Test Bank for Psychology An Exploration Canadian 1st Edition Ciccarelli White Fritzley Harrigan 0205897460 9780205897469

Full Link Download:

Test Bank:

https://testbankpack.com/p/test-bank-for-psychology-an-explorationcanadian-1st-edition-ciccarelli-white-fritzley-harrigan-0205897460-9780205897469/

Solution Manual:

https://testbankpack.com/p/solutions-manual-for-psychology-anexploration-canadian-1st-edition-ciccarelli-white-fritzley-harrigan-0205897460-9780205897469/

Chapter 02: The Biological Perspective

Chapter 02 Multiple Choice Questions

1. The function of the ______ is to carry information to and from all parts of the body.

soma synapse nervous system endorphins

Difficulty:1QuestionID:02-1-01Page-Reference:42Topic:An Overview of the Nervous SystemSkill:FObjective:2.1

Answer: nervous system

2. The nervous system is defined as ______

a complex network of cells that carries information to and from all parts of the body a specialized cell that makes up the brain and nervous system all nerves and neurons that are not contained in the brain and spinal cord but that run throughout the body itself a gland located in the brain that secretes human growth hormone

Difficulty:	1	
QuestionID:	02-1-02	
Page-Reference:	42	
Topic:	An Overview of the Nervous System	
Skill:	F	

Copyright © 2016 Pearson Canada Inc.

2.1

Objective:

Answer: a complex network of cells that carries information to and from all parts of the body 3. The two main divisions of the nervous system are the _____ and _____.

brain; spinal cord autonomic nervous system; somatic nervous system peripheral nervous system; central nervous system glands; muscles

Difficulty:1QuestionID:02-1-03Page-Reference:42Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: peripheral nervous system; central nervous system

4. The branch of life sciences that involves the structure and function of the brain and nervous system, while also focusing on the relationship between learning and behaviour, is called ______.

neuroscience bioscience brain scientology neurostemology

Difficulty:1QuestionID:02-1-04Page-Reference:42Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: neuroscience

5. A specialized cell that makes up the nervous system and that receives and sends messages within that system is called a

glial cell neuron cell body myelin sheath

Difficulty:	1
QuestionID:	02-1-05
Page-Reference:	42
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: neuron

6. What term is used to describe a specialized cell that makes up the nervous system and that receives and sends messages within that system?

neuron glial cell myelin sheath dendritic spine

Difficulty:	1
QuestionID:	02-1-06
Page-Reference:	42
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: neuron

- 7. The part of the neuron whose name literally means "branch" is ______.
 - axon dendrite myelin soma

Difficulty:	1
QuestionID:	02-1-07
Page-Reference:	43
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: dendrite

- 8. The branchlike structures that *receive* messages from other neurons are called ______.
 - axons nerve bundles dendrites synapses

Difficulty:1QuestionID:02-1-08Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: dendrites

- 9. Which part of the neuron is responsible for maintaining the life of the cell?
 - axon soma dendrite cell membrane

Difficulty:2QuestionID:02-1-09Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: soma

10. The part of a neuron that contains the nucleus and keeps the entire cell alive and functioning is the

axon cell membrane dendrite soma

Difficulty: QuestionID: Page-Reference:	1 02-1-10 43
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: soma

11. Which part of a neuron is attached to the soma and carries messages out to other cells?

soma axon dendrite cell membrane

Difficulty:1QuestionID:02-1-11Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: axon

12. The function of the neuron's axon is to _____.

carry messages to other cells regulate the neuron's life processes receive messages from neighbouring neurons insulate against leakage of electrical impulses

Difficulty:	2
QuestionID:	02-1-12
Page-Reference:	43
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: carry messages to other cells

13.		receive messages from other neurons and	send messages to other
	neurons.		-

Axons; dendrites Axons; soma Soma; glial cells Dendrites; axons

Difficulty:2QuestionID:02-1-13Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:CObjective:2.1

Answer: Dendrites; axons

14. Dendrite is to axon as

send is to receive. send is to regulate. receive is to send. receive is to release.

Difficulty:2QuestionID:02-1-14Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:CObjective:2.1

Answer: receive is to send.

15. It is now believed that neurons make up between _____ percent of the brain, whereas glial cells make up _____ percent. 10 and 50; 50

5 and 10; 20 60 and 70; 30 80 and 90; 10

Difficulty:	2
QuestionID:	02-1-15
Page-Reference:	43
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: 10 and 50; 50

16. Glial cells are now believed to make up _____ of the brain's cells.

10 percent 70 percent 50 percent 90 percent

Difficulty:3QuestionID:02-1-16Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: 50 percent

17. What are two roles of glial cells?

acting as insulation and providing structure to surrounding neurons shaping cells and moving new neurons into place regulating metabolic activity and serving as pain detectors monitoring neural transmission and releasing hormones in the brain

Difficulty:	3
QuestionID:	02-1-17
Page-Reference:	43-44
Topic:	Neurons and Nerves—Building the Network
Skill:	С
Objective:	2.1

Answer: acting as insulation and providing structure to surrounding neurons

18. Two types of glial cells, called ______ and _____, generate myelin.

occipital; lobitical oligodendrocytes; Schwann cells occipital; Schwann cells oligodendrocytes; lobitical

Difficulty:3QuestionID:02-1-18Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: oligodendrocytes; Schwann cells

19. A cell in the human nervous system whose primary function is to provide insulation and structure for neurons on which they may develop and work is called a(n) _____.

epidermal cell adipose cell glial cell myelin cell

Difficulty:2QuestionID:02-1-19Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: glial cell

20. What is the function of myelin?

to serve as a structure for neurons to monitor neural activity to speed up the neural impulse to produce neurotransmitters

Difficulty:	2
QuestionID:	02-1-20
Page-Reference:	43
Topic:	Neurons and Nerves—Building the Network
Skill:	С
Objective:	2.1

Answer: to speed up the neural impulse

21. A fatty substance wrapped around the shaft of axons in the nervous system and whose function is to insulate neurons and speed up the neural impulse is called (a) ______.

synaptic vesicle dendrite glial cell myelin

Difficulty:2QuestionID:02-1-21Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: myelin

22. Which of the following is true about myelin?

It is a fatty substance. It is covered by axons. It inhibits neural communication. It slows down neuronal operations.

Difficulty:	2
QuestionID:	02-1-22
Page-Reference:	43
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: It is a fatty substance.

23. One purpose of the ______ is to speed up the neural message travelling down the axon.

receptor site axon terminal myelin synaptic vesicle

Difficulty:2QuestionID:02-1-23Page-Reference:43Topic:Neurons and Nerves—Building the NetworkSkill:CObjective:2.1

Answer: myelin

24. Groups of myelin-coated axons that travel together through the body are called _____

a synaptic vesicle nerves neurilemma a myelinated pathway

Difficulty:1QuestionID:02-1-24Page-Reference:44Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: nerves

25. A nerve is a group of _____ bundled together.

axons interneurons dendrites glial cells

Difficulty:	2
QuestionID:	02-1-25
Page-Reference:	44
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: axons

26. Holly is interested in decreasing her risk for multiple sclerosis. Which of the following would most likely help her to achieve her goal?

Stay indoors to avoid pollution. Take vitamin D supplements. Avoid fried foods. Decrease her physical activity.

Difficulty:	2
QuestionID:	02-1-26
Page-Reference:	44
Topic:	Neurons and Nerves—Building the Network
Skill:	A
Objective:	2.1

Answer: Take vitamin D supplements.

- 27. The charge that a neuron at rest maintains is due to the presence of a high number of ______ charged ions inside the neuron's membrane.
 - actively passively negatively positively

Difficulty:	2
QuestionID:	02-1-27
Page-Reference:	44
Topic:	Neurons and Nerves—Building the Network
Skill:	С
Objective:	2.1

Answer: negatively

28. The state during which a neuron contains more negatively charged ions inside the cell than outside the cell and is not firing is referred to as the ______.

action potential quiet potential synaptic membrane potential resting membrane potential

Difficulty:	2
QuestionID:	02-1-28
Page-Reference:	45
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: resting membrane potential

29. When a cell is "at rest," it is in a state called the _______.

stopping point obcipitation junction resting membrane potential action potential

Difficulty:1QuestionID:02-1-29Page-Reference:45Topic:Neurons and Nerves—Building the NetworkSkill:CObjective:2.1

Answer: resting membrane potential

30. What do we call the state of a neuron when it is not firing a neural impulse?

action potential resting membrane potential myelination signal transmission impulse

Difficulty:	1
QuestionID:	02-1-30
Page-Reference:	45
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.1

Answer: resting membrane potential

31. When the electric potential in a cell is in action versus a resting state, this electrical charge reversal is known as the ______.

resting membrane potential excitation reaction action potential permeable reaction

Difficulty:1QuestionID:02-1-31Page-Reference:45Topic:Neurons and Nerves—Building the NetworkSkill:CObjective:2.1

Answer: action potential

32. During the action potential, the electrical charge inside the neuron is ______ the electrical charge outside the neuron.

positive compared to larger than negative compared to smaller than

work

Answer: positive compared to

33. When a neuron fires, it fires in a(n) _____ fashion, as there is no such thing as "partial" firing.

all-or-none rapid fire accidental patterned quick successioned

Difficulty:2QuestionID:02-1-33Page-Reference:46Topic:Neurons and Nerves—Building the NetworkSkill:CObjective:2.1

Answer: all-or-none

34. "All or none" is the principle stating that _____.

a neuron either fires at full strength or does not fire at all. a neuron fires either in a completely agonist fashion or in a completely antagonist fashion. all of the dendrites must be receiving messages telling the neuron to fire or it will not fire at all. all somas must be receiving messages telling the neuron to fire or it will not fire at all.

