Test bank for Principles of Corporate Finance 11th Edition Brealey Myers Allen 0078034760 9780078034763

Full Link download: Solution Manual:

https://testbankpack.com/p/solution-manual-for-principles-of-corporate-finance-11th-edition-brealey-myers-allen-0078034760-9780078034763/

Test bank:

 $\underline{https://testbankpack.com/p/test-bank-for-principles-of-corporate-finance-}\\11th-edition-brealey-myers-allen-0078034760-9780078034763/$

Chapter 02

How to Calculate Present Values

Multiple Choice Questions

1. The present value of \$100.00 expected two years from today at a discount rate of 6% is:

A. \$112.36.
B. \$106.00.
C. \$100.00.
D. \$89.00.

- 2. Present value is defined as:
 - A. future cash flows discounted to the present by an appropriate discount rate.
 - B. inverse of future cash flows.
 - C. present cash flows compounded into the future.

D. future cash flows multiplied by the factor $(1 + r)^{t}$.

3.	If the annual interest rate is 12.00%, what is the two-year discount factor?
	A. 0.7972
	B. 0.8929
	C. 1.2544
	D. 0.8065
4.	If the present value of cash flow X is \$240, and the present value of cash flow Y is \$160, then
	the present value of the combined cash flows is:
	A. \$240.
	B. \$160.
	C. \$80.
	D. \$400.
5.	The rate of return is also called the: I) discount rate; II) hurdle rate; III) opportunity cost of capital
	A. I only.
	B. I and II only.
	C. I, II, and III.
	D. I and III only.

6.	The present value of \$121,000 expected one year from today at an interest rate (discount rate) of
	10% per year is:
	A. \$121,000.
	B. \$100,000.
	C. \$110,000.
	D. \$108,900.
7.	The one-year discount factor, at a discount rate of 25% per year, is:
	A. 1.25.
	B. 1.0.
	C. 0.8.
	D. 0.75.
8.	The one-year discount factor, at an interest rate of 100% per year, is:
	A. 1.50.
	B. 0.50.
	C. 0.25.
	D. 1.00.

9.	The present value of \$100,000 expected at the end of one year, at a discount rate of 25% per year, is:
	A. \$80,000.
	B. \$125,000.
	C. \$100,000.
	D. \$75,000.
10.	If the one-year discount factor is 0.8333, what is the discount rate (interest rate) per year?
	A. 10%
	B. 20%
	C. 30%
	D. 40%
11.	If the present value of \$480 to be paid at the end of one year is \$400, what is the one-year discount factor?
	A. 0.8333
	B. 1.20
	C. 0.20
	D. 1.00

12.	If the present value of \$250 expected one year from today is \$200, what is the one-year
	discount rate?
	A. 10%
	B. 20%
	C. 25%
	D. 30%
13.	If the one-year discount factor is 0.90, what is the present value of \$120 expected one year
	from today?
	A. \$100
	B. \$96
	C. \$108
	D. \$133
14.	If the present value of \$600, expected one year from today, is \$400, what is the one-year discount
	rate?
	A. 15%
	B. 20%
	C. 25%
	D. 50%

15. The present value formula for a cash flow expected one period from now is:

A.
$$PV = C_1 \times (1 + r)$$
.

B.
$$PV = C_1/(1 + r)$$
.

C.
$$PV = C_1/r$$
.

D.
$$PV = (1 + r)/C_1$$
.

16. The net present value formula for one period is:

A. NPV =
$$C_0 + [C_1/(1 + r)]$$
.

C. NPV =
$$C_0/C_1$$
.

D. NPV =
$$C_1/C_0$$
.

17. An initial investment of \$400,000 is expected to produce an end-of-year cash flow of \$480,000.

What is the NPV of the project at a discount rate of 20%?

18.	If the present value of a cash flow generated by an initial investment of \$200,000 is \$250,000, what
	is the NPV of the project?
	A #250.000
	A. \$250,000
	B. \$50,000
	C. \$200,000
	D\$50,000
19.	What is the present value of the following cash flows at a discount rate of 9%?
	Year 1 Year 2 Year 3 \$100,000 \$150,000 \$200,000
	A. \$372,431.81
	B. \$450,000.00
	C. \$405,950.68
	D. \$412,844.04
20.	At an interest rate of 10%, which of the following sequences of cash flows should you prefer?
	Year 1 Year 2 Year 3 A) 500 300 100 B) 100 300 500 C) 300 300 300 D) Any of the above as they all add up to \$900
	A. option A
	B. option B
	C. option C
	D. option D

21	14/1		- £ 41 £ - 11	_ f		++f 110/ 2
۷١.	what is the net	present value	of the following	j cash flow sequ	ience at a discount	rate of 11%?

