NAME

TEST FORM A Test Bank for Precalculus Graphs and Models A Right Triangle Approach 6th Edition Bittinger Beecher Ellenbogen Penna 0134179056 9780134179056

Full link

download: Test

Bank:

https://testbankpack.com/p/test-bank-for-

precalculus-graphs-and-models-a-right-triangle-

approach-6th-edition-bittinger-beecher-ellenbogen-

penna-0134179056-9780134179056/

Solution

Manual:

https://testbankpack.com/p/solution-manual-for-precalculus-graphs-and-models-aright-triangle-approach-6th-edition-bittinger-beecher-ellenbogen-penna-0134179056-9780134179056/

CHAPTERmine the intervals on which the function is: TESTAFORMAAing,

- b) decreasing, and
- c) constant.

3.

5.

2. Graph the function $f(x) = 3 - x^2$.

Estimate the intervals on which the function is increasing o decreasing, and estimate any relative maxima or mi

function $f(x) = x^3 - 2x^2$ is increasing or decreasing, and find any relative maxima or minima.

The length of a rectangular board game is $2\frac{1}{2}$ times the width. If 4.

the board game is w cm wide, express the perimeter as a function of the width.

- Graph: 3 $\hat{i}_{1} |x|, \text{ for } x < -2,$ $f(x) = \hat{i}_{1} x^{2}, \text{ for } -2 \pounds x \pounds 1,$ 2 1 -3 -2 -1 2 $\frac{1}{1}$ - 3*x*, for *x* > 1. -2 -3 -4
- 6. For the function in Exercise 5, find f(-3), $f \frac{a3\ddot{o}}{\epsilon_4 \dot{o}}$, and f(8).

NAME_____

TEST FORM A

ANSWERS	Given that $f(x) = x^2 + 2x + 4$	4 and $g(x) = \frac{9-x}{\sqrt{2}}$, find each of the
7	following, if it exists.	v
8.	- 7. $(f+g)(5)$	8. $(f-g)(8)$
9	- 9. (fg)(-7)	10. $(f / g)(0)$
10	- For $f(x) = 2x + 1$ and $g(x)$	$=\sqrt{x-3}$, find each of the following.
11	- 11. The domain of f	12. The domain of g
13	- 13. The domain of $f + g$	14. The domain of $f - g$
14	15. The domain of fg	16. The domain of f / g
15	- 17. $(f+g)(x)$	18. $(f - g)(x)$
16	- 19. $(fg)(x)$	20. $(f / g)(x)$
17	- For each function, construct	and simplify the different quotient.
19	$\begin{array}{c c} - \\ - \\ 21. \\ f(x) = -\frac{3}{4}x + 5 \end{array}$	22. $f(x) = 6 - x^2$
20	Given that $f(x) = 2x + 1$, g	$(x) = \sqrt{x+3}$, and $h(x) = x^2 - 3x + 4$, find
21	- each of the following.	
22	$-23. (f \circ g)(-2)$	24. $h_{0}(6)$
23	-25 (h \circ f)(3)	$26 (f \circ f)(r)$
24	-	
25	For $f(x) = x^2$ and $g(x) = x$	-3:
	$\circ g)(x)$	$\circ f)(x)$
26.	_	

CHAPTER 2 27. Find (f and (NAME)

TEST FORM A 28. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.

NAME_____

TEST FORM A

TEST FORM A

29.	Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ (3-x^2)^4)$.	ANSWERS
30.	Determine whether the graph of $y = x^4 - 2x^2$ is symmetric with	29
31.	respect to the <i>x</i> -axis, the <i>y</i> -axis, and the origin. Test whether the function $f(x) = \frac{4x}{x-2}$ is even, odd, or neither	30
	even nor odd. Show your work.	
32.	Write an equation for a function that has the shape of $y = x^2$, but shifted left 5 units and down 3 units.	31
33.	Write an equation for a function that has the shape of $y = \sqrt{x}$, but shifted right 2 units and up 1 unit.	32
34.	The graph of a function $y = f(x)$ is shown below. No formula	33
	for <i>f</i> is given. Make a graph of $y = f(-x)$.	 34. <u>See graph.</u> 35 36.
35.	Find an equation of variation in which y varies inversely as x , and	
	y = 15 when $x = 0.5$.	
36.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and $y = 1.5$ when $x = 0.3$.	37
37.	Find an equation of variation where y varies jointly as x and z and inversely as the square of w, and $y = 240$ when $x = 3$, $z = 5$, and	38

 $w=\frac{1}{2}$.