Difficulty:2QuestionID:02-1-34Page-Reference:46Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.1

Answer: a neuron either fires at full strength or does not fire at all.

35. Your teacher asks you to describe the sequence of parts of a neuron that the impulse travels down during neural conduction. Which of the following sequences will you offer?

dendrites, axon, soma, synaptic knob terminal buttons, axon, soma, dendrites axon, soma, dendrites, synaptic knob dendrites, soma, axon, synaptic knob

Difficulty:	3
QuestionID:	02-1-35
Page-Reference:	43-47
Topic:	Neurons and Nerves—Building the Network
Skill:	С
Objective:	2.1-2.2

Answer: dendrites, soma, axon, synaptic knob

36. The branches at the end of the axon are called _____.

axon terminals synaptic vesicles synapses receptor sites

Difficulty:	1
QuestionID:	02-1-36
Page-Reference:	47
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: axon terminals

37. What is the term used to describe the branches located at the end of the axon?

axon terminals synaptic vesicles synapses receptor sites

Difficulty:	2
QuestionID:	02-1-37
Page-Reference:	47
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: axon terminals

38. What is the term used to describe the rounded areas on the ends of the axon terminals?

synaptic vesicles axons dendrites synaptic knobs

Difficulty:2QuestionID:02-1-38Page-Reference:47Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: synaptic knobs

39. The saclike structures found inside the synaptic knob containing chemicals are called _____.

axon terminals synapses synaptic vesicles receptor sites

Difficulty:1QuestionID:02-1-39Page-Reference:47Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: synaptic vesicles

40. Which of the following are tiny sacs in a synaptic knob that release chemicals into the synapse?

synaptic vesicles synaptic nodes terminal buttons synaptic gaps

Difficulty:	2
QuestionID:	02-1-40
Page-Reference:	47
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: synaptic vesicles

41. A chemical found in the synaptic vesicles that, when released, has an effect on the next cell is called a _____

glial cell neurotransmitter precursor cell synapse

Difficulty:1QuestionID:02-1-41Page-Reference:47Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: neurotransmitter

a chemical found in the synaptic vesicles that is released into the synapse any one of a number of chemical compounds that increase the activity of the endocrine system the chemical substance found in the cell membrane the DNA contained in the nucleus of every neuron

Difficulty:	2
QuestionID:	02-1-42
Page-Reference:	47
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: a chemical found in the synaptic vesicles that is released into the synapse

43. The fluid-filled space between the synaptic knob of one cell and the dendrites of the next cell is called the

receptor site synapse synaptic knob axon terminal

Difficulty:1QuestionID:02-1-43Page-Reference:48Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: synapse

44. _____ are holes in the surface of the dendrites or certain cells of the muscles and glands that are shaped to fit only certain neurotransmitters.

Neurotransmitters Axons Synaptic vesicles Receptor sites

Difficulty:1QuestionID:02-1-44Page-Reference:48Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: Receptor sites

45. Which structure is like a locked door that only certain neurotransmitter keys can unlock?

synapses receptor sites neural chiasms response terminals

Difficulty:	2
QuestionID:	02-1-45
Page-Reference:	48
Topic:	Neurons and Nerves—Building the Network
Skill:	С
Objective:	2.2

Answer: receptor sites

46. The action potential causes neurotransmitters to be released into the ______.

myelin sheath axon synapse synaptic vesicle

Difficulty:2QuestionID:02-1-46Page-Reference:48Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: synapse

47. The process that is associated with neurotransmitter molecules floating across the synapse to bind with receptor sites is ______.

diffusion infusion inhibition reuptake

Difficulty:	2
QuestionID:	02-1-47
Page-Reference:	48
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: diffusion

48.

neurotransmitters make it more likely that a neuron will send its message to other

neurons, whereas ______ neurotransmitters make it less likely that a neuron will send its message. Excitatory; inhibitory Inhibitory; excitatory

Augmentation; depletion Depletion; augmentation

2
02-1-48
48
Neurons and Nerves—Building the Network
С
2.2

Answer: Excitatory; inhibitory

49. Curare, a poison, works by _____.

blocking receptor sites and acting as an antagonist for acetylcholine stimulating the release of excessive amounts of acetylcholine stimulating the release of neurotransmitters inhibiting the production of inhibitory neurotransmitters

3
02-1-49
48
Neurons and Nerves—Building the Network
С
2.2

Answer: blocking receptor sites and acting as an antagonist for acetylcholine

50. After being bitten by a black widow spider, Jean starts to convulse. This is a result of _____.

a lack of GABA being released into her bloodstream a resurgence of neurotransmitters overstimulating her brainstem a surge of chemicals blocking the transmission of fluids to the spinal cord a flood of acetylcholine releasing into the body's muscle system

Difficulty:	3
QuestionID:	02-1-50
Page-Reference:	48
Topic:	Neurons and Nerves—Building the Network
Skill:	A
Objective:	2.2

Answer: a flood of acetylcholine releasing into the body's muscle system

51. _____ plays a critical role as a neurotransmitter that stimulates muscles to contract.

Acetylcholine GABA Dopamine Endorphin Difficulty: 1

QuestionID:02-1-51Page-Reference:48Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: Acetylcholine

52. Sara has been experiencing a serious memory problem. An interdisciplinary team has ruled out a range of causes and believes that a neurotransmitter is involved. Which neurotransmitter is most likely involved in this problem?

GABA dopamine serotonin acetylcholine

Difficulty: QuestionID:	2 02-1-52
Page-Reference:	49
Topic:	Neurons and Nerves—Building the Network
Skill:	A
Objective:	2.2

Answer: acetylcholine

53. The poison of the black widow spider works by stimulating the release of excessive amounts of

acetylcholine dopamine endorphins serotonin

Difficulty:3QuestionID:02-1-53Page-Reference:48-49Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: acetylcholine

54. Endorphins are _____.

found where neurons meet skeletal muscles less powerful than enkaphalins pain-controlling chemicals radically different in function from neurotransmitters

Difficulty:2QuestionID:02-1-54Page-Reference:49Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: pain-controlling chemicals

55. Pain-controlling chemicals in the body are called _____.

neural regulators histamines androgens endorphins

1
02-1-55
49
Neurons and Nerves—Building the Network
F
2.2

Answer: endorphins

56. Because they have similar chemical structures, morphine and other opiates are able to lock into receptor sites for _____.

GABA serotonin dopamine endorphins

Difficulty:3QuestionID:02-1-56Page-Reference:49Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: endorphins

57. Reuptake is _____.

a chemical that is released into the synaptic gap a protein molecule on the dendrite or cell body of a neuron that will interact only with specific neurotransmitters

a process by which neurotransmitters are sucked back into the synaptic vesicles a chemical that plays a role in learning and attention 88

Difficulty:	1
QuestionID:	02-1-57
Page-Reference:	50
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: a process by which neurotransmitters are sucked back into the synaptic vesicles

58. Isabella is putting mustard on her hot dog. She realizes that she has put on too much and sucks some of it back into the squeeze bottle. This process is similar to

the action potential. receptor site bindings. binding specificity. reuptake.

Difficulty:	3
QuestionID:	02-1-58
Page-Reference:	50
Topic:	Neurons and Nerves—Building the Network
Skill:	A
Objective:	2.2

Answer: reuptake.

59. How is acetylcholine removed from the synapse?

It is broken down by an enzyme. It is taken back up in the synapse. It dissipates in the surrounding body fluids. Acetylcholine is one of the few neurotransmitters that is continually present in the synapse.

Difficulty:	3
QuestionID:	02-1-59
Page-Reference:	50
Topic:	Neurons and Nerves—Building the Network
Skill:	С
Objective:	2.2

Answer: It is broken down by an enzyme.

the major neurotransmitter involved in voluntary movements an inhibitory neurotransmitter in the brain the neurotransmitter responsible for slowing intestinal activity during stress the major excitatory neurotransmitter in the brain

Difficulty:	2
QuestionID:	02-1-60
Page-Reference:	50
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: an inhibitory neurotransmitter in the brain

61. Which of the following neurotransmitters functions as a common inhibitory neurotransmitter in the brain?

serotonin GABA acetylcholine norepinephrine

Difficulty:1QuestionID:02-1-61Page-Reference:50Topic:Neurons and Nerves—Building the NetworkSkill:FObjective:2.2

Answer: GABA

62. Which neurotransmitter is associated with mood and depression?

GABA serotonin dopamine acetylcholine

Difficulty:	1
QuestionID:	02-1-62
Page-Reference:	50-51
Topic:	Neurons and Nerves—Building the Network
Skill:	F
Objective:	2.2

Answer: serotonin

63. Andy has decided to seek medical help for mood disturbances and appetite problems. Which neurotransmitter is most likely involved in the problems that Andy is experiencing? GABA

dopamine serotonin acetylcholine

Difficulty:2QuestionID:02-1-63Page-Reference:50-51Topic:Neurons and Nerves—Building the NetworkSkill:AObjective:2.2

