Test Bank for Principles of Electronic Communication Systems 4th Edition Frenzel 0073373850 9780073373850

Full link download: Test Bank:

https://testbankpack.com/p/test-bank-for-principles-of-electronic-communication-systems-4th-edition-frenzel-0073373850-9780073373850/

Solution Manual: https://testbankpack.com/p/solution-manual-for-principles-of-electronic-communication-systems-4th-edition-frenzel-0073373850-9780073373850/

Chapter 02 Test Bank: Electronic Fundamentals for Communications <u>KEY</u>

Gain means attenuation.

FALSE

Blooms: 3. Apply Chapter: 02 Electronic Fundamentals for Communications Difficulty: Easy Section: 02.01 Gain, Attenuation, and Decibels Subtopic: Gain, Attenuation, and Decibels Topic: Electronic Fundamentals for Communications

Circuits that introduce attenuation have a gain that is less than 1.

TRUE

Blooms: 2. Understand
Chapter: 02 Electronic Fundamentals for Communications
Difficulty: Medium
Section: 02.01 Gain, Attenuation, and Decibels
Subtopic: Gain, Attenuation, and Decibels
Topic: Electronic Fundamentals for Communications

3. The gain or loss of a circuit is usually expressed in volts (V).

<u>FALSE</u>

Blooms: 2. Understand Chapter: 02 Electronic Fundamentals for Communications Difficulty: Easy Subtopic: Gain, Attenuation, and Decibels Topic: Electronic Fundamentals for Communications

When a decibel value is computed by comparing a power value to 1 mW, the result is a value called the dBm.

TRUE

Blooms: 1. Remember Chapter: 02 Electronic Fundamentals for Communications Difficulty: Easy Section: 02.01 Gain, Attenuation, and Decibels

Subtopic: Gain, Attenuation, and Decibels Topic: Electronic Fundamentals for Communications

opic: Electronic Fundamentals for Communications

5. Both coils and capacitors offer an opposition to alternating current flow known as resistance.

FALSE

Blooms: 2. Understand

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.02 Tuned Circuits Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

The basic unit of inductance is the henry.

TRUE

Blooms: 1. Remember

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

7. The tendency of electrons flowing in a conductor to flow near and on the outer surface of a conductor at very high frequencies is called skin effect.

TRUE

Blooms: 1. Remember

Chapter: 02 Electronic Fundamentals for Communications
Difficulty: Hard

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

8. Resonance in a series tuned circuit is the point at which XL equals XC.

TRUE

Blooms: 1. Remember

 ${\it Chapter: 02 \ Electronic \ Fundamentals for \ Communications}$

Difficulty: Medium

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

9.	The bandwidth of a resonant circuit defines its selectivity.
TR	RUE Blooms: 1. Remember
10.	Chapter: 02 Electronic Fundamentals for Communications Difficulty: Hara Section: 02.02 Tuned Circuits Subtopic: Tuned Circuits Topic: Electronic Fundamentals for Communications
FA	LSE
	Blooms: 1. Remember Chapter: 02 Electronic Fundamentals for Communications Difficulty: Hara Section: 02.02 Tuned Circuits Subtopic: Tuned Circuits Topic: Electronic Fundamentals for Communications
11.	
A.	tank circuit
<u>B.</u>	filter
C.	harmonic circuit
D.	frequency doubler
	Blooms: 2. Understand Chapter: 02 Electronic Fundamentals for Communications Difficulty: Easy Section: 02.03 Filters Subtopic: Filters Topic: Electronic Fundamentals for Communications

12	A circuit that rejects or stops frequencies over a narrow range but allows frequencies above and below to pass is the
A.	high-pass filter
В.	bandpass filter
<u>C.</u>	band-reject filter
D.	all-pass filter
13	Blooms: 1. Remembe Chapter: 02 Electronic Fundamentals for Communication. Difficulty: Hare Section: 02.03 Filter Subtopic: Filter Topic: Electronic Fundamentals for Communication. The signal attenuation in the passband of a filter is called
<u>A.</u>	insertion loss
В.	roll-off loss
C.	notch loss
D.	impedance
	Blooms: 2. Understand Chapter: 02 Electronic Fundamentals for Communication. Difficulty: Medium Section: 02.03 Filter Subtopic: Filter Topic: Electronic Fundamentals for Communication.

17.	Which of the following is also known as a notch filter?
A.	low-pass
В.	high-pass
C.	bandpass
<u>D.</u>	band-reject
	Blooms: 2. Understand Chapter: 02 Electronic Fundamentals for Communication: Difficulty: Medium Section: 02.03 Filter: Subtopic: Filter:
15.	Topic: Electronic Fundamentals for Communications. The rate of change of amplitude with frequency in a filter is the
A.	shape factor
<u>B.</u>	roll-off
C.	insertion loss
D.	attenuation
	Blooms: 2. Understand Chapter: 02 Electronic Fundamentals for Communication: Difficulty: Medium Section: 02.03 Filter: Subtopic: Filter: Topic: Electronic Fundamentals for Communication:

16	Which of the following, also known as a Thomson filter, provides the desired frequency response but has a constant time delay in the passband?
A.	Butterworth
В.	Chebyshev
C.	Cauer
<u>D.</u>	Bessel
	Blooms: 2. Understan Chapter: 02 Electronic Fundamentals for Communication Difficulty: Han Section: 02.03 Filte Subtopic: Filte
17	Topic: Electronic Fundamentals for Communication Which of the following is not an advantage of an active filter?
A.	gain
В.	easy to tune
<u>C.</u>	use of inductors
D.	isolation
	Blooms: 1. Remembe Chapter: 02 Electronic Fundamentals for Communication Difficulty: Mediu. Section: 02.03 Filte Subtopic: Filte Topic: Electronic Fundamentals for Communication