CHAFTER resistance *I* in an electrical conductor varies inversely as the resistance *R* of the conductor. Suppose *I* is 0.2 ampere when the **TEST** resistance *A* is 200 ohms. Find the current when the resistance is

NAME_____

TEST FORM A

CI

CHA	APTER 2	NAME	
ГES	T FORM B	CLASS	SCOREGRADE
1.	Determine the intervals on which the function is: a) increasing, b) decreasing, and c) constant.	y 5 4 3 2 1 1 -5 -4 8 -2 -1 1 2 3 4 -2 -2 -3 4 -5	ANSWERS 1. a) b) c)
2.	Graph the function $f(x) = x^2 - 4$. Estimate the intervals on which the function is increasing or decreasing, and estimate any relative maxima or minima.	y 5 4 3 2 1 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5	2. <u>See graph.</u>
3.	Use a graphing calculator to find the function $f(x) = x^3 + 5x^2$ is increasing	intervals on which the g or decreasing, and f	e 3
4.	relative maxima or minima. The length of a rectangular table clot If the table cloth is w feet wide, expre function of the width.	h is 2 ft more than the ess the perimeter as a	e width.
5.	Graph: $f(x) = \begin{cases} x+2, \text{ for } x < -2, \\ x^2 - 3, \text{ for } -2 \le x \le 2, \\ \sqrt{x}, \text{ for } x > 2. \end{cases}$	y 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 5 4 3 2 1 5 4 5 5 1 1 2 3 4 5 5 1 1 2 1 1 2 3 4 5 1 1 2 1 1 2 3 4 5 5 1 1 2 1 1 2 3 4 5 5 1 1 2 1 2 1 1 2 3 4 5 5 1 1 2 1 2 1 1 2 3 4 5 1 2 1 2 1 2 1 2 1 2 1 2 3 4 5 1 2 1 2 1 2 3 4 5 1 2 1 2 1 2 1 2 1 2 1 2 3 4 5 1 2 1 2 1 2 3 4 5 1 2 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	5. <u>See graph.</u>
		(1)	··

NAME

CLASS___SCORE__GRADE___ **TEST FORM B** Given that $f(x) = x^2 - 2x + 1$ and g(x) = x + 6, find each of the ANSWERS following if it exists. 7. 7. (f+g)(-1) 8. (f-g)(-2)8. _____ 9. (fg)(10) 10. (g/f)(3)9. 10. For f(x) = -2x + 4 and $g(x) = \frac{1}{x}$, find each of the following. 11. 12. The domain of f 12. The domain of g11. 13. The domain of f + g 14. The domain of f - g13. 14. The domain of fg 16. The domain of g / f15. 15. 17. (f+g)(x) 18. (f-g)(x)16. 19. (fg)(x)20. (f / g)(x)17. 18. For each function, construct and simplify the different quotient. 19._____ 21. f(x) = 1 - 5x 22. $f(x) = 5x^2 + 2$ 20. Given that $f(x) = x^2 - 2x + 1$, g(x) = 2x + 3, and $h(x) = x^2 - 4$, find 21._____ each of the following. 22. 23. $(f \circ g)(-1)$ 24. h0(4) 23. _____ 25. $(h \circ f)(1)$ 26. $(g \circ g)(x)$ 24._____ For $f(x) = \sqrt{x+2}$ and g(x) = x-8: 25.

26. _____

E27. $(f \circ g)(x)$ and $(g \circ f)(x)$.**MAME**2828. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.**GRADE**

NAME_____

TEST FORM B

29.	Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \sqrt{x^2 + 2x - 4}$.	ANSWERS
30.	Determine whether the graph of $y = x^3 - 2x$ is symmetric with	29
31.	respect to the <i>x</i> -axis, the <i>y</i> -axis, and/or the origin. Test whether the function $f(x) = 4x^3 - 2x$ is even, odd, or neither	30
32.	even nor odd. Show your work. Write an equation for a function that has the shape of $y = x $, but shifted right 4 units and up 2 units.	31
33.	Write an equation for a function that has the shape of $y = x^3$, but shifted left 3 units and down 2 units.	32
34.	The graph of a function $y = f(x)$ is shown below. No formula for <i>f</i> is given. Make a graph of $y = f(x-2)$.	33
-	$\begin{array}{c} y \\ y $	34. <u>See graph.</u>
	$\begin{array}{c} -1 \\ -2 \\ -3 \\ -4 \\ -5 \end{array}$	35
35.	Find an equation of variation in which y varies inversely as x , and	36
	y = 0.4 when $x = 8$.	
36.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and $y = 0.8$ when $x = 5$.	37
37.	Find an equation of variation where <i>y</i> varies jointly as the square of <i>x</i> and the square of <i>z</i> and inversely as <i>w</i> , and $y = 4$ when	
	$x = 4$, $z = \frac{1}{2}$, and $w = 5$.	38