Answer: serotonin

64. The brain and spinal cord are two components of the _________.

central nervous system somatic nervous system peripheral nervous system autonomic nervous system

Difficulty:1QuestionID:02-1-64Page-Reference:51Topic:The Central Nervous System – The "Central Processing Unit"Skill:FObjective:2.3

Answer: central nervous system

65. The central nervous system consists of _____.

the parasympathetic and sympathetic divisions the brain and spinal cord muscles and glands sense organs and sensory neurons

Difficulty:	1
QuestionID:	02-1-65
Page-Reference:	51
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	F
Objective:	2.3

Answer: the brain and spinal cord

- 66. Which part of the nervous system takes the information received from the senses, makes sense out of it, makes decisions, and sends commands out to the muscles and the rest of the body?
 - spinal cord brain reflexes interneurons

Difficulty:	1
QuestionID:	02-1-66
Page-Reference:	51
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	F
Objective:	2.3

Answer: brain

- 67. The long bundle of neurons that carries messages between the body and the brain and is responsible for very fast, life-saving reflexes is called the _____.
 - spinal cord brain reflexes interneurons

Difficulty:	1
QuestionID:	02-1-67
Page-Reference:	51
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	F
Objective:	2.3

Answer: spinal cord

68. Which of the following is a long bundle of neurons that functions as a carrier of messages from the body to the brain and from the brain to the body and is responsible for certain reflexes? spinal cord cerebellum

somatic nervous system amygdala

Difficulty:	2
QuestionID:	02-1-68
Page-Reference:	51-52
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	F
Objective:	2.3

Answer: spinal cord

69. Which of the following are the three basic types of neurons?

reflexes, sensory neurons, motor neurons sensory neurons, motor neurons, stem cells motor neurons, stem cells, reflexes interneurons, sensory neurons, motor neurons

Difficulty:	1
QuestionID:	02-1-69
Page-Reference:	52
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	F
Objective:	2.3

Answer: interneurons, sensory neurons, motor neurons

70. Neurons that carry information from the senses to the spinal cord are called ______.

motor neurons interneurons sensory neurons reflexes

Difficulty:	1
QuestionID:	02-1-70
Page-Reference:	52
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	F
Objective:	2.3

93

Answer: sensory neurons

71. LaKeisha stepped on a piece of glass and quickly pulled her foot away from that sharp object. Which of the following are responsible for sending a message to the muscles in LaKeisha's foot, resulting in her pulling her foot away from the piece of glass?

motor neurons interneurons sensory neurons reflexes

Difficulty:	3
QuestionID:	02-1-71
Page-Reference:	52
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	A
Objective:	2.3

Answer: motor neurons

72. Neurons found in the centre of the spinal cord that receive information from the sensory neurons and send commands to the muscles through the motor neurons are called _____.

motor neurons interneurons sensory neurons reflexes

Difficulty:	1
QuestionID:	02-1-72
Page-Reference:	52
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	F
Objective:	2.3

Answer: interneurons

73. Which of the following are responsible for acting as a facilitator of communication between neurons?

motor neurons interneurons sensory neurons reflexes

Difficulty:3QuestionID:02-1-73Page-Reference:52Topic:The Central Nervous System – The "Central Processing Unit"Skill:CObjective:2.3

Answer: interneurons

74. Mary put her hand on a hot stove. Which neuron is responsible for sending a pain message up her spinal column, where it would then enter the main area of the cord?

motor neuron
interneuron
sensory neuron
reflex

Difficulty:	2
QuestioniD:	02-1-74
Page-Reference:	52
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	A
Objective:	2.3

Answer: sensory neuron

75. Cameron touches a hot iron and immediately pulls his hand away. His quick response occurs because

the pain message goes up the spinal column to the central area of the spinal cord instead of going all the way to the brain the brain has registered that pain is occurring and responds quickly his

glands have secreted chemical messengers called hormones neurons in the spinal cord touch end to end to increase response speed

Difficulty:	3
QuestionID:	02-1-75
Page-Reference:	52-53
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	A
Objective:	2.3

Answer: the pain message goes up the spinal column to the central area of the spinal cord instead of going all the way to the brain

76. Why do many reflexes, such as pulling your hand away from a hot iron, happen so quickly?

They involve the neurotransmitter GABA rather than dopamine. The message involved does not have to go all the way to the brain. The speed of processing is faster in the frontal lobes than in the occipital lobes. The path that reflexes follow to the brain is direct and does not involve any neurotransmitters.

Difficulty:	3
QuestionID:	02-1-76
Page-Reference:	53
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	A
Objective:	2.3

Answer: The message involved does not have to go all the way to the brain.

77. Jack suffered a brain injury as a result of hitting his head while waterskiing. One of the problems that developed was that Jack could not pronounce certain words correctly for a long period, until he had extensive speech therapy. He can now speak as he did before his accident. This is an example of the brain's _____, which allowed the structure and function of his brain cells to change to adjust to the trauma.

adaptology stagnation neuroplasticity reflex arc

Difficulty:	2
QuestionID:	02-1-77
Page-Reference:	53
Topic:	The Central Nervous System – The "Central Processing Unit"
Skill:	A
Objective:	2.3

Answer: neuroplasticity

78. Karen's 80-year-old grandmother has been learning to play piano and is improving steadily. Based on Canadian research on neuroplasticity, Karen might conclude that her grandmother's

production of serotonin has increased glial cells are helping her neurons to form new connections brain is growing new neurons stem cells are producing new neurons

3
02-1-78
53
The Central Nervous System - The "Central Processing Unit"
A
2.3

Answer: glial cells are helping her neurons to form new connections

```
79. The peripheral nervous system consists of _____.
```

all nerve cells that are not in the brain and spinal cord all nerves in the brain and spinal cord the spinal cord and the autonomic system the brain and the autonomic system

Difficulty:	1
QuestionID:	02-1-79
Page-Reference:	54
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	F
Objective:	2.4

Answer: all nerve cells that are not in the brain and spinal cord

80. The division of the nervous system that allows the brain and the spinal cord to communicate with the sensory systems of the eyes, ears, skin, and mouth and that allows the brain and spinal cord to control the muscles and glands of the body is called the _____.

peripheral nervous system central nervous system endocrine system secondary nervous system

Difficulty:1QuestionID:02-1-80Page-Reference:54Topic:The Peripheral Nervous System—Nerves on the EdgeSkill:FObjective:2.4

Answer: peripheral nervous system

81. The peripheral nervous system consists of the _____ and the _____ nervous systems.

autonomic; somatic autonomic; sympathetic parasympathetic; somatic parasympathetic; sympathetic

Difficulty:	2
QuestionID:	02-1-81
Page-Reference:	54
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	C
Objective:	2.4

Answer: autonomic; somatic

82. The subdivision of the peripheral nervous system that is made up of all nerves carrying messages from the senses to the central nervous system and all nerves carrying messages from the central nervous system to skeletal muscles is called the ______.

autonomic nervous system parasympathetic nervous system somatic nervous system central nervous system

Difficulty:	1
QuestionID:	02-1-82
Page-Reference:	54
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	F
Objective:	2.4
-	

Answer: somatic nervous system

83. In the peripheral nervous system, _____ carry messages from special sense receptors in the

skin, muscles, and other internal and external sense organs to the spinal cord.

autonomic nerves sensory pathway neurons motor pathway neurons autonomic neurons

Difficulty:1QuestionID:02-1-83Page-Reference:54Topic:The Peripheral Nervous System—Nerves on the EdgeSkill:FObjective:2.4

Answer: sensory pathway neurons

84. Vladimir is typing on the computer keyboard. The motion of his fingers on the keys is probably being controlled by _____.

the autonomic nervous system sensory pathway neurons motor pathway neurons autonomic neurons

Difficulty:	3
QuestionID:	02-1-84
Page-Reference:	54
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	A
Objective:	2.4
-	

Answer: motor pathway neurons

85. Every deliberate action you make, such as pedalling a bike, walking, scratching, or smelling a flower, involves neurons in the _____ nervous system.

sympathetic somatic parasympathetic autonomic

Difficulty:	2
QuestionID:	02-1-85
Page-Reference:	54
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	A
Objective:	2.4

Answer: somatic

- 86. Voluntary muscles are controlled by the _____ nervous system.
 - somatic autonomic sympathetic parasympathetic

Difficulty:	1
QuestionID:	02-1-86
Page-Reference:	54
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	F
Objective:	2.4

Answer: somatic

87. As she walks out of the living room, Gloria turns out the light. In this example, Gloria's is active.

sympathetic nervous system parasympathetic nervous system autonomic nervous system somatic nervous system

Difficulty:	2
QuestionID:	02-1-87
Page-Reference:	54
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	A
Objective:	2.4

Answer: somatic nervous system

88. Involuntary muscles are controlled by the _____ nervous system.

somatic autonomic sympathetic parasympathetic

Difficulty:1QuestionID:02-1-88Page-Reference:55Topic:The Peripheral Nervous System—Nerves on the EdgeSkill:FObjective:2.4

Answer: autonomic

- 89. The subdivision of the peripheral nervous system that consists of nerves that control all of the involuntary muscles, organs, and glands is called the _____ nervous system.
 - somatic autonomic sympathetic parasympathetic

Difficulty:	1
QuestionID:	02-1-89
Page-Reference:	55
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	F
Objective:	2.4