18. Which of the following filter is used to supply signals on exact frequen	ncies with good stability?	
A. RC low-pass		
B. Bessel		
C. crystal		
D. LC notch		
	Blooms: 2. Understand Chapter: 02 Electronic Fundamentals for Communications Difficulty: Medium Section: 02.03 Filters Subtopic: Filters	
Topic: Electronic Fundamentals for Communications 19. Which of the following filter is very small and inexpensive and widely used in communication transmitters and receivers?		
A. Bessel		
B. Butterworth		
C. LC		
<u>D.</u> ceramic		
	Blooms: 1. Remember Chapter: 02 Electronic Fundamentals for Communications Difficulty: Medium Section: 02.03 Filters Subtopic: Filters Topic: Electronic Fundamentals for Communications	

20	Which of the following is a fixed tuned bandpass filter that is designed to provide the exact selectivity required by a given application?
A.	Bessel
<u>B.</u>	surface acoustic wave
C.	switched capacitor filters
D.	ceramic
	Blooms: 1. Remember Chapter: 02 Electronic Fundamentals for Communications Difficulty: Hard Section: 02.03 Filters Subtopic: Filters
21	Topic: Electronic Fundamentals for Communications
	Blooms: 2. Understand Chapter: 02 Electronic Fundamentals for Communications Difficulty: Hard Section: 02.03 Filters Subtopic: Filters
22	Topic: Electronic Fundamentals for Communications One characteristic of the commutating filter is that it is sensitive to the <a fourier"="" href="https://harmonics.new.new.new.new.new.new.new.new.new.new</td></tr><tr><td></td><td>Blooms: 1. Remember Chapter: 02 Electronic Fundamentals for Communications Difficulty: Hard Section: 02.03 Filters Subtopic: Filters</td></tr><tr><td>23</td><td>A non-sine wave approach used to determine the characteristics and performance of any communication circuit or system is Fourier analysis.
	Blooms: 1. Remember Chapter: 02 Electronic Fundamentals for Communications Difficulty: Easy Section: 02.04 Fourier Theory Subtopic: Fourier Theory Topic: Electronic Fundamentals for Communications

24. Most signals and waveforms discussed and analyzed are expressed in the **time** domain.

Blooms: 2. Understand

Chapter: 02 Electronic Fundamentals for Communications Difficulty: Easy

Topic: Electronic Fundamentals for Communications

Section: 02.04 Fourier Theory

Subtopic: Fourier Theory

25. The bandwidth of a rectangular wave is equal to 0.35 divided by <u>rise</u> time.

Blooms: 2. Understand

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Hard

Section: 02.04 Fourier Theory Subtopic: Fourier Theory

Topic: Electronic Fundamentals for Communications

26. When two or more stages of amplification are cascaded, the overall gain of the combination is the <u>product</u> of the individual circuit gains.

Blooms: 2. Understand

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Medium

Section: 02.01 Gain, Attenuation, and Decibels Subtopic: Gain, Attenuation, and Decibels Topic: Electronic Fundamentals for Communications

Attenuation refers to a loss introduced by a circuit or component.

Blooms: 2. Understand

 ${\it Chapter: 02 \ Electronic \ Fundamentals \ for \ Communications}$

Difficulty: Easy

Section: 02.01 Gain, Attenuation, and Decibels Subtopic: Gain, Attenuation, and Decibels Topic: Electronic Fundamentals for Communications

When gain is converted to decibels, the overall gain of an electronic circuit can be computed by **adding** the individual gains expressed in decibels.

Blooms: 2. Understand

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.01 Gain, Attenuation, and Decibels

Subtopic: Gain, Attenuation, and Decibels

Topic: Electronic Fundamentals for Communications

When a decibel value is computed by comparing a power value to 1 mW, the result is a value called the **dBm**.

Blooms: 1. Remember

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.01 Gain, Attenuation, and Decibels

Subtopic: Gain, Attenuation, and Decibels

Topic: Electronic Fundamentals for Communications

30. Circuits made up of inductors and capacitors that resonate at specific frequencies are called **tuned** circuits.

Blooms: 1. Remember

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

1. The reactance of a capacitor is <u>inversely</u> proportional to the value of capacitance and operating frequency.

Blooms: 1. Remember

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

32. A(n) inductor also called a coil or choke is simply a winding of multiple turns of wire.

Blooms: 1. Remember

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

An important characteristic of an inductor is the ratio of inductive power to resistive power referred to as its **quality** factor.

Blooms: 2. Understand

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Medium

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

When the inductive and capacitive reactances are equal, **resonance** occurs.

Blooms: 2. Understand

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

The **bandwidth** of a tuned circuit is defined as the difference between its upper and lower cutoff frequencies.

Blooms: 1. Remember

Chapter: 02 Electronic Fundamentals for Communications

Difficulty: Easy

Section: 02.02 Tuned Circuits

Subtopic: Tuned Circuits

Topic: Electronic Fundamentals for Communications

Chapter 02 Test Bank: Electronic Fundamentals for Communications <u>Summary</u>

<u>Category</u>	<u># of Questions</u>
Blooms: 1. Remember	17
Blooms: 2. Understand	17
Blooms: 3. Apply	1
Chapter: 02 Electronic Fundamentals for Communications	35
Difficulty: Easy	16
Difficulty: Hard	9
Difficulty: Medium	10
Section: 02.01 Gain, Attenuation, and Decibels	7
Section: 02.02 Tuned Circuits	12
Section: 02.03 Filters	12
Section: 02.04 Fourier Theory	3
Subtopic: Filters	12
Subtopic: Fourier Theory	3
Subtopic: Gain, Attenuation, and Decibels	8
Subtopic: Tuned Circuits	12
Topic: Electronic Fundamentals for Communications	35