CHAPPERO2 when the volume of a 6-in. tall cone varies directly **NATHORE** quare of the radius. The volume is 14.1 in³ when the radius is 1.5 in. Find the **TEST-DORM** when the radius is 3 in.

NAME

TEST FORM B

CH/

CHA	APTER 2	NAME		
TES	ST FORM C	CLASS	_SCORE_	GRADE
1.	Determine the intervals on which the function is: a) increasing, b) decreasing, and c) constant.	$\begin{array}{c} & & y \\ & & & 5 \\ & & 4 \\ & & & 3 \\ & & & 2 \\ & & & & 2 \\ & & & & & 2 \\ & & & &$	5 x	ANSWERS 1. a) b) c)
2.	Graph the function $f(x) = x + 2$:	У 🛔		
	Estimate the intervals on which the function is increasing or decreasing, and estimate any relative maxima or minima.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x	2. <u>See graph.</u>
3.	Use a graphing calculator to find th	e intervals on which the		
	function $f(x) = 2x^3 - 5x^2$ is increase	sing or decreasing, and f	ind 3	3
4.	any relative maxima or minima. The length of a rectangular picture r the width. If the picture frame is <i>w</i> function of the width.	frame is 10.5 in. greater feet wide, express its ar	than ea as a	4
5.	Graph: $f(x) = \begin{cases} -2x, \text{ for } x < -2, \\ -x^2, \text{ for } -2 \le x \le 2, \\ 5, \text{ for } x > 2. \end{cases}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	5. <u>See graph.</u> 5
6.	For the function in Exercise 5, find	$f\begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix}$, $f(3)$, and $f(3)$	-4).	

NAME

CLASS SCORE GRADE **TEST FORM C** Given that $f(x) = x^2 - 3x + 2$ and g(x) = 4 - x, find each of the ANSWERS following if it exists. 7. 7. (f+g)(3) 8. (f-g)(4)8. _____ 9. (fg)(-5) 10. (f/g)(2)9.____ 10. _____ For $f(x) = x^2$ and $g(x) = \sqrt{2x}$, find each of the following. 11. _____ The domain of f 12. The domain of g11. 12. 13. The domain of f + g 14. The domain of f - g13. ____ The domain of fg 16. The domain of f / g15. 14. 15. 17. (f+g)(x) 18. (f-g)(x)16._____ 19. (fg)(x)20. (f/g)(x)17. For each function, construct and simplify the different quotient. 18. 21. f(x) = 0.1x + 6 22. $f(x) = x^3 - x$ 19. 20. _____ Given that $f(x) = 4 - x^2$, $g(x) = \frac{1}{2}x + 2$, and $h(x) = x^2 + 6x - 3$, find 21. each of the following. 22. 23. $(f \circ g)(2)$ 24. h()(49) 23. _____ 25. $(h \circ f)(-1)$ 26. $(g \circ g)(x)$ 24._____ For $f(x) = \sqrt[n]{x-5}$ and g(x) = x+2: 25._____

CHAPTER 2	27.	$(f \circ g)(x)$ and $(g \circ f)(x)$.
TEST FORM C	28.	Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.
28.		

NAME_____

TEST FORM C

29	Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \left(\frac{x-1}{x-1}\right)^3$.	ANSWERS
_>.	The $f(x)$ and $g(x)$ such that $h(x) = (f + g)(x) - (x+1)^{-1}$	29
30.	Determine whether the graph of $y = 3x^6 - 2x^4$ is symmetric with	
	respect to the x-axis, the y-axis, and/or the origin.	30
31.	Test whether the function $f(x) = 5x^3 - 7$ is even, odd, or neither	
	even nor odd. Show your work.	31
32.	Write an equation for a function that has the shape of $y = x^3$, but shifted right 4 units and up 6 units.	32
33.	Write an equation for a function that has the shape of $y = x $, but shifted left 3 units and down 1 unit.	33
34.	The graph of a function $y = f(x)$ is shown below. No formula	
	for f is given. Make a graph of $y = f(x-1)$.	
	$\begin{array}{c c} & & & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	34. <u>See graph.</u>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35
35.	Find an equation of variation in which y varies inversely as x, and	36
	y = 1800 when $x = 150$.	
36.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and	37
	y = 0.5 when $x = 1.5$.	
37.	Find an equation of variation where y varies jointly as x and z and inversely as the square root of w, and $y = 54$ when $x = 4$, $z = 9$,	38

and w = 4.