A.
$$$\underline{690}08.03$$
 $\underline{t=1}$ $\underline{t=2}$ -120,000 300,000 -100,000 B. \$231,432.51

- C. \$80,000.00
- D. \$88,000.00
- 22. What is the net present value of the following sequence of annual cash flows at a discount rate of 16% APR?

- A. \$136,741.97
- B. \$122,948.87
- C. \$158,620.69
- D. \$139,418.23
- 23. What is the net present value (NPV) of the following sequence of cash flows at a discount rate of 9%?

- A. \$122,431.81
- B. \$200,000.00
- C. \$155,950.68
- D. \$177,483.77

24.	Which of the following statements regarding the NPV rule and the rate of return rule is false?
	A. Accept a project if its NPV > 0.
	B. Reject a project if the NPV < 0.
	C. Accept a project if its rate of return > 0.
	D. Accept a project if its rate of return > opportunity cost of capital.
25.	An initial investment of \$500 produces a cash flow of \$550 one year from today. Calculate the rate of return on the project.
	A. 10%
	B. 15%
	C. 20%
	D. 25%
26.	According to the net present value rule, an investment in a project should be made if the:
	A. net present value is greater than the cost of investment.
	B. net present value is greater than the present value of cash flows.
	C. net present value is positive.
	D. net present value is negative.

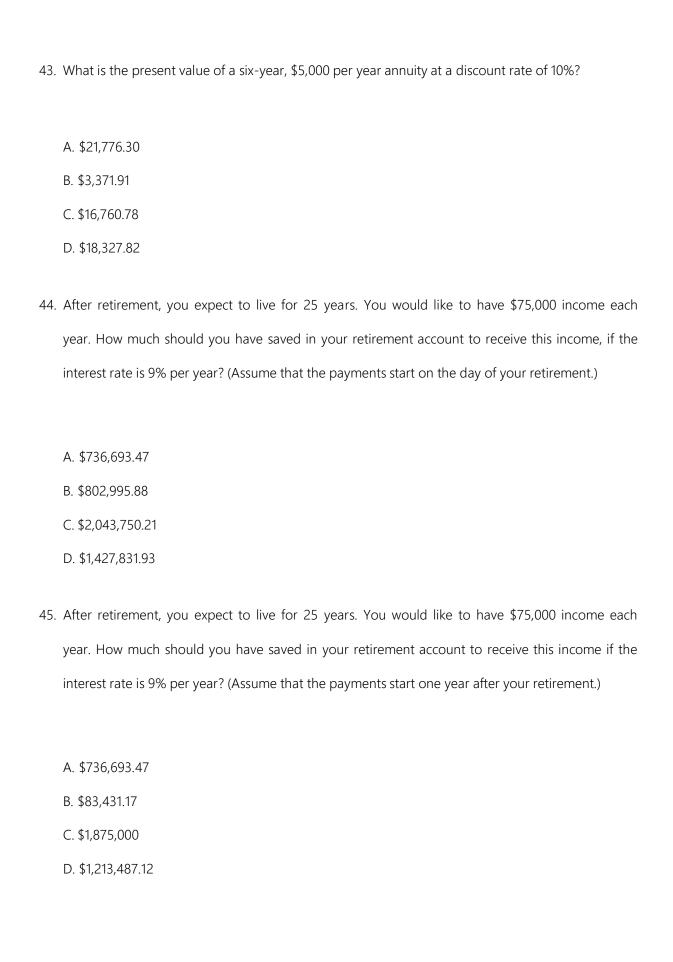
27.	Which of the following statements regarding the net present value rule and the rate of return
	rule is false?
	A Accord a preject if NIDV/ x cost of investment
	A. Accept a project if NPV > cost of investment.
	B. Accept a project if NPV is positive.
	C. Accept a project if return on investment exceeds the rate of return on an equivalent-risk
	investment in the financial market.
	D. Reject a project if NPV is negative.
28.	The opportunity cost of capital for a risky project is:
	A. the expected rate of return on a government security having the same maturity as the project.
	B. the expected rate of return on a well-diversified portfolio of common stocks.
	C. the expected rate of return on a security of similar risk as the project.
	D. The expected rate of return on a typical bond portfolio.
29.	A perpetuity is defined as a sequence of:
	A. equal cash flows occurring at equal intervals of time for a specific number of periods.
	B. equal cash flows occurring at equal intervals of time forever.
	C. unequal cash flows occurring at equal intervals of time forever.
	D. unequal cash flows occurring at equal intervals of time for a specific number of periods.