Answer: autonomic

90. When you see someone you have a crush on and your heart pounds, your hands get sweaty, and your cheeks feel hot, your _____ is/are active.

skeletal nervous system spinal reflexes autonomic nervous system somatic nervous system

Difficulty:	2
QuestionID:	02-1-90
Page-Reference:	55
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	A
Objective:	2.4

Answer: autonomic nervous system

91. The autonomic nervous system has two divisions called the _____ and the _____.

central; peripheral sympathetic; parasympathetic receptors; effectors limbic; endocrine

Difficulty:	1
QuestionID:	02-1-91
Page-Reference:	55
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	F
Objective:	2.4

Answer: sympathetic; parasympathetic

92. Which component of the nervous system mobilizes the body in times of stress?

central somatic sympathetic parasympathetic

Difficulty:2QuestionID:02-1-92Page-Reference:55-56Topic:The Peripheral Nervous System—Nerves on the EdgeSkill:CObjective:2.4

Answer: sympathetic

93. The part of the autonomic nervous system that is responsible for reacting to stressful events and bodily arousal is called the nervous system.

central somatic sympathetic parasympathetic

Difficulty:1QuestionID:02-1-93Page-Reference:55Topic:The Peripheral Nervous System—Nerves on the EdgeSkill:FObjective:2.4

Answer: sympathetic

94. As Molly is walking across campus, a car swerves toward her. Her heart races and sweat breaks out as she jumps out of harm's way. This mobilization of energy is due to the action of Molly's

somatic nervous system skeletal nervous system parasympathetic nervous system sympathetic nervous system

Difficulty:	2
QuestionID:	02-1-94
Page-Reference:	55
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	A
Objective:	2.4

Answer: sympathetic nervous system

95. The branch of the autonomic nervous system that restores the body to normal functioning after arousal and is responsible for day-to-day functioning of the organs and glands is called the

spinal cord somatic nervous system sympathetic nervous system parasympathetic nervous system

Difficulty:	1
QuestionID:	02-1-95
Page-Reference:	56
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	F
Objective:	2.4

Answer: parasympathetic nervous system

96. Malcolm is studying alone in his room late at night when he hears a loud noise downstairs. His heartbeat increases significantly and his breathing becomes shallow. He wonders if a burglar has entered the house and decides to investigate. When he gets downstairs, he discovers that his cat has knocked over a plant stand. His body begins to relax and return to normal. Which part of his nervous system is responsible for returning Malcolm to a normal state?

spinal cord somatic nervous system sympathetic nervous system parasympathetic nervous system

Difficulty:	2
QuestionID:	02-1-96
Page-Reference:	56
Topic:	The Peripheral Nervous System—Nerves on the Edge
Skill:	A
Objective:	2.4

Answer: parasympathetic nervous system

97. Endocrine glands _____.

secrete hormones directly into the bloodstream are chemicals released into the bloodstream are an extensive network of specialized cells are a thin layer of cells coating the axons

Difficulty:	1
QuestionID:	02-1-97
Page-Reference:	57
Topic:	Distant Connections—The Endocrine Glands
Skill:	F
Objective:	2.5

Answer: secrete hormones directly into the bloodstream

98. Hormones are chemicals that are secreted and go directly into _____.

the bloodstream specific organs nerve endings the brain

Difficulty:1QuestionID:02-1-98Page-Reference:57Topic:Distant Connections—The Endocrine GlandsSkill:CObjective:2.5

Answer: the bloodstream

99. Hormones are _____.

the female gonads chemicals released into the bloodstream by the endocrine glands chemicals found in the synaptic vesicles, which when released have an effect on the next cell the male gonads

Difficulty:1QuestionID:02-1-99Page-Reference:57Topic:Distant Connections—The Endocrine GlandsSkill:FObjective:2.5

Answer: chemicals released into the bloodstream by the endocrine glands

100. Which endocrine gland controls all of the other endocrine glands?

the thyroid gland the adrenal gland the thymus gland the pituitary gland

Difficulty:	1
QuestionID:	02-1-100
Page-Reference:	58
Topic:	Distant Connections—The Endocrine Glands
Skill:	F
Objective:	2.5

Answer: the pituitary gland

101. The hormone released by the pineal gland that is influential in sleep-wake cycles is _______.

melatonin DHEA parathormone thyroxin

Difficulty:1QuestionID:02-1-101Page-Reference:58Topic:Distant Connections—The Endocrine GlandsSkill:FObjective:2.5

Answer: melatonin

102. Tim is overweight. His physician has decided to test him to see if there is a problem with the regulation of his metabolism. Which endocrine gland will be the focus of diagnostic testing? the adrenal gland

the thymus gland the thyroid gland the pancreas

Difficulty:	3
QuestionID:	02-1-102
Page-Reference:	58
Topic:	Distant Connections—The Endocrine Glands
Skill:	A
Objective:	2.5

Answer: the thyroid gland

103. Denise just received the results of a complete physical that found her body is not producing enough insulin. Which of the following endocrine glands is affecting her body's ability to produce insulin?

the adrenal gland the thymus gland the thyroid gland the pancreas

Difficulty:	3
QuestionID:	02-1-103
Page-Reference:	58
Topic:	Distant Connections—The Endocrine Glands
Skill:	A
Objective:	2.5

Answer: the pancreas

104. The sex glands, which secrete hormones that regulate sexual development and behaviour as well as reproduction, are called _______.

the pancreas the gonads cortisol the hypothalamus

Difficulty:	1
QuestionID:	02-1-104
Page-Reference:	58
Topic:	Distant Connections—The Endocrine Glands
Skill:	F
Objective:	2.5

Answer: the gonads

105. The ______, located on the top of the kidneys, secrete(s) hormones that regulate salt intake,

control stress reactions, and provide a secondary source of sex hormones affecting the sexual changes that occur during adolescence.

adrenal glands thymus gland thyroid gland gonads

Difficulty:	1
QuestionID:	02-1-105
Page-Reference:	59
Topic:	Distant Connections—The Endocrine Glands
Skill:	F
Objective:	2.5

Answer: adrenal glands

106. Joe is very anxious over an upcoming exam. Consequently, his adrenal glands will probably produce _____.

more testosterone less estrogen more cortisol less cortisol

Difficulty:	2
QuestionID:	02-1-106
Page-Reference:	59
Topic:	Distant Connections—The Endocrine Glands
Skill:	A
Objective:	2.5

Answer: more cortisol

107. Insertion into the brain of a thin insulated wire through which an electrical current is sent that destroys the brain cells at the tip of the wire is called _____.

deep lesioning ESB EEG CT scan

Difficulty:1QuestionID:02-1-107Page-Reference:60Topic:Looking Inside the Living BrainSkill:FObjective:2.6

Answer: deep lesioning

108. Sometimes, in order to study parts of an animal's brain, researchers may deliberately damage a part of the brain. They accomplish this by placing in the brain a thin insulated wire through which they send an electrical current that destroys the brain cells at the tip of the wire. This technique is called

deep lesioning ESB EEG CT scan

Difficulty:	2
QuestionID:	02-1-108
Page-Reference:	60
Topic:	Looking Inside the Living Brain
Skill:	С
Objective:	2.6

Answer: deep lesioning

109. Insertion into the brain of a thin insulated wire through which an electrical current is sent that stimulates the brain cells at the tip of the wire is called ______.

deep lesioning ESB EEG CT scan

Difficulty:1QuestionID:02-1-109Page-Reference:60Topic:Looking Inside the Living BrainSkill:FObjective:2.6

Answer: ESB

110. If Mindy's doctor has taken a series of images of her brain using X-rays, she likely had a(n)

EEG	
MRI	
СТ	
PET	

Difficulty:3QuestionID:02-1-110Page-Reference:61Topic:Looking Inside the Living BrainSkill:AObjective:2.6

Answer: CT

111. A brain-imaging method that takes computer-controlled X-rays of the brain is called _____.

electroencephalography (EEG) magnetic resonance imaging (MRI) positron emission tomography (PET) computed tomography (CT)

Difficulty:	1
QuestionID:	02-1-111
Page-Reference:	61
Topic:	Looking Inside the Living Brain
Skill:	F
Objective:	2.6

Answer: computed tomography (CT)

112. All is in the hospital about to undergo a brain-imaging process that involves taking many X-rays from different angles aided by a computer. What type of imaging technique is being used? electroencephalography (EEG)

magnetic resonance imaging (MRI) positron emission tomography (PET) computed tomography (CT)

Difficulty:2QuestionID:02-1-112Page-Reference:61Topic:Looking Inside the Living BrainSkill:AObjective:2.6

Answer: computed tomography (CT)

113. A brain-imaging method using radio waves and magnetic fields of the body to produce detailed images of the brain is called _____.

electroencephalography (EEG) magnetic resonance imaging (MRI) positron emission tomography (PET) computed tomography (CT)

Difficulty:	1
QuestionID:	02-1-113
Page-Reference:	61
Topic:	Looking Inside the Living Brain
Skill:	F
Objective:	2.6

Answer: magnetic resonance imaging (MRI)

114. Rashad is in the hospital and is about to undergo a brain-imaging process that involves placing him inside a magnetic field so that a computer can create three-dimensional images of his brain. What procedure is he about to undergo?

electroencephalography (EEG) magnetic resonance imaging (MRI) computed tomography (CT) positron emission tomography (PET)