CHAPTER ace area of a balloon varies directly as **MANTE** are of its radius. The area is 78.5 cm² when the radius is 2.5 cm. Find the **TEST FORM** the radius is 3 cm.

NAME

TEST FORM C

TEST FORM D CLASS SCORE GRADE y j 1. Determine the intervals ANSWERS on which the function is: 1. a) a) increasing, b) decreasing, and b) c) constant. -5 -4 -3 -2 -1 2 3 4 1 5 -2 c) -3 Graph the function f(x) = 5 - |x|. 2. 2. See graph. Estimate the intervals on which the function is increasing or 3 2 decreasing, and estimate 1 any relative maxima or minima. -1 -3 -2 2 -2 -3 -4 -5 3. Use a graphing calculator to find the intervals on which the function $f(x) = 5x^3 - 6x^2$ is increasing or decreasing, and find 3. any relative maxima or minima. 4. The length of a rectangular parking lot is 40 ft more than the width. If the parking lot is w feet wide, express its area as a 4. function of the width 5. Graph: 4 $f(x) = \begin{cases} \sqrt{x+5}, \text{ for } x < -1, \\ x^2, \text{ for } -1 \le x \le 2, \\ |-|x|, \text{ for } x > 2. \end{cases}$ 5. See graph. -5 -4 -3 -2 -1 1 2 3 4 5 -2-3 -5 6. 6. For the function in Exercise 5, find f(-5), $f\left(\frac{2}{3}\right)$, and f(4).

NAME_____

CLASS SCORE GRADE **TEST FORM D** Given that $f(x) = x^2 + 2x - 8$ and $g(x) = \frac{x+4}{\sqrt{2}}$, find each of the ANSWERS following if it exists. 7. 7. (f+g)(-3) 8. (f-g)(12)8. 9. (fg)(-4) 10. (f/g)(5)9. 10. For $f(x) = \frac{1}{x^2}$ and g(x) = x + 4, find each of the following. 11. 12. The domain of f 12. The domain of g11. 13. The domain of f + g 14. The domain of f - g13. 14. _____ The domain of fg 16. The domain of f / g15. 15._____ 17. (f+g)(x) 18. (f-g)(x)16. 20. (f / g)(x)19. (fg)(x)17. 18. For each function, construct and simplify the different quotient. 19._____ 21. $f(x) = 14 - \frac{1}{2}x$ 22. $f(x) = 2x^2 + 6$ 20. Given that $f(x) = x^2 + 2$, g(x) = 2x - 5, and $h(x) = 3x^2 + 4x - 2$, find 21. each of the following. 22. 23. _____ 23. $(f \circ g)(1)$ 24. h(-3)24. _____ 25. $(h \circ f)(2)$ 26. $(g \circ g)(x)$ 25. _____ For f(x) = 3x - 2 and $g(x) = \sqrt[4]{x}$: 26.

CHAPTER 2 27	27.	Find $(f \circ g)(x)$ and (\mathbf{NAME})	
TEST FORM D	28.	Find the domain of (f^{CLASS}_{g}) and (S^{CPRE}_{g})	_GRADE