30.	Which of the following is generally considered an example of a perpetuity?
	A. Interest payments on a 10-year bond
	B. Interest payments on a 30-year bond
	C. Interest payments on a consol
	D. Interest payments on government bonds
31.	You would like to have enough money saved after your retirement such that you and your heirs
	can receive \$100,000 per year in perpetuity. How much would you need to have saved at the
	time of your retirement in order to achieve this goal? (Assume that the perpetuity payments start
	one year after the date of your retirement. The annual interest rate is 12.5%.)
	A. \$1,000,000
	B. \$10,000,000
	C. \$800,000
	D. \$1,125,000
32.	What is the present value of \$10,000 per year in perpetuity at an interest rate of 10%?
	A. \$10,000
	B. \$100,000
	C. \$200,000
	D. \$1,000

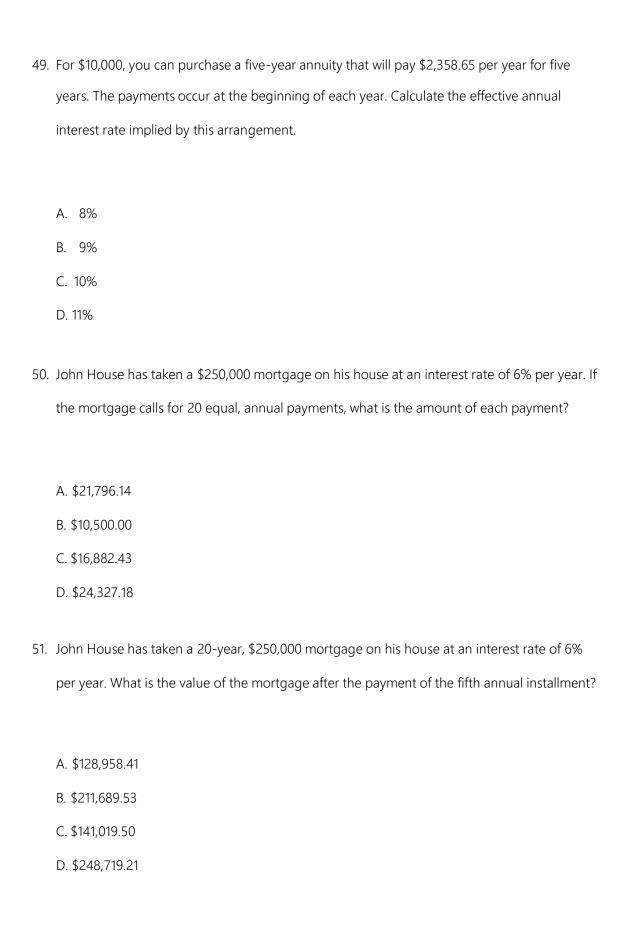
33.	You would like to have enough money saved to receive \$80,000 per year in perpetuity after
	retirement for you and your heirs. How much would you need to have saved in your retirement
	fund to achieve this goal? (Assume that the perpetuity payments start one year from the date
	of your retirement. The annual interest rate is 8%.)
	A. \$7,500,000
	B. \$750,000
	C. \$1,000,000
	D. \$800,000
	2.4000/000
34.	You would like to have enough money saved to receive a \$50,000 per year perpetuity after
	retirement. How much would you need to have saved in your retirement fund to achieve this
	goal? (Assume that the perpetuity payments start on the day of your retirement. The annual
	interest rate is 8%.)
	A. \$1,000,000
	B. \$675,000
	C. \$625,000
	D. \$500,000
35.	You would like to have enough money saved to receive an \$80,000 per year perpetuity after
	retirement. How much would you need to have saved in your retirement fund to achieve this
	goal? (Assume that the perpetuity payments start on the day of your retirement. The annual
	interest rate is 10%.)