Difficulty:	2
QuestionID:	02-1-114
Page-Reference:	61
Topic:	Looking Inside the Living Brain
Skill:	A
Objective:	2.6

Answer: magnetic resonance imaging (MRI)
115. A brain-imaging method called takes advantage of the magnetic properties of

electroencephalography (EEG) magnetic resonance imaging (MRI) positron emission magnetography (PEM) computed tomography (CT)

Difficulty:1QuestionID:02-1-115Page-Reference:61Topic:Looking Inside the Living BrainSkill:CObjective:2.6

Answer: magnetic resonance imaging (MRI)

116. Small metal discs are pasted to Miranda's scalp and connected by wire to a machine that translates the electrical energy from her brain into wavy lines on a moving piece of paper. From this description, it is evident that Miranda's brain is being studied through the use of _____

a CT scan functional magnetic resonance imaging (fMRI) a microelectrode an electroencephalogram (EEG)

Difficulty:	2
QuestionID:	02-1-116
Page-Reference:	62
Topic:	Looking Inside the Living Brain
Skill:	A
Objective:	2.6

Answer: an electroencephalogram (EEG)

117. Which of the following is a machine designed to record the brain wave patterns produced by electrical activity of the surface of the brain?

deep lesioning electrical stimulation of the brain (ESB) an electroencephalogram (EEG) CT scan

Difficulty:1QuestionID:02-1-117Page-Reference:62Topic:Looking Inside the Living BrainSkill:FObjective:2.6

Answer: an electroencephalogram (EEG)

118. Which equipment is used to monitor brain waves?

CT scans functional magnetic resonance imaging (fMRI) microelectrode electroencephalograph (EEG)

Difficulty:	1
QuestionID:	02-1-118
Page-Reference:	62
Topic:	Looking Inside the Living Brain
Skill:	F
Objective:	2.6

Answer: electroencephalograph (EEG)

119. Which of the following is a brain-imaging method in which radioactive sugar is injected into the subject and a computer compiles a colour-coded image of the activity of the brain? electroencephalography (EEG) computed tomography (CT) positron emission tomography (PET) functional magnetic resonance imaging (fMRI)

Difficulty:	1
QuestionID:	02-1-119
Page-Reference:	63
Topic:	Looking Inside the Living Brain
Skill:	F
Objective:	2.6

Answer: positron emission tomography (PET)

120. Libby's physician refers her to a medical centre in order to have the biochemical activity in her brain analyzed. She is given an injection of a radioactive glucose-like substance and then is told to lie down with her head in a scanner. The technique being used is ______.

positron emission tomography (PET) functional magnetic resonance imaging (fMRI) microelectrode recording. an electroencephalogram (EEG)

Difficulty:	2
QuestionID:	02-1-120
Page-Reference:	63
Topic:	Looking Inside the Living Brain
Skill:	A
Objective:	2.6

Answer: positron emission tomography (PET)

121. Marika needs to have a neuroimaging test that will track the activity of her brain, along with changes in her brain oxygen levels. Which of the following offers an alternative to PET scans, with the advantage of using radioactive tracers that are easier to monitor?

electroencephalography (EEG) computed tomography (CT) functional positron emission tomography (fPET) single photon emission computed tomography (SPECT)

Difficulty:	2
QuestionID:	02-1-121
Page-Reference:	63
Topic:	Looking Inside the Living Brain
Skill:	A
Objective:	2.6

Answer: single photon emission computed tomography (SPECT)

122. Which of the following is the primary benefit of SPECT over PET?

SPECT is a non-invasive neuroimaging technique, while PET is invasive. SPECT offers the benefit of using radioactive tracers that are easier to monitor than PET. SPECT allows monitoring of actual brain activity, while PET does not. SPECT offers monitoring of brain oxygen changes, while PET does not.

Difficulty:	2
QuestionID:	02-1-122
Page-Reference:	63
Topic:	Looking Inside the Living Brain
Skill:	C
Objective:	2.6

Answer: SPECT offers the benefit of using radioactive tracers that are easier to monitor than PET.

123. A researcher wants to obtain a "movie" of changes in the activity of the brain using images from different time periods. Which of these would be the best choice for this researcher? electroencephalography (EEG) computed tomography (CT) positron emission tomography (PET) functional magnetic resonance imaging (fMRI)

Difficulty:	2
QuestionID:	02-1-123
Page-Reference:	63
Topic:	Looking Inside the Living Brain
Skill:	A
Objective:	2.6

Answer: functional magnetic resonance imaging (fMRI)

124. In a hospital laboratory, doctors are surprised when they see a photo of 35-year-old Troy's brain. The damage to his brain looks more like that of an 85-year-old Alzheimer's patient than a middleaged adult. It is likely that

Troy has been exercising to the extreme, resulting in brain damage. Troy has suffered multiple concussions in his lifetime. the doctors have used a PET scan rather than an fMRI. the doctors obtained an EEG recording when they should have used a CT.

Difficulty:	1
QuestionID:	02-1-124
Page-Reference:	64
Topic:	Looking Inside the Living Brain
Skill:	A
Objective:	2.6

Answer: Troy has suffered multiple concussions in his lifetime.

- 125. The ______ is a structure in the brainstem responsible for life-sustaining functions, such as
 - breathing and heart rate.

reticular activating system pons medulla cerebellum

Difficulty:1QuestionID:02-1-125Page-Reference:65Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.7

Answer: medulla

- 126. An auto accident rendered Chris's nervous system unable to send messages for him to breathe, so he is on a respirator. Which brain structure was damaged in the accident?
 - the pons the medulla the cerebellum the reticular formation

Difficulty:	3
QuestionID:	02-1-126
Page-Reference:	65
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.7

Answer: the medulla

127. The point at which the nerves from the left side of the body cross over into the right side of the brain, and vice versa, is the _____.

reticular activating system pons medulla cerebellum

Difficulty:2QuestionID:02-1-127Page-Reference:65Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.7

Answer: medulla

128. The ______ is a structure in the brainstem that connects the top of the brain to the bottom

and plays a role in sleep, dreaming, left-right body coordination, and arousal.

reticular activating system pons medulla cerebellum

Difficulty:1QuestionID:02-1-128Page-Reference:65Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.7

Answer: pons

129. A university student is having difficulty staying awake during the day and sleeping through the night. Her difficulties are MOST likely due to problems in the _____.

hippocampus pons medulla cerebellum

Difficulty:	3
QuestionID:	02-1-129
Page-Reference:	65
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.7

Answer: pons

- 130. Since Jessica suffered a head injury in a car accident three months ago, she has not experienced dreams as she had in the past. She used to have vivid, active dreams. Which part of her brain most likely was affected during the car accident, affecting her dreaming problem?
 - pons cerebellum cerebral cortex pituitary gland

Difficulty:	2
QuestionID:	02-1-130
Page-Reference:	65
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.7

Answer: pons

- 131. The brain is divided into several different structures on the bottom part of the brain, referred to as the "hindbrain." Which of the parts of the brain listed below is NOT located in the hindbrain?
 - medulla pons cerebellum thalamus

Difficulty:	3
QuestionID:	02-1-131
Page-Reference:	65-66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	С
Objective:	2.7

Answer: thalamus

132. Which of the following is responsible for the ability to selectively attend to certain kinds of information in one's surroundings and become alert to changes? reticular formation

pons medulla cerebellum

Difficulty:	1
QuestionID:	02-1-132
Page-Reference:	65-66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.7

Answer: reticular formation

133. What is the main function of the reticular formation?

to control thinking to regulate emotions to control levels of alertness to coordinate involuntary rapid fine motor movements.

2
02-1-133
65-66
From the Bottom Up—The Structures of the Brain
F
2.7

Answer: to control levels of alertness

134. Alice is typing her term paper in the computer lab. Although a class is going on just a few metres away, she does not seem to notice. Which part of the brain allows Alice to focus on her typing and ignore the distractions that surround her?

reticular formation pons medulla cerebellum

Difficulty:	2
QuestionID:	02-1-134
Page-Reference:	65-66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.7

Answer: reticular formation

135. Katie has slept with a fan running in her room since she was an infant. This provides white noise to drown out the television programs being watched by other family members who are still awake. In an effort to save electricity, her mother has started turning the fan off after she thinks Katie is asleep. However, each time the fan is turned off, Katie wakes up and asks for it to be turned back on. Katie is selectively attending to certain kinds of information in her surroundings that have been linked to the _____ part of the brain.

reticular formation pons cerebellum medulla

2
02-1-135
65-66
From the Bottom Up—The Structures of the Brain
A
2.7

Answer: reticular formation

136. The cerebellum _____.

controls blood pressure is involved in emotional behaviour coordinates involuntary rapid fine motor movement relays messages from the sensory receptors

Difficulty:	2
QuestionID:	02-1-136
Page-Reference:	66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.7

Answer: coordinates involuntary rapid fine motor movement

137. Which of the following coordinates involuntary rapid fine motor movement?

medulla pons reticular formation cerebellum

Difficulty:	1
QuestionID:	02-1-137
Page-Reference:	66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.7

Answer: cerebellum

138. Damage to the cerebellum is likely to disrupt which of the following?

playii sleep home thinki	ng basketball ping eostasis ing
Difficulty: QuestionID:	3 02-1-138
Page-Reference:	66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A

Objective:

Answer: playing basketball

2.7

139. If your _____ was damaged, you might walk oddly and have trouble standing normally.

pons medulla cerebellum amygdala

Difficulty:	2
QuestionID:	02-1-139
Page-Reference:	66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.7

Answer: cerebellum

- 140. Jennifer has been diagnosed with spinocerebellar degeneration. The first stage of the disease involves tremors and unsteady gait. In the later stages, she will be unable to stand and walk and will be uncoordinated in her movements. This disease affects the _____ part of the brain.
 - hippocampus amygdala cerebellum cerebral cortex

Difficulty:	2
QuestionID:	02-1-140
Page-Reference:	66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.7

Answer: cerebellum

141. Tracey has been unable to participate in her gymnastics class and is very uncoordinated since she was involved in an accident during which she suffered a head injury. As a result of the accident, she is likely to have suffered damage to her _____.

cerebellum medulla cerebral cortex hypothalamus

Difficulty:2QuestionID:02-1-141Page-Reference:66Topic:From the Bottom Up—The Structures of the BrainSkill:AObjective:2.7

Answer: cerebellum

142. Which of the following is a group of several brain structures located under the cortex and involved in learning, emotion, memory, and motivation?

limbic system cerebellum cerebral cortex cerebrum

Difficulty:	1
QuestionID:	02-1-142
Page-Reference:	66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: limbic system

143. The structures of the limbic system play an important role in _____ and _____.

heart rate; breathing breathing; decision making memory; emotion spatial tasks; sequential tasks

Difficulty:	1
QuestionID:	02-1-143
Page-Reference:	66
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: memory; emotion

144. What part of the brain acts as a relay station for incoming sensory information?

hypothalamus thalamus cerebellum pituitary gland

Difficulty:	1
QuestionID:	02-1-144
Page-Reference:	67
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: thalamus

145. The thalamus is often compared to a(n) ______.

triage nurse fast-food menu stop sign bus stop

Difficulty:2QuestionID:02-1-145Page-Reference:67Topic:From the Bottom Up—The Structures of the BrainSkill:CObjective:2.8

Answer: triage nurse

146. Jerry loves the smell of the grass after it rains. This is the result of his _____, which has (have) received signals from neurons in his sinus cavity.

thalamus olfactory bulbs opticfactory bulbs hippocampus

Difficulty:	1
QuestionID:	02-1-146
Page-Reference:	67
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	C
Objective:	2.8

Answer: olfactory bulbs

147. Signals from the neurons of which sense are NOT sent to the cortex by the thalamus?

hearing smell taste vision

Difficulty:	2
QuestionID:	02-1-147
Page-Reference:	67
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: smell

148. Which part of the brain is very small but extremely powerful and controls the pituitary gland?

hippocampus thalamus hypothalamus amygdala

Difficulty:2QuestionID:02-1-148Page-Reference:67Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.8

Answer: hypothalamus

149. Eating, drinking, sexual behaviour, sleeping, and temperature control are most strongly influenced by the _____.

hippocampus thalamus hypothalamus amygdala

Difficulty:	2
QuestionID:	02-1-149
Page-Reference:	67
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: hypothalamus

150. Which of the following is a likely effect of damage to the hypothalamus?

reduced use of left arm deregulation of hormones development of aphasia reduced ability to reason

Difficulty:2QuestionID:02-1-150Page-Reference:67Topic:From the Bottom Up—The Structures of the BrainSkill:CObjective:2.8

Answer: deregulation of hormones

Test Item File for Psychology: An Exploration, Canadian Edition

151. The ______ is the part of the brain responsible for the formation of long-term memories.

hippocampus hypothalamus fornix amygdala

Difficulty:1QuestionID:02-1-151Page-Reference:67Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.8

Answer: hippocampus

152. If you have a problem remembering things that happened a year ago, doctors might check for damage to the ______.

hippocampus hypothalamus fornix amygdala

Difficulty:	2
QuestionID:	02-1-152
Page-Reference:	67
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.8

Answer: hippocampus

153. People suffering from Alzheimer's disease have much lower levels of acetylcholine in the

hippocampus hypothalamus fornix amygdala

Difficulty:3QuestionID:02-1-153Page-Reference:67Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.8

Answer: hippocampus

154. The ______ is located within the temporal lobe on each side of the brain, and if electrically

stimulated it may produce dream-like or memory-like experiences.

thalamus amygdala hypothalamus hippocampus

Difficulty:	2
QuestionID:	02-1-154
Page-Reference:	68
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: hippocampus

155. Which of the following brain structures is located near the hippocampus and is responsible for fear responses and memory of fear?

hippocampus hypothalamus fornix amygdala

Difficulty:	1
QuestionID:	02-1-155
Page-Reference:	68
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: amygdala

156. As Joe walks to his car late at night, he hears footsteps behind him. Feeling afraid, Joe grips his keys and quickens his pace. It is likely that Joe's _____ has been activated.

hypothalamus hippocampus amygdala cerebellum

Difficulty:2QuestionID:02-1-156Page-Reference:68Topic:From the Bottom Up—The Structures of the BrainSkill:AObjective:2.8

Answer: amygdala

157. Rats that have a damaged ______ will show no fear when placed next to a cat.

hippocampus hypothalamus fornix amygdala

Difficulty:	3
QuestionID:	02-1-157
Page-Reference:	68
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.8

Answer: amygdala 158. The ______ instantly assesses anger or threat. amyqdala medulla fornix parietal lobe Difficulty: 2 QuestionID: 02-1-158 Page-Reference: 68 Topic: From the Bottom Up—The Structures of the Brain Skill: F Objective: 2.8

Answer: amygdala

159. Stan has been extremely afraid of cats since he was scratched as a 5-year-old. Whenever he sees a cat, he remembers the time he was scratched across his face and starts to feel afraid. If a cat comes toward him, he often runs away immediately, as he is afraid of being scratched again. Stan's behaviours and recollection of this trauma are a result of the _____ in the limbic system.

hippocampus thalamus amygdala medulla

Difficulty:	3
QuestionID:	02-1-159
Page-Reference:	68
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.8

Answer: amygdala

160. Ally has difficulty with selective attention, recognizing words, and her short-term memory. She has also been exhibiting symptoms of depression. Which limbic structure are her physicians most likely to suspect is playing a role in her symptoms?

thalamus amygdala hypothalamus cingulate cortex

Difficulty:	2
QuestionID:	02-1-160
Page-Reference:	68
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.8

Answer: cingulate cortex

- 161. The outermost part of the brain, which is made up of tightly packed neurons and is only a tenth of an inch thick, is called the
 - amygdala medulla cerebellum cortex

Difficulty:1QuestionID:02-1-161Page-Reference:69Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.8

Answer: cortex

162. The cortex is divided into two sections referred to as _____.

cerebral hemispheres cerebellums corpus callosum neurotransmitters

Difficulty:	1
QuestionID:	02-1-162
Page-Reference:	69
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: cerebral hemispheres

163. The thick band of neurons that connects the right and left cerebral hemispheres is called the

cortex cerebrum corpus callosum cerebellum

Difficulty:1QuestionID:02-1-163Page-Reference:69Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.9

Answer: corpus callosum

164. Which of the following is the section of the brain located at the rear and bottom of each cerebral hemisphere and that contains the visual centres of the brain?

occipital lobe parietal lobe temporal lobe frontal lobe

Difficulty:	1
QuestionID:	02-1-164
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: occipital lobe

165. After a head injury a person reports that she is unable to see, although her eyes are uninjured. A doctor would suspect an injury in the _____ lobe.

occipital parietal temporal frontal

Difficulty:	3
QuestionID:	02-1-165
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.9

Answer: occipital

166. Which of the following regions contains the primary visual cortex?

occipital lobe parietal lobe temporal lobe frontal lobe

Difficulty:2QuestionID:02-1-166Page-Reference:70Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.9

Answer: occipital lobe

167. The part of the occipital lobe that is responsible for receiving visual information from the eyes is called the _____.

primary visual cortex somatosensory cortex temporal lobe frontal lobe

Difficulty:	1
QuestionID:	02-1-167
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: primary visual cortex

168. John has decided to learn how to wrestle. On his first day at practice, a seasoned wrestler slams the back of John's head to the mat. John is shaken and reports to the trainer that he "saw stars" after he hit his head. As evidenced by "seeing stars," John's _____ was temporarily affected as a result of the slam.

corpus callosum occipital lobe parietal lobes somatosensory cortex

Difficulty:	3
QuestionID:	02-1-168
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.9

Answer: occipital lobe

169. Sue was rollerblading when a cat jumped in front of her, causing her to fall. She landed on the back of her head, at which point she "saw stars." Which lobe would have been most affected by this fall, given what she saw?

frontal temporal parietal occipital

Difficulty:	2
QuestionID:	02-1-169
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.9

Answer: occipital

170. The section of the brain responsible for interpreting the visual information in the primary visual cortex is called the ______.

visual association cortex somatosensory cortex temporal lobe frontal lobe

Difficulty:	1
QuestionID:	02-1-170
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: visual association cortex

171. Damage to the ______ would result in an inability to identify and comprehend what is seen through the eyes.

visual association cortex primary visual cortex temporal lobe frontal lobe	
Difficulty:	3
QuestionID:	02-1-171
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: visual association cortex

172. Which of the following regions contains the somatosensory cortex?

occipital lobes parietal lobes temporal lobes frontal lobes

Difficulty:	2
QuestionID:	02-1-172
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: parietal lobes

173. The ______ lobes are located at the top and back of each cerebral hemisphere, containing the

centres for touch, body position, and temperature.

frontal temporal occipital parietal

Difficulty:	3
QuestionID:	02-1-173
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: parietal

174. All is trying to decide whether the shower is hot enough to step into, Hal is listening to his MP3 player, and Sal is looking at a beautiful painting in an art museum. Which individual is using his parietal lobe?