NAME_____

TEST FORM D

29.	Find $f(x)$ and $g(x)$ such that	ANSWERS
	$h(x) = (f \circ g)(x) = (x-3)^2 + 3(x-3) - 40.$	29.
30.	Determine whether the graph of $y = \frac{3x}{x^2 - 4}$ is symmetric with	
	respect to the <i>x</i> -axis, the <i>y</i> -axis, and/or the origin.	30
31.	Test whether the function $f(x) = \frac{4 - x^2}{\sqrt{2}}$ is even, odd, or neither	
	even nor odd. Show your work.	31
32.	Write an equation for a function that has the shape of $y = \sqrt{x}$, but shifted right 5 units and down 3 units.	32
33.	Write an equation for a function that has the shape of $y = x^2$, but shifted left 2 units and up 4 units.	
34.	The graph of a function $y = f(x)$ is shown below. No formula	33
	for f is given. Make a graph of $y = -f(x)$.	
	$\begin{array}{c} y \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ \end{array}$	34. <u>See graph.</u>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35
35.	Find an equation of variation in which y varies inversely as x, and	36
	$y = \frac{2}{3}$ when $x = 9$.	
36.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and	37
	y = 14 when $x = 6$.	
37.	Find an equation of variation where y varies jointly as x and the square of z and inversely as w, and $y = 0.05$ when $x = 5$, $z = 0.2$,	38

and w = 8.

CHAPTEINTOnsity *I* of a light from a light bulb varies in the square of the distance *d* from the bulb. Suppose *I* is 60 W/m^2 **TEST WORM D** quare meter) when the distance is 5 m. Find the intensity at 20 m.

NAME_____

TEST FORM D

CHAPTER 2		NAME		
TEST FORM E	(CLASS	SCORE	GRADE
1. Determine on which interval the $3 + \frac{3}{2} + 3$	e function is dec	reasing. d) (-3, 3)		ANSWERS 1 2
 2. The width of a rectangular blank <i>l</i>. Express the area of the blank a) A(l) = 4l - 2l² c) A(l) = 3l - 4 	ket is 4 less than et as a function of b) $A(l) = 2l^2 -$ d) $A(l) = 2l^2 -$ ses 3 and 4.	a twice the lea of <i>l</i> . 4 4 <i>l</i>	ngth	3
$f(x) = \begin{cases} 2x^2, \text{ for } x \le \sqrt{x+3}, \text{ for } x \ge \sqrt{x+3}, \text{ for } x \le \sqrt{x+3}, \text{ for } x \ge $	-1, $-1 < x \le 6,$ x > 6.		2	4
a) -2 b) $\sqrt{2}$ 4. Find $f(5)$.	c) 2	d) 4		
a) 1 b) 50 5. For $f(x) = x^3 + 4x - 5$ and $g(x)$	c) $\sqrt{5}$ = $-2x + 5$, find	d) $\sqrt{8}$ (g-f)(-1).		5
a) –17 b) 15	c) 17	d) 9		
6. For $f(x) = 3x - 4$ and $g(x) = \sqrt{2}$	\sqrt{x} , find $h(x) = 0$	(fg)(x).		
a) $h(x) = 3x - 4 + \sqrt{x}$	b) $h(x) = \frac{x}{\sqrt{x}}$	3x - 4)		
c) $h(x) = 3\sqrt{x} - 4$	d) $h(x) = \sqrt{3x}$	-4	(5

NAME_____

TEST FORM E			CLASS_	SCORE	GRADE		
ANSWERS	7.	For $f(x) = x^2 - 4x$	and $g(x) =$	$\frac{3-x}{\sqrt{1-x}}$, find the	domain of g / f .		
7		a) $(-\infty, 3)$ c) $(-\infty, -2) \cup (-2, 2)$	2)∪(2,∞)	b) (-∞, 3] d) (-∞, -2) ∪	$(-2, 2) \cup (2, 3]$		
	8.	Construct and simp	lify the diffe	erence quotient	for $f(x) = 8 - 3x$.		
8		a) 8 b) –	3	c) -3 <i>h</i>	d) $8h - 3xh$		
	9.	Construct and simp	for $f(x) = 2x^2 - x$.				
		a) $2h^2 + h - 4xh$		b) $-4x + 2h + 2h$	1		
9		c) $4x + 2h - 1$		d) $4x + 2h - 1 - 1$	$-\frac{2x}{h}$		
	10.	f(x)					
		a) $h(x) = 2x^2$		b) $h(x) = x^2 + $	2x		
10.		c) $h(x) = 2x^3$		d) $h(x) = 4x^2$			
		11. For $g(x) = 8-3x$, find $h(x) = (g^{\circ}g)(x)$.					
		a) $h(x) = 9x - 16$		b) $h(x) = 9x^2 - 10x^2 - 10x$	-48x + 64		
11		c) $h(x) = 16 - 6x$		d) $h(x) = 9x - $	24		
	12.	For $f(x) = \frac{2}{x+1}$ and	nd $g(x) = 4$ -	-2x, find the do	omain of		
		$(f\circ g)(x).$					
12		a) (-∞, ∞)		b) $\begin{pmatrix} -\infty, \frac{5}{2} \\ 2 \end{pmatrix}$	$\begin{pmatrix} \underline{2}, \infty \\ 2 \end{pmatrix}$		
		c) (-∞, -1) ∪(-1, ∘	0)	d) $(-\infty, -1) \cup$	$\begin{pmatrix} -1, \frac{5}{2} \\ 2 \end{pmatrix} \begin{pmatrix} 5, \infty \\ 2 \end{pmatrix}$		
13	13.	Which of the follow y-axis?	ving functio	ns is symmetric	with respect to the		