A. \$1,500,000

B. \$880,000

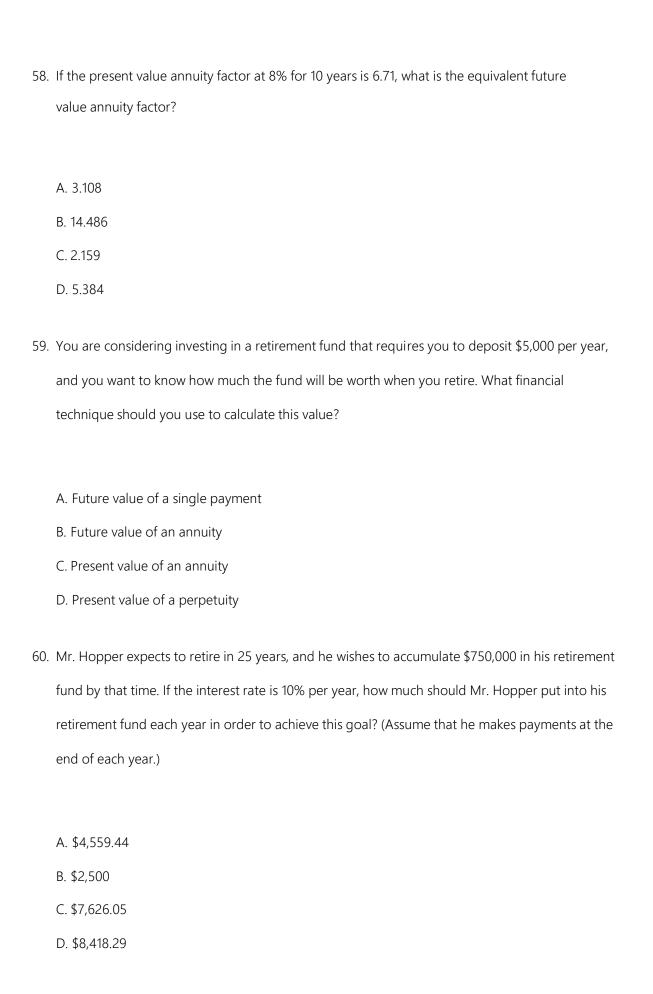

C. \$800,000

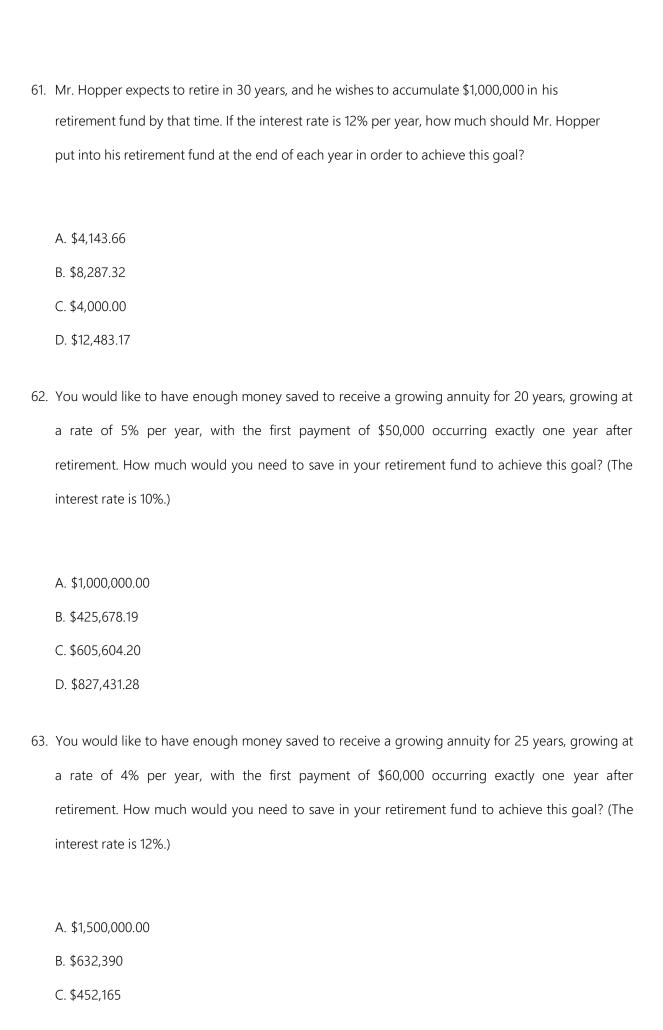
D. \$80,000


36.	An annuity is defined as a set of:
	A. equal cash flows occurring at equal intervals of time for a specified period.
	B. equal cash flows occurring at equal intervals of time forever.
	C. unequal cash flows occurring at equal intervals of time forever.
	D. unequal cash flows occurring at equal intervals of time for a specified period.
37.	If you are paid \$1,000 at the end of each year for the next five years, what type of cash flow
	did you receive?
	A. uneven cash flow stream
	B. an annuity
	C. an annuity due
	D. a perpetuity
38.	If the three-year present value annuity factor is 2.673 and the two-year present value annuity
	factor is 1.833, what is the present value of \$1 received at the end of the three years?
	A. \$1.19
	B. \$0.84
	C. \$0.89
	D. \$0.92