Al Hal Sal Hal and Sal are, but Al is not.

Difficulty:	3
QuestionID:	02-1-174
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.9

Answer: Al

175. Darla was in an automobile accident that resulted in an injury to her brain. Her sense of touch has been affected. Which part of the brain is the most likely site of the damage?

frontal lobes temporal lobes occipital lobes parietal lobes

Difficulty:	3
QuestionID:	02-1-175
Page-Reference:	70
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.9

Answer: parietal lobes

176. Which of the following regions contains the auditory cortex?

temporal lobes parietal lobes frontal lobes occipital lobes

Difficulty:2QuestionID:02-1-176Page-Reference:70-71Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.9

Answer: temporal lobes

177. The part of the brain located just behind the temples, containing neurons responsible for the sense of hearing and meaningful speech, is called the _______.

temporal lobes parietal lobes frontal lobes occipital lobes

Difficulty:	1
QuestionID:	02-1-177
Page-Reference:	70-71
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: temporal lobes

178. Bobby B. was rollerblading when a cat jumped in front of him, causing him to fall. When he fell, he landed on the side of his head. Shortly afterward, Bobby complained that he could not understand what people were saying to him. Which lobe would have been most affected by this fall, given what he experienced?

frontal temporal parietal occipital

Difficulty:3QuestionID:02-1-178Page-Reference:70-71Topic:From the Bottom Up—The Structures of the BrainSkill:AObjective:2.9

Answer: temporal

179. Which of the following lobes are involved in planning, memory, and personality?

temporal lobes parietal lobes frontal lobes occipital lobes

Difficulty:	1
QuestionID:	02-1-179
Page-Reference:	71
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.9

Answer: frontal lobes

180. Warren is having trouble deciding what he wants to eat for breakfast. Which lobe of his brain is especially active as he makes his selection?

temporal parietal frontal occipital

Difficulty:3QuestionID:02-1-180Page-Reference:71Topic:From the Bottom Up—The Structures of the BrainSkill:AObjective:2.9

Answer: frontal

181. After suffering a brain injury by falling from a ladder, Zack's wife continues to tell the doctor that his personality has changed. He used to be fun-loving and carefree, but he is now more critical and yells at his children for seemingly little reason. Zack is likely to have suffered damage to the part of his cortex.

occipital lobe parietal lobes temporal lobes frontal lobes

Difficulty:3QuestionID:02-1-181Page-Reference:71Topic:From the Bottom Up—The Structures of the BrainSkill:AObjective:2.9

Answer: frontal lobes

182. Marta was in an automobile accident and suffered an injury to her brain, resulting in paralysis of her left arm. What part of Marta's brain was injured?

auditory association area motor cortex association areas somatosensory cortex

Difficulty:	3
QuestionID:	02-1-182
Page-Reference:	71
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.9

Answer: motor cortex

183. Messages from the brain to the muscles and glands in the body begin their journey in the

auditory association area motor cortex association areas somatosensory cortex

Difficulty:2QuestionID:02-1-183Page-Reference:71Topic:From the Bottom Up—The Structures of the BrainSkill:FObjective:2.9

Answer: motor cortex

.

184. ______.are fired when an animal performs an action or when the animal observes that same action being performed. For example, an infant will mimic the facial expressions of adults.

Mirror neurons Statue neurons Facial neurons Observation neurons

Difficulty:	3
QuestionID:	02-1-184
Page-Reference:	71
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	С
Objective:	2.9

Answer: Mirror neurons

185. Sammy is watching his father hammer a nail into a board. Which neurons are most likely firing?

Mirror neurons somatosensory neurons interneurons association neurons

Difficulty:	2
QuestionID:	02-1-185
Page-Reference:	71
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.9

Answer: Mirror neurons

186. Incoming sensory messages are made sense of in _____.

Broca's area the motor projection areas the association areas Wernicke's area

Difficulty:1QuestionID:02-1-186Page-Reference:71Topic:From the Bottom Up—The Structures of the BrainSkill:CObjective:2.10

Answer: the association areas 187. The area of the frontal lobe that is devoted to the production of fluent speech is _____ area.

> Broca's Gall's Wernicke's Korsakoff's

Difficulty:	3
QuestionID:	02-1-187
Page-Reference:	72
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.10

Answer: Broca's

188. Bill was admitted to the hospital last week after he fell. When Bill's son visited, he found that his father was unable to get words out in a smooth, connected fashion. If Bill's difficulty speaking is due to brain damage, what is the likely location of the damage?

Broca's area Gall's area Wernicke's area Korsakoff's area

Difficulty:	3
QuestionID:	02-1-188
Page-Reference:	72
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.10

Answer: Broca's area

189. The area at the back of the temporal lobe that is crucial in the ability to listen, process, and understand what others are saying is _____ area.

Broca's Gall's Wernicke's Korsakoff's

Difficulty:	1
QuestionID:	02-1-189
Page-Reference:	72
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.10

Answer: Wernicke's

- 190. Mary suffered a head injury in a car accident last week. Since that time she is able to speak fluently but uses the wrong words when expressing herself. Mary may be exhibiting ______ aphasia.
 - Broca's Gall's Wernicke's Korsakoff's

Difficulty:	2
QuestionID:	02-1-190
Page-Reference:	72
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.10

Answer: Wernicke's

191. Robert's mother is usually meticulous in her presentation. When picking her up for a family dinner, he noticed that her makeup was applied only to the right side of her face. Her hair was also brushed on the right side, but on the left side it was matted and uncombed. He immediately took her to the hospital after discovering that she was unaware of any problems. She was diagnosed with _____, which is evidenced by damage to the association areas of the right hemisphere.

Wernicke's aphasia Broca's aphasia unilateral spatial neglect split-brain

Difficulty:	3
QuestionID:	02-1-191
Page-Reference:	72
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.10

Answer: unilateral spatial neglect

192. Which of the following is the upper part of the brain, consisting of two cerebral hemispheres and the structures that connect them?

occipital lobe cerebrum corpus callosum cerebellum

Difficulty:	1
QuestionID:	02-1-192
Page-Reference:	73
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.10

Answer: cerebrum

- 193. Researcher Roger Sperry won a Nobel Prize for his research on epilepsy. Sperry cut through the ______, which joins the two hemispheres of the brain.
 - medulla pons pituitary gland corpus callosum

Difficulty:	1
QuestionID:	02-1-193
Page-Reference:	73
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.11

Answer: corpus callosum

194. Since Norma is a split-brain patient, we can infer that she likely has a history of ________.

mental illness severe epilepsy anosognosia frontal lobe damage

Difficulty:	1
QuestionID:	02-1-194
Page-Reference:	73
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.11

Answer: severe epilepsy

195. Pat has decided to undergo surgery to treat her severe epilepsy. Consequently, her doctors will use a surgical procedure during which they will sever her _____.

parietal lobe corpus callosum cerebral cortex subcortical structure

Difficulty:	3
QuestionID:	02-1-195
Page-Reference:	73
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.11

Answer: corpus callosum

196. If Darren's brain is like that of most people, language will be handled by his _____.

corpus callosum occipital lobe right hemisphere left hemisphere

Difficulty:	2
QuestionID:	02-1-196
Page-Reference:	73
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	A
Objective:	2.11

Answer: left hemisphere

197. Which of the following is a function of the right hemisphere?

perception, emotional thought, and recognition of patterns sense of time and rhythm speech, handwriting, and calculation language processing in most individuals

Difficulty:2QuestionID:02-1-197Page-Reference:74Topic:From the Bottom Up—The Structures of the BrainSkill:CObjective:2.11

Answer: perception, emotional thought, and recognition of patterns

198. Which is a specific function of the left hemisphere of the brain?

visual-spatial perception emotional thought and recognition mathematical calculations pattern recognition

Difficulty:	1
QuestionID:	02-1-198
Page-Reference:	74
Topic:	From the Bottom Up—The Structures of the Brain
Skill:	F
Objective:	2.11

Answer: mathematical calculations

199. Addie has recently been diagnosed with attention deficit/hyperactivity disorder (ADHD). Her psychiatrist tells her that there are several different brain areas that might contribute to her various symptoms. Which of the following would the psychiatrist be unlikely to name as an involved brain structure?

the cerebellum the basal ganglia the striate nucleus the corpus callosum

2
02-1-199
75
Applying Psychology to Everyday Life—Paying Attention to the Causes of Attention Deficit
Hyperactivity Disorder
A
2.11

Answer: the striate nucleus

200. Which of the following cognitive abilities has been found to be normal in people diagnosed with attention deficit/hyperactivity disorder?

some aspects of attention vigilance (watching out for something important) staying on task engaging in self-control

3
02-1-200
75
Applying Psychology to Everyday Life—Paying Attention to the Causes of Attention Deficit
Hyperactivity Disorder
F
2.11