a)
$$y = (x - 4)^2$$

c) $y = -x - 2$

<u>ȚĘST FORM E</u>	14.	Which of the following for the ons is GRADE
	a) $y = 16 - x^2$	b) $y = 2x^{3}$

c) y = 4x - 6 d) y = x

NAME

TEST FORM E

a) $\frac{5}{2}$ b) $\frac{15}{2}$ c) $\frac{320}{2}$ d) $\frac{3}{2}$

 CHAPTÊR 2
 4
 3
 NAMÉ

TEST FORM E

NAME_____

TEST FORM E

ANSWERS	19.	19. <i>d</i> varies inversely as <i>w</i> and directly as the square of <i>v</i> . If $d = 400$							
19		when $w = 0.2$ a) $\frac{20}{3}$	and <i>v</i> = 4, find a b) 135	d when $w = 3$ and c) 5	v = 9. d) 3375				
20	20.	The graph of t is shown to th	he function <i>f</i> e right.	y 5 4 3 2 1 1 5 -5 -4 3 -2 -1 -1 -2 -3 -3 -5 -4 -5 -4 -2 -3 -5 -4 -5 -4 -2 -3 -3 -5 -5 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	3 5 X				
	Whi	Which of the following represents the graph of $g(x) = 2f(x) + 1$?							
		a)		b)					
21			3 4 5 x	5 4 3 2 1 -5 4 -3 -2 -1 1 2 -3 -5 -5 -3 -5 -5 -3 -2 -1 -1 -1 -2 -3 -3 -5 -3 -5 -3 -5 -3 -5 -3 -5 -3 -5 -3 -5 -3 -2 -1 -1 -1 -2 -3 -5 -3 -5	3/4 5 x				
		c) d)							
		y 5 4 3 2 1 -5 4 3 2 1 1 -2 -2 -2 -3 -4 -3 2 -1 1 2 -2 -1 1 -2 -2 -2 -2 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -2 -2 -2 -2 -3 -2 -2 -2 -3 -2 -2 -3 -2 -3 -2 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -4 -3 -2 -3 -4 -5 -	3 4 5		345 x				
	21. If $(-1, -4)$ is a point on the graph of $y = f(x)$, what point do								
	you know is on the graph of $y = f \frac{a!}{2} x^{\ddot{0}}$?								
		a) (-1, -2)	b) $\frac{a}{b} \frac{1}{2}, -4^{\ddot{0}}_{\phi}$	c) (-2, -4)	d) $\frac{a}{b^{-}2}, -2^{\ddot{o}}_{\phi}$				

CHAPTER 2			NMAMME			
TEST FORM F		CLASSSCOR			EGRADE	
1. Determine on	which interval	the function is in	ncreasing.		ANSWERS 1.	
a) (-2,4)	b) (2, 3)	$\begin{array}{c} 1 & 2 & 3 & 5 & 5 \\ 2 & 3 & 5 & 5 & 5 \\ 3 & 4 & 5 & 5 & 5 \\ \hline & & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	d) (2, 5)		2	
2. The width of the area of the	a rectangular bl e blanket as a fu	anket is $\frac{2}{3}$ of the unction of <i>l</i> .	e length <i>l</i> . Ex	cpress		
a) $A(l) = \frac{2}{3}l^2$	b) $A(l) = \frac{3}{2}l^2$	c) $A(l) = \frac{10}{3}$	l d) $A(l) =$	$\frac{5}{3}l^2$	3	
Jse the following f	function for Exe $\hat{x}^{1} x^{2} + 1, \text{fr}$ $(x) = \hat{1}^{1} x - 6 , \text{fr}$ $\hat{1} \sqrt{3x}, \text{fr}$	ercises 3 and 4. or $x \pm -3$, for $-3 < x \pm 1$, for $x > 1$.			4	
3. Find $f(-1)$						
a) 2 4. Find <i>f</i> (2)	b) 0	c) 7	d) 5			
a) 5	b) $\sqrt{6}$	c) 1	d) 4			
5. For $f(x) = x^3$	$x^{3} - 2x + 1$ and g	(x) = -4x + 6, fir	nd $(f - g)(-2)$	2).	5	
a) -1	b) -15	c) -25 √	d) -17			
6. For $f(x) = x$	x^{2} - 5 and $g(x)$	= x, find $h(x)$	=(fg)(x).			
a) $h(x) = x^2 - $	$-5+\sqrt{x}$	b) $h(x) = x - b$	-5			
c) $h(x) = x^2 \sqrt{1-x^2}$	$\sqrt{x}-5\sqrt{x}$	d) $h(x) = x$	$^{2}-5$		6	