39.	If the five-year present value annuity factor is 3.60478 and the four-year present value annuity
	factor is 3.03735, what is the present value at the \$1 received at the end of five years?
	A. \$0.63552
	B. \$1.76233
	C. \$0.56743
	D. \$1.2132
40.	What is the eight-year present value annuity factor at a discount rate of 11%?
	A F 7122
	A. 5.7122
	B. 11.8594
	C. 5.1461
	D. 6.9158
41.	What is the six-year present value annuity factor at an interest rate of 9%?
	A. 7.5233
	B. 4.4859
	C. 1.6771
	D. 3.1432
12	What is the present value of a \$1,000 per year annuity for five years at an interest rate of 12%?
42.	virial is the present value of a \$1,000 per year annuity for live years at an interest rate of 12.70:
	A. \$6,352.85
	B. \$3,604.78
	C. \$567.43

D. \$2,743.28

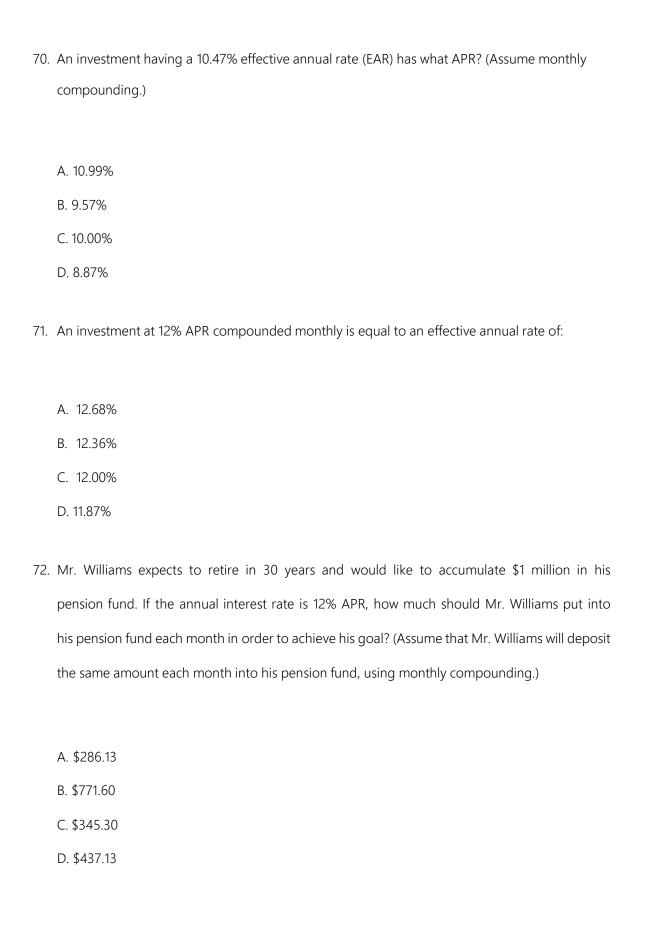

46.	For \$10,000, you can purchase a five-year annuity that will pay \$2,504.57 per year for five years.
	The payments occur at the end of each year. Calculate the effective annual interest rate implied
	by this arrangement.
	A. 8%
	B. 9%
	C. 10%
	D. 11%
47.	If the present value annuity factor for 10 years at 10% interest rate is 6.1446, what is the
	present value annuity factor for an equivalent annuity due?
	A. 6.1446
	B. 7.3800
	C. 6.7590
	D. 5.7321
40	
48.	If the present value annuity factor is 3.8896, what is the present value annuity factor for
	an equivalent annuity due if the interest rate is 9%?
	A. 3.5684
	B. 4.2397
	C. 3.8896
	D. 5.3127


52.	If the present value of \$1.00 received n years from today at an interest rate of r is 0.3855,
	then what is the future value of \$1.00 invested today at an interest rate of r% for n years?
	A. \$1.3855
	B. \$2.594
	C. \$1.701
	D. not enough information is given to solve the problem
53.	If the present value of \$1.00 received n years from today at an interest rate of r is 0.621, then
	what is the future value of \$1.00 invested today at an interest rate of r% for n years?
	A. \$1.000
	B. \$1.610
	C. \$1.621
	D. not enough information is given to solve the problem
54.	If the future value of \$1 invested today at an interest rate of r% for n years is 9.6463, what is the
	present value of \$1 to be received in n years at r% interest rate?
	A. \$9.6463
	B. \$1.0000
	C. \$0.1037
	D. \$0.4132

