Test Bank for Programmable Logic Controllers 5th Edition Petruzella 00733738429780073373843 Full link download

Test Bank:

https://testbankpack.com/p/test-bank-for-programmable-logic-controllers-5th-edition-petruzella-0073373842-9780073373843/

Solution Manual:
https://testbankpack.com/p/solution-manual-for-programmable-logic-controllers-5th-edition-petruzella-0073373842-9780073373843/

1. The decimal system uses the number 9 as its base.

FALSE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes Section: 03.01 Decimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
2. All digital computing devices perform operations in binary.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System Subtopic: Number System Characteristics

Units: Imperial
3. The base of a number system determines the total number of unique symbols used by that system.

TRUE

Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
4. In any number system, the position of a digit that represents part of the number has a weighted value associated with it.

TRUE

Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.01 Decimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes Units: Imperial
5. Usually a group of 8 bits is a byte, and a group of one or more bytes is a word.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes Units: Imperial
6. To express a number in binary requires fewer digits than in the decimal system.

FALSE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
7. The octal number system consists of digits $0,1,2,3,4,5,6$, and 7 . There are no 8 s or 9 s .

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes Section: 03.04 Octal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
8.
8. The hexadecimal number system consists of 16 digits including the numbers 0 through 9 and letters A through F.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
9. In the Gray code there is a maximum of one bit change between two consecutive numbers.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.07 Gray Code
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
10. The radix of a number system is the same as the base.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.01 Decimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes Units: Imperial
11. Binary number systems use positive and negative symbols to represent the polarity of a number.

FALSE

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.03 Negative Numbers
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
12. The decimal system has as its base:
A.
2.
B.
5.
C.
8.
D.
10.

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.01 Decimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
13. Which of the following number systems has a base of 16 ?
A.

Hexadecimal
B.

Octal
C.

Binary-coded decimal
D.

Gray code

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.05 Hexadecimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
14. In any number system, the position of a digit that represents part of the number has a "weight" associated with its value. The place weights for binary:
A.
start with 1 and are successive powers of 2 .
B.
increase by adding 2 for each place, starting with 0 .
C.
increase by adding 2 for each place, starting with 2.
D.
start with 2 and double for each successive place.

Accessibility: Keyboard Navigation Bloom's: Object 1. Factual Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.01 Decimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
15. The number 12 is:
A.

12 in any number system.
B.

12 in decimal.
C.

12 in binary.
D.

All of these choices are correct

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual Bloom's: Verb 1. Remember
16. The decimal number 15 would be written in binary as:
A.
1111.
B.
1000.
C.

4 C .
D.
00011001.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
17. The binary number 101 has the decimal equivalent of:
A.
3.
B.
101.
C.
41.
D.
5.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Section: 03.02 Binary System
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
18. The number 127 could not be:
A.
decimal.
B.
hexadecimal.
C.
octal.
D.
binary.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Section: 03.02 Binary System
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
19. The octal number 153 would be written in binary as:
A.
011101001.
B.
001101011.
C.
011111101.
D.
010100011.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Section: 03.04 Octal System
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
20. The binary number 101101 would be written in decimal as:
A.
21.
B.
36.
C.
45.
D.
62.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Section: 03.02 Binary System
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
21. The decimal number 28 would be written in binary as:
A.
11100.
B.
00111.
C.
10110.
D.
01011.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Section: 03.02 Binary System
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
22. The octal number 62 would be written in decimal as:
A.

A12.
B.

F35.
C.
50.
D.

98

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Section: 03.02 Binary System Section: 03.04 Octal System
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
23. The hexadecimal number C 4 would be written in decimal as:
A.
21.
B.
48.
C.
182.
D.
196.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another
Section: 03.04 Octal System
Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
24. The hexadecimal number 2D9 would be written in binary as:
A.
001011011001.
B.
100110110010.
C.
110011110010.
D.
001010111001.

Accessibility: Keyboard Navigation Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another Section: 03.04 Octal System Subtopic: Number Conversions Topic: Number Systems and Codes Units: Imperial
25. The decimal number 213 would be written in $B C D$ as:
A.
001000010011.
B.
110110001100.
C.
011110010011.
D.
101111010101.

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Convert from one numbering or coding system to another Section: 03.06 Binary Coded Decimal (BCD) System

Subtopic: Number Conversions
Topic: Number Systems and Codes
Units: Imperial
26. One byte of the data shown is represented by:

A.

No. 1.
B.

No. 2.
C.

No. 3.
D.

No. 4.

Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
27. The MSB of the data shown in Figure 3-1 is represented by

A.

No. 1.
B.

No. 2.
C.

No. 3.
D.

No. 4.

Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
28. The memory size represented is:

Bits

0000																					
0001																					
0002																					
0003																					
0004	0	1	1	1	0	0		1	1	0		0	0		1	1	1	1	0	1	1
0005																					

Word
Addresses
A.

1023 K.
B.

1000 K.
C.

500 K.
D.

1 K.

Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
29. The main advantage of using the Gray code is:
A.
only one digit changes as the number increases.
B.
it can be easily converted to decimal numbers.
C.
large decimal numbers can be written using fewer digits.
D.
it uses the number 2 as its base.

Accessibility: Keyboard Navigation Bloom's: Object 2. Conceptual Bloom's: Verb 2. Understand
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.07 Gray Code Subtopic: Number System Characteristics

Topic: Number Systems and Codes Units: Imperial
30. The acronym BCD stands for:
A.
binary-coded decimal.
B.
binary code decoder.
C.
base code decoder.
D.
base-coded decimal.
31. For a base 8 number system, the weight value associated with the third digit would be:
A.
16.
B.
32.
C.
64.
D.
512.

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.04 Octal System Subtopic: Number System Characteristics

Topic: Number Systems and Codes Units: Imperial
32. All digital computing devices operate using the binary number system because:
A.
most people are familiar with it.
B.
large decimal numbers can be represented in a shorter form.
C.
digital circuits can be easily distinguished between two voltage levels.
D.

All of these choices are correct
33. If a given memory unit consists of 1250 16-bit words, the memory capacity would be rated:
A.

1250 bits.
B.

20,000 bits.
C.

3260 bits.
D.

156 bits.

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System Subtopic: Number System Characteristics

Topic: Number Systems and Codes
Units: Imperial
34. In the sign bit position, a 1 indicates $\mathrm{a}(\mathrm{n})$:
A.
negative number.
B.
positive number.
C.
octal code.
D.
hexadecimal code.
35. The 2's complement form of a binary number is the binary number that results when:
A.
all the 1 s are changed to 0 s .
B.
all the 0 s are changed to 1 s .
C.

1 is added to 1 s complement.
D.
both all the 1 s are changed to 0 s and all the 0 s are changed to 1 s .

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.03 Negative Numbers Subtopic: Number System Characteristics

Topic: Number Systems and Codes
Units: Imperial
36. The ASCII code:
A.
is used with absolute encoders.
B. is considered to be an error-minimizing code.
C.
includes letters as well as numbers.
D.

All of these choices are correct
37. A(n) \qquad bit is used to detect errors that may occur while a word is moved.
A.
parity
B.
negative
C.
positive
D.
overflow

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.09 Parity Bit Subtopic: Number System Characteristics

Topic: Number Systems and Codes
Units: Imperial
38. All number systems use position weighting to represent the significance of an individual digit in a group of numbers.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.01 Decimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
39. The base of a number system is the total number of individual symbols in that system.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.01 Decimal System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
40. The binary number system is based on two bytes.

FALSE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
41. The digit of a binary number that has the lowest weight is called the Least Significant Bit.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
42. A negative number in a digital system can be expressed by using the complement of a binary number.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.03 Negative Numbers
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
43. PLCs use the 1's complement method for performing subtraction.

FALSE

Accessibility: Keyboard Navigation
Bloom's: Object 3. Procedural
Bloom's: Verb 3. Apply
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Add, subtract, multiply, and divide binary numbers
Topic: Number Systems and Codes
Units: Imperial
44. Decimal values entered into a digital machine must be converted into binary form.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Easy
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.02 Binary System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
45. 1011 is a legitimate BCD number.

FALSE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.06 Binary Coded Decimal (BCD) System
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
46. Even parity is a method of adding a binary digit to a word to make the total number of 1 s in the word even.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Know the characteristics of the numbering system codes
Section: 03.09 Parity Bit
Subtopic: Number System Characteristics
Topic: Number Systems and Codes
Units: Imperial
47. Decimal floating-point numbers usually take the form of scientific notation.

TRUE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Add, subtract, multiply, and divide binary numbers
Section: 03.11 Floating Point Arithmetic Subtopic: Addition and Subtraction, Multiplication and Division of Binary Numbers

Topic: Number Systems and Codes
Units: Imperial
48. Double precision of floating point numbers requires 32-bits.

FALSE

Accessibility: Keyboard Navigation
Bloom's: Object 1. Factual
Bloom's: Verb 1. Remember
Chapter: 03 Number Systems and Codes
Difficulty: Medium
Gradable: automatic
Learning Objective: Add, subtract, multiply, and divide binary numbers
Section: 03.11 Floating Point Arithmetic
Subtopic: Addition and Subtraction, Multiplication and Division of Binary Numbers
Topic: Number Systems and Codes
Units: Imperial