NMAME

TEST FORM F CLASS SCORE GRADE 7. For $f(x) = x^2 - 5$ and $g(x) = \sqrt{x}$, find the domain of f/g. ANSWERS a) $(-\infty, 0) \cup (0, \infty)$ 7. b) [0,∞) c) $\left(-\infty, -\sqrt{5}\right) \cup \left(-\sqrt{5}, \sqrt{5}\right) \cup \left(\sqrt{5}, \infty\right)$ d) (0,∞) 8. 1 Construct and simplify the difference quotient for $f(x) = \frac{1}{2}x + 2$. 8. b) $\frac{1}{2}h$ c) $\frac{1}{2}$ d) $\frac{1}{2}xh+2h$ a) 2 9. Construct and simplify the difference quotient for 9. $f(x) = 2x^2 - 3x + 1$. b) $4h^2 - 3h$ a) 4x + 2h - 3d) $4xh + 2h^2 - 3h$ c) 2x + h10. 10. For f(x) = x + 4 and $g(x) = 2x^2$, find h(x) = (gb) $h(x) = 2x^2 + x + 4$ c) $h(x) = 2x^2 + x + 4$ a) $h(x) = 2x^2 + 4$ c) $h(x) = 2x^2 + 16x + 32$ 11. $\circ g)(x)$ 11. For g(x) = 2x-5, find h(x) = (gb) $h(x) = 4x^2 - 20x + 25$ a) h(x) = 4x - 10d) h(x) = 4x - 15c) h(x) = 4x - 512. 12. For $f(x) = \sqrt{x+2}$ and g(x) = 3x-5, find the domain of $(f \circ g)(x).$ a) [0,∞) b) [1, ∞) d) [−2, ∞) c) $(-\infty, \infty)$ Which of the following is symmetric with respect to the origin? 13. 13. a) $f(x) = 5 - x^2$ b) f(x) = xc) $f(x) = 5x^{3}$ d) $f(x) = \sqrt{x}$

CHAPTER 2	14.	Which of the following functions is even?			
TEST FORM F		a) $f(x) = 2x + 8$	CLASS_	b) SCORE $4 - x^2$ GRADE	
		c) $f(x) = x^2 + x$		d) $f(x) = \sqrt[4]{x}$	

NAME

TEST FORM F

18. If y varies inversely as x and y = 4 when x = 0.2, find y when x = 8.

CHAPTER 2 b) 10 c) 0.1 **NAME**⁴

TEST FORM F

NAME_____

TEST FORM F

ANSWERS	19.	p varies direct	tly as the square of	of <i>m</i> and inversel	y as <i>n</i> . If $p = 200$		
19		when $m = 5$ and $n = \frac{1}{2}$, find p when $m = 6$ and $n = 2$.					
		a) 72	b) 360	c) 288	d) 4		
20	20.	The graph of t is shown to th	the function <i>f</i> e right.	y 4 5 4 3 2 2 -5-4-3-2-1 1 2 -5 -4 -3 -3 -4 -5	3 4 5 7 7		
		Which of the following represents the graph of $g(x) = -f(x) + 2$					
		a)		b)			
21			2 3 4 5 x		3 4 5 x		
		c)		d)			
		$ \begin{array}{c} 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ -5 \\ -4 \\ -2 \\ -3 \\ -4 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	2 3 4 5 x		3 4 5 x		
	21.	. If (-4, 2) is a point on the graph of $y = f(x)$, what point do you know is on the graph of $y = 3f(x)$?					
		a) (-4, 6)	b) (-12, 2)	c) (-12, 6)	d) (-4, 5)		