55.	If the future value annuity factor at 10% and five years is 6.1051, calculate the equivalent
	present value annuity factor:
	A. 6.1051
	B. 3.7908
	C. 6.7156
	D. 4.8127
ΓC	If the process value expects to feeter at 100/ for 10 years in C144C what is the equivalent fature.
50.	If the present value annuity factor at 10% for 10 years is 6.1446, what is the equivalent future
	value annuity factor?
	A. 3.1080
	B. 15.9375
	C. 2.5937
	D. 8.4132
57.	If the present value annuity factor at 12% for five years is 3.6048, what is the equivalent future
	value annuity factor?
	A. 2.0455
	B. 6.3529
	C. 1.7623
	D. 5.1237

2-19 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

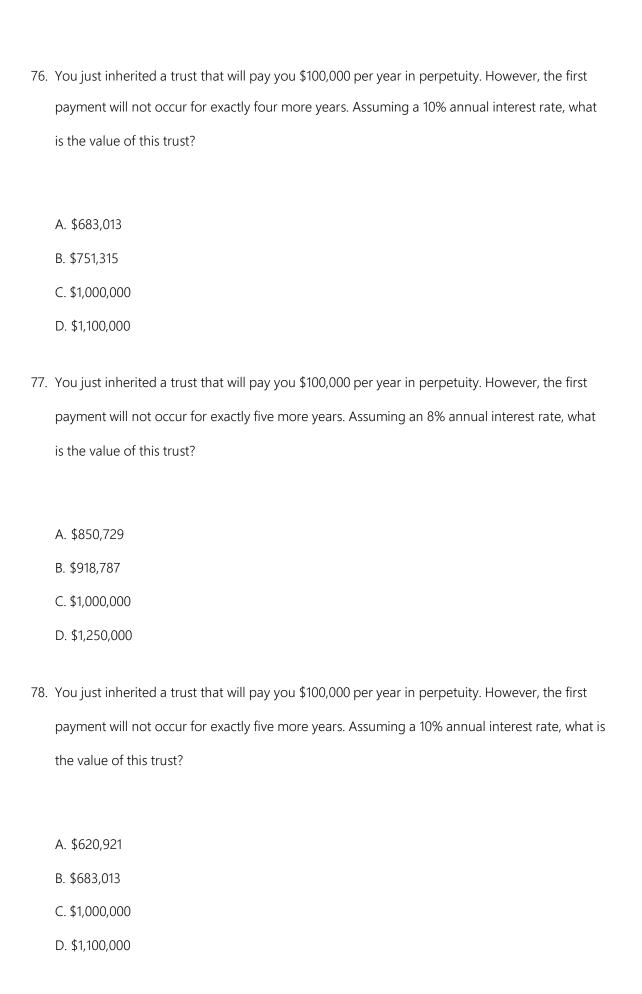
2-20 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.


2-21 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

64.	The managers of a firm can maximize stockholder wealth by:
	A. taking all projects with positive NPVs.
	B. taking all projects with NPVs greater than the cost of investment.
	C. taking all projects with NPVs greater than the present value of cash flows.
	D. taking only the highest NPV project each year.
65.	If you invest \$100 at 12% APR for three years, how much would you have at the end of three years
	using simple interest?
	A. \$136.00
	B. \$140.49
	C. \$240.18
	D. \$187.13
66.	If you invest \$100 at 12% APR for three years, how much would you have at the end of three
	years using compound interest?
	A. \$136
	B. \$140.49
	C. \$240.18
	D. \$173.18

© 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

67.	Which of the following statements is true?
	A. The process of discounting is the inverse of the process of compounding.
	B. Ending balances using simple interest are always greater than ending balances using
	compound interest at positive interest rates.
	C. The present value of an annuity due is always less than the present value of an equivalent
	ordinary annuity at positive interest rates.
	D. The future value of an annuity due is always less than the present value of an
	equivalent ordinary annuity at positive interest rates.
68.	The concept of compound interest is best described as:
	A. interest earned on an investment.
	B. the total amount of interest earned over the life of an investment.
	C. interest earned on interest.
	D. the inverse of simple interest.
69.	Ms. Colonial has just taken out a \$150,000 mortgage at an interest rate of 6% per year. If the
	mortgage calls for equal monthly payments for 20 years, what is the amount of each
	payment? (Assume monthly compounding or discounting.)
	A. \$1,254.70
	B. \$1,625.00
	C. \$1,263.06
	D. \$1,074.65