Answer: some aspects of attention

Chapter 02 True or False Questions

1. One function of the nervous system is to send information to and from all parts of the body.

a True b False

QuestionID:	02-2-201
Page-Reference:	42
Objective:	2.1

Answer: a. True

2. The axon receives messages from other neurons.

a True b False

 QuestionID:
 02-2-202

 Page-Reference:
 43

 Objective:
 2.1

Answer: b. False

3. Glial cells provide structure for neurons.

a True b False

 QuestionID:
 02-2-203

 Page-Reference:
 43

 Objective:
 2.1

Answer: a. True

- 4. Myelin not only insulates the neuron, but also slows down the neural message, helping with transmission of messages travelling down the axon.
 - a True b False

QuestionID:	02-2-204
Page-Reference:	44
Objective:	2.1

Answer: b. False

- 5. Cell membranes are semipermeable.
 - a True b False

 QuestionID:
 02-2-205

 Page-Reference:
 44

 Objective:
 2.1

Answer: a. True

- 6. Neurons that are at rest are still electrically charged.
 - a True b False

QuestionID:	02-2-206
Page-Reference:	45
Objective:	2.1

Answer: a. True

- 7. During resting membrane potential, the neuron is positively charged inside and negatively charged outside.
 a True b
 - True b False

 QuestionID:
 02-2-207

 Page-Reference:
 45

 Objective:
 2.1

Answer: b. False

8. A synapse is like a locked door that only certain neurotransmitter keys can unlock.

a True b False

QuestionID:	02-2-208
Page-Reference:	47-48
Objective:	2.2

- 9. Acetylcholine is an agonist or an excitatory neurotransmitter also found in a part of the brain responsible for forming new memories and stimulating muscle contraction.
 - a True b False

QuestionID:	02-2-209
Page-Reference:	48-49
Objective:	2.2

Answer: a. True

- 10. The central nervous system consists of the brain and spinal cord.
 - a True b False

QuestionID:	02-2-210
Page-Reference:	51
Objective:	2.3

Answer: a. True

- 11. Motor neurons carry messages from special receptors in the skin, from muscles, and from sense organs to the spinal cord.
 - a True b False

QuestionID:	02-2-211
Page-Reference:	52
Objective:	2.3

Answer: b. False

- 12. Interneurons connect sensory neurons to the motor neurons.
 - a True b False

QuestionID:	02-2-212
Page-Reference:	52
Objective:	2.3

Answer: a. True

- 13. Neuroplasticity is the concept that when the brain is injured, it is unable to change the structure and function of the cells to adjust to the damage.
 - True b False

а

 QuestionID:
 02-2-213

 Page-Reference:
 53

 Objective:
 2.3

- 14. Stem cells are special cells capable of creating other cells, such as blood cells, nerve cells, and brain cells.
 - a True b False

 QuestionID:
 02-2-214

 Page-Reference:
 53

 Objective:
 2.3

Answer: a. True

- 15. The somatic nervous system is made up of nerves carrying messages from the central nervous system to the muscles of the body.
 - a True b False

 QuestionID:
 02-2-215

 Page-Reference:
 54

 Objective:
 2.4

Answer: a. True

- 16. Activation of the sympathetic nervous system leads to pupil dilation, inhibition of digestion, and an accelerated heartbeat.
 - a True b False

QuestionID:	02-2-216
Page-Reference:	55-56
Objective:	2.4

Answer: a. True

17. Endocrine glands secrete chemicals directly into the body's tissues through ducts.

a True b False

 QuestionID:
 02-2-217

 Page-Reference:
 57

 Objective:
 2.5

Answer: b. False

18. The pineal gland secrets a hormone called insulin.

a True b False

QuestionID:	02-2-218
Page-Reference:	58
Objective:	2.5

19. If the pancreas secretes too little insulin, the result is diabetes.

a True b False

 QuestionID:
 02-2-219

 Page-Reference:
 58

 Objective:
 2.5

Answer: a. True

20. If the body secretes too much insulin, the result is hyperglycemia.

a True b False

QuestionID:	02-2-220
Page-Reference:	58
Objective:	2.5

Answer: b. False

21. The thyroid gland secretes a hormone called thyroxin.

a True b False

QuestionID:	02-2-221
Page-Reference:	58
Objective:	2.5

Answer: a. True

- 22. Positron emission tomography (PET scan) is a brain-imaging method that uses radio waves and magnetic fields of the body to produce detailed images of the brain.
 - a True b False

 QuestionID:
 02-2-222

 Page-Reference:
 63

 Objective:
 2.6

Answer: b. False

23. The medulla is responsible for people's ability to selectively attend to certain kinds of information in their surroundings.

True b False

а

 QuestionID:
 02-2-223

 Page-Reference:
 65

 Objective:
 2.7

24. The cortex "wrinkles" as a result of fluid filling the brain over the lifespan.

a True b False

 QuestionID:
 02-2-224

 Page-Reference:
 69

 Objective:
 2.8

Answer: b. False

25. The occipital lobes contain the visual cortex, where visual signals are processed.

a True b False

 QuestionID:
 02-2-225

 Page-Reference:
 70

 Objective:
 2.9

Answer: a. True

- 26. A person who suffered brain damage is likely to have problems controlling his or her emotions as a result of damage with the connection from the temporal lobe to the limbic system.
 - a True b False

QuestionID:	02-2-226
Page-Reference:	70-71
Objective:	2.9

Answer: b. False

27. The cerebrum is divided into two hemispheres that control opposite sides of the body.

a True b False

QuestionID:	02-2-227
Page-Reference:	73-74
Objective:	2.11

Answer: a. True

- 28. The cerebral cortex is severed in individuals who are considered to have a "split-brain" after a surgery to stop epileptic seizures.
 - True b False

а

 QuestionID:
 02-2-228

 Page-Reference:
 73

 Objective:
 2.11

Chapter 02 Short Answer Questions

1. List the three main parts of the neuron and explain the role that each plays in the transmission of neural communication.

QuestionID:	02-3-229
Page-Reference:	43-44
Objective:	2.1

Answer:

2. List two different functions of glial cells.

QuestionID:	02-3-230
Page-Reference:	43-44
Objective:	2.1

Answer:

3. What is a synapse?

QuestionID:	02-3-231
Page-Reference:	47
Objective:	2.2

Answer:

4. What are neurotransmitters?

QuestionID:	02-3-232
Page-Reference:	47-48
Objective:	2.2

Answer:

5. Name three neurotransmitters and their functions.

QuestionID:	02-3-233
Page-Reference:	48-49
Objective:	2.2

Answer:

6. Explain the difference between the central nervous system (CNS) and the peripheral nervous system (PNS).

QuestionID:	02-3-234
Page-Reference:	51-54
Objective:	2.3-2.4

Answer:

7. What is the difference between the sympathetic and parasympathetic nervous systems?

QuestionID:	02-3-235
Page-Reference:	55-56
Objective:	2.4

Answer:

8. Name two hormones that are of particular interest to psychologists and state which gland they are related to and some of the tasks that these hormones perform.

QuestionID:	02-3-236
Page-Reference:	58-59
Objective:	2.5

Answer:

9. How does an MRI (magnetic resonance imaging) scan allow the exploration of the brain without the injection of chemicals?

QuestionID:	02-3-237
Page-Reference:	61-62
Objective:	2.6

Answer:

10. Why is the cortex in the brain so wrinkled?

QuestionID:	02-3-238
Page-Reference:	69
Objective:	2.8

Answer:

11. What are the symptoms of Broca's aphasia?

QuestionID:	02-3-239
Page-Reference:	72
Objective:	2.10

Answer:

12. What are the symptoms of Wernicke's aphasia?

QuestionID:	02-3-240
Page-Reference:	72
Objective:	2.10

Answer:

13. What are the differences in how the right and left cerebral hemispheres function?

QuestionID:	02-3-241
Page-Reference:	73-74
Objective:	2.11

Answer:

14. Briefly explain Roger Sperry's split-brain research.

QuestionID:	02-3-242
Page-Reference:	73-74
Objective:	2.11

Answer:

Chapter 02 Essay Questions

1. What is a neuron? Describe the three parts of a neuron and their functions. Explain the process of how a neural message is transmitted from the end of one neuron to the beginning of another and the process by which a neuron moves from a resting state (resting potential) to firing (action potential) and then back to a resting state.

QuestionID:	02-4-243
Page-Reference:	42-48
Objective:	2.1-2.2

Answer:

2. Describe the functions of the brain and the spinal cord. How are these functions similar? How are these functions dissimilar?

 QuestionID:
 02-4-244

 Page-Reference:
 51-52

 Objective:
 2.3

Answer:

3. What are the primary functions of the sympathetic and parasympathetic components of the peripheral nervous system? Describe a situation or experience in which activation of the sympathetic and parasympathetic divisions has occurred.

QuestionID:	02-4-245
Page-Reference:	55-56
Objective:	2.4

Answer:

4. How does the endocrine system influence behaviour? Describe the functions of three glands and the hormones that each secretes.

QuestionID:	02-4-246
Page-Reference:	57-59
Objective:	2.5

Answer:

5. Choose any three methods that psychologists use to learn about the functions of the brain. Describe the method, how it works, and the type of information we can learn from it.

QuestionID:	02-4-247
Page-Reference:	60-63
Objective:	2.6

Answer: