 27.

A) y = 60 B) $y = 90\sqrt{3}$ C) y = 30 D) $y = 18\sqrt{3}$ Answer: C

	ine whether the first variable 9) The height of a building in i A) Inversely	-	-	
	Answer: B		D) Directly	
350	0) The number of hot dogs that A) Inversely	t you can buy for \$75, the	price per hot dog B) Directly	
	Answer: A			
35	 The time it takes an athlete t A) Directly 	o run 100 meters, her avei	age speed B) Inversely	
	Answer: B			
352	2) The depth of a diver in the c A) Directly	ocean, the pressure exerted	l by the water on the diver. B) Inversely	
	Answer: A			
	the problem. 3) The volume V of a given ma V = 200.0 in ³ when T = 300°		s the temperature T and invers s the volume when T = 230° a	-
	A) 163.3 in. ³	B) 153.3 in. ³	C) 133.3 in. ³	D) 143.3 in. ³
	Answer: B			
354	 The intensity I of light varies of illumination on a screen 5 the light. 		f the distance D from the sour ndles, find the intensity on a s	
	A) $\frac{1}{2}$ foot-candle	B) $\frac{1}{2}$ foot-candle	C) 2 foot-candles	D) 1 ¹ foot-
	candles	5		4
	Answer: A			
35	5) The weight of a body above	the surface of the earth is from	inversely proportional to the	square of its distance
			t when the distance is multipl	
	A) The weight is divided C) The weight is multiplie		B) The weight is multipD) The weight is divide	
	Answer: D	<i>y</i>	, 0	5
35	-	when the length is 16 inche	s, what is the period when L =	= 1.5625 inches?
	A) 3 sec Answer: C	B) 2.5 sec	C) 0.625 sec	D) 2.75 sec
	7) The gravitational attraction em.	A between two masses va	ries inversely as the square of	t the distance between
ιικ		5 lb when the masses are 4	ft apart, what is the attraction	n when the masses are 6
	apart?	D) 1 lb	() 2 lb	D) 2 lb

A) 4 lb B) 1 lb C) 2 lb D) 3 lb

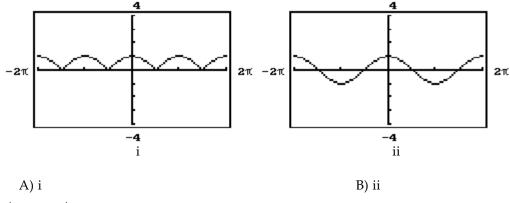
358) The time T necessary to make an enlargement of a photo negative varies directly as the area A of the enlargement. If 45 seconds are required to make a 3-by-5 enlargement, find the time required for a 4-by-7 enlargement.			
A) 56 sec	B) 140 sec	C) 112 sec	D) 84 sec
Answer: D	<i>b)</i> 110 See	0) 112 500	2) 01 800
359) The weight of a liquid v on a side is 250 g, find t		V. If the weight of the liquid i ubical container 4 cm on a sig	
A) 8 g	B) 64 g	C) 44 g	D) 128 g
Answer: D			
enlargement. If 24 secor	•	hoto negative varies directly -by-4 enlargement, find the t	
by-6 enlargement. A) 36 sec	B) 72 sec	C) 108 sec	D) 144 sec
,	D) 72 Sec	C) 100 Sec	D) 144 Sec
Answer: B			
361) The shadow cast by an inches tall casts a shado to the nearest hundredt	w 84 inches long, how tall is	directly as the height of the a tree which casts a shadow	
A) 63.72 feet	B) 71 feet	C) 30.38 feet	D) 110.73 feet
Answer: C			
Provide an appropriate			
response. 362) Which of the following Use your graphics calcu	is a horizontal translation ar llator to verify your result.	nd a reflection of the function	y = [[x]] about the x-axis?
A) $y = -[[x]]$	B) $y = -[[x]] + 1$	C) $y = -[[x + 1]]$	D) y = [[x +
1]] Answer: C			
363) Give the equation that $a = 10^{10}$	0 1		

-10, -5, 5, 10, x -5, -10, -5, -5, -5, -10, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5	
A) $f(x) = \begin{cases} x^2 \downarrow 2 & \text{for } x \ge 0\\ -x + 4 & \text{for } x < 0 \end{cases}$	B) f(x)
A) $f(x) = \begin{cases} x^2 \stackrel{!}{=} 2 & \text{for } x \ge 0 \\ -x + 4 & \text{for } x < 0 \\ x - 2 & \text{for } x \ge -1 \\ -x^2 & \text{for } x < -1 \end{cases}$	D) f(x)

B)
$$f(x) = \begin{cases} \sqrt{x} & \text{for } x \ge 0\\ x^2 & \text{for } x < 0 \end{cases}$$

D)
$$f(x) = \begin{cases} -2 & \text{for } x \ge 0\\ 2 & \text{for } x < 0 \end{cases}$$

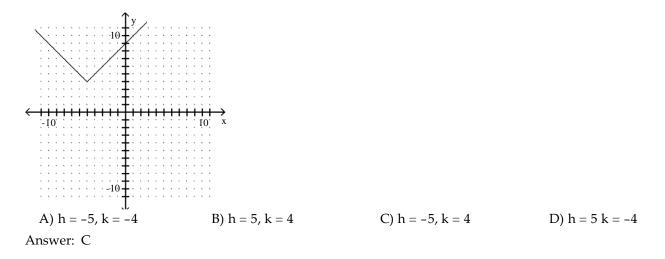
Answer: A


364) True or false? In order to graph $y \neq f(x)$, the graph is the same as that of y = f(x) for values of f(x)

that are negative, and for nonnegative values of y = f(x), the graph is reflected across the x-axis. B) False

A) T

365) One of the graphs is that of y = f(x) and the other is that of y = f(k). State which is the graph of y = f(x).



366) Which function represents a vertical translation of the parabola $y = (x - 5)^2 + 2$?

D) $y = (x+5)^2 + 2$ C) $y = x^2 + 2$ B) $y = -(x - 5)^2 + 2$ A) $y = (x - 5)^2 + 7$ Answer: A

367) The graph shown is a translation of the function $y \models |x|$. The graph shown is of the form y = |x| + h + k. What are the values of h and k?

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

368) Is f(x + h) the same as f(x) + f(h)? Explain and give an example.

Answer: No. Explanations will vary

- 369) Explain in your own words why g(x + h) is not the same as g(x) + h.
 - Answer: In g(x) + h, h is added to the original function. In g(x + h), x + h is substituted for x in the original function.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 370) True or false? If f is a one-to-one function and the graph of f lies completely within the first quadrant, then the graph of f⁻¹ lies completely within the first quadrant.
 A) True
 A) False
- 371) True or false? If f is a one-to-one function and the graph of f lies completely within the first and second quadrants, then the graph of f⁻¹ lies completely within the first and third quadrants.
 A) True
 B) False