2-23 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

© 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

73.	An investment at 10% compounded continuously has an equivalent annual rate of:
	A. 10.250%.
	B. 10.517%.
	C. 10.381%.
	D. none of the options.
74.	The present value of a \$100 per year perpetuity at 10% per year interest rate is \$1000. What
	would be the present value of this perpetuity if the payments were compounded continuously?
	A. \$1000.00
	B. \$1049.21
	C. \$1024.40
	D. \$986.14
75.	You just inherited a trust that will pay you \$100,000 per year in perpetuity. However, the first
	payment will not occur for exactly four more years. Assuming an 8% annual interest rate, what
	is the value of this trust?
	A. \$918,787
	B. \$992,290
	C. \$1,000,000
	D. \$1,250,000

2-25 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

2-26 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

T	/	$\Gamma \sim 1$		\bigcirc	:	
True /	/	rai:	se	Οu	esti	ons

79.	The rate of return, discount rate, hurdle rate, and opportunity cost of capital all have the same meaning.
	True False
80.	A dollar today is worth more than a dollar tomorrow if the interest rate is
	positive. True False
81.	One can find the present value of a future cash flow by dividing it by an appropriate discount factor.
	True False
82.	One can find a project's net present value by subtracting the present value of its required investment from the present value of its future cash flows.
	True False
83.	The opportunity cost of capital is higher for safe investments than for risky
	ones. True False
84.	A safe dollar is always worth less than a risky dollar because the rate of return on a safe

investment is generally low and the rate of return on a risky investment is generally high.

True False

© 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

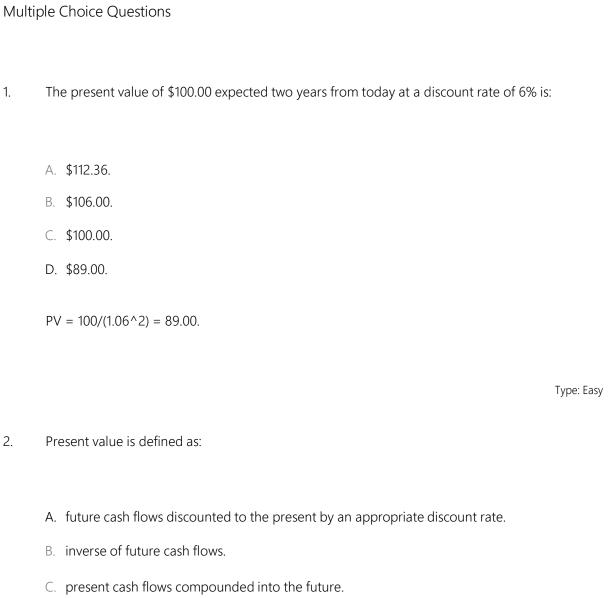
85.	"Accept investments that have positive net present values" is called the net present value
	rule. True False
86.	Generally, one should accept investments that offer rates of return in excess of their opportunity costs of capital.
	True False
87.	The rate of return on any perpetuity is equal to its cash flow multiplied by its
	price. True False
88.	An annuity is an asset that pays a fixed amount each period for a specified number of periods.
	True False
89.	The value of a five-year annuity is equal to the sum of two perpetuities. One makes its
	first payment in year 1, and the other makes its first payment in year 6.
	True False
90.	An equal-payment home mortgage is an example of an
	annuity. True False

91. In the amortization of a mortgage loan with equal payments, the fraction of each payment devoted to interest steadily increases over time and the fraction devoted to reducing the loan balance decreases steadily.

2-28 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

92.	The present value of a growing perpetuity, with cash flow C1 occurring one year from now, is given
	by:
	$[C_1/(r-g)]$, where $r >$
	g. True False
93.	The calculation of compound interest assumes reinvestment of interest payments at the given
	rate of return.
	True False
Sho	ort Answer Questions
94.	Briefly explain the term discount rate.

2-29 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.


95. Intuitively explain the concept of present value.
96. State the net present value rule.
97. Briefly explain the concept of risk.

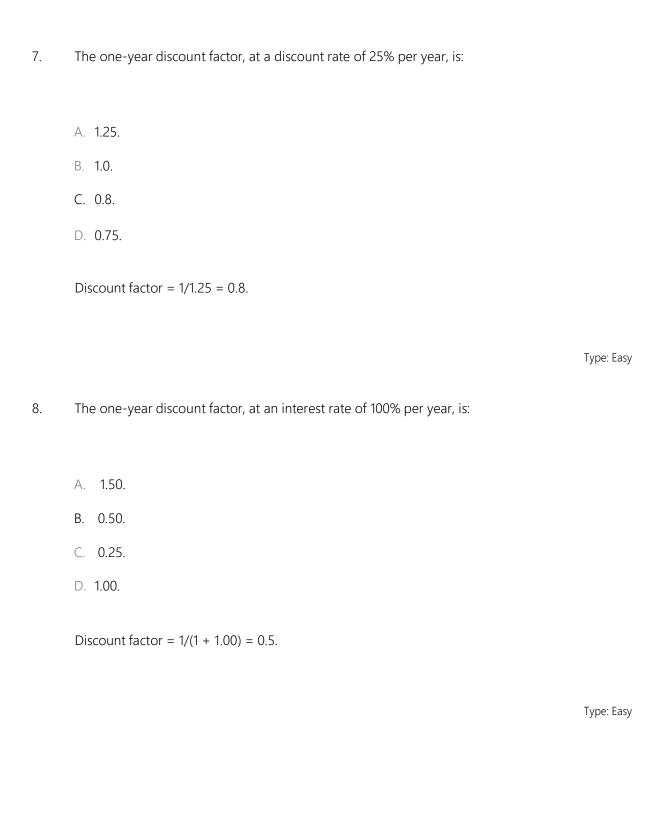
98. State the rate of return rule.
99. Discuss why a dollar tomorrow cannot be worth less than a dollar the day after tomorrow.
100.Define the term perpetuity.

101. Describe how you would go about finding the present value of any annuity given the formula
for the present value of a perpetuity.
102. What is the difference between simple interest and compound interest?
403 D : (I
103.Briefly explain continuous compounding.

Chapter 02 How to Calculate Present Values Answer Key

N 4 I + i I .	Chaire	Ouestions	
	CHOICE	CHESHONS	

D. future cash flows multiplied by the factor $(1 + r)^{t}$.


2-34 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

3.	If the annual interest rate is 12.00%, what is the two-year discount factor?	
	A. 0.7972	
	В. 0.8929	
	C. 1.2544	
	D. 0.8065	
	DF2 = $1/(1.12^2) = 0.7972$.	
		_
	l)	ype: Easy
4.	If the present value of cash flow X is \$240, and the present value of cash flow Y is \$160, th	en
	the present value of the combined cash flows is:	
	A. \$240.	
	B. \$160.	
	C. \$80.	
	D. \$400.	
	PV(x + y) = PV(x) + PV(y) = 240 + 160 = 400.	
	Ту	ype: Easy

2-35 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

5.	The rate of return is also called the: I) discount rate; II) hurdle rate; III) opportunity cost
	of capital
	A. I only.
	B. I and II only.
	C. I, II, and III.
	D. I and III only.
	Type: Easy
6.	The present value of \$121,000 expected one year from today at an interest rate (discount
	rate) of 10% per year is:
	A. \$121,000.
	B. \$100,000.
	C. \$110,000.
	D. \$108,900.
	PV = (121,000)/(1.10) = 110,000.
	Type: Easy

2-36 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

2-37 © 2014 by McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

- 9. The present value of \$100,000 expected at the end of one year, at a discount rate of 25% per year, is:
 A. \$80,000.
 - B. \$125,000.
 - ℂ. \$100,000.
 - D. \$75,000.

PV = (100,000)/(1 + 0.25) = 80,000.

Type: Easy

- 10. If the one-year discount factor is 0.8333, what is the discount rate (interest rate) per year?
 - A. 10%
 - B. 20%
 - C. 30%
 - D. 40%

DF =
$$1/(1 + r)^{1}$$
 = 0.8333; 1 + r = 1/0.8333; r = 20%.

Type: Medium

11.	If the present value of \$480 to be paid at the end of one year is \$400, what is the or year discount factor?	e-
	A. 0.8333 B. 1.20 C. 0.20	
	D. 1.00 Discount factor is = 400/480 = 0.8333.	
		Type: Medium
12.	If the present value of \$250 expected one year from today is \$200, what is the one-year discount rate?	
	A. 10%B. 20%C. 25%D. 30%	
	1 + r = 250/200 = 1.25; r = 25%.	Type: Medium

13.	If the one-year discount factor is 0.90, what is the present value of \$120 expected or	e year
	from today?	
	A #400	
	A. \$100	
	B. \$96	
	C. \$108	
	D. \$133	
	PV = (120)(0.90) = 108.	
		Type: Medium
14.	If the present value of \$600, expected one year from today, is \$400, what is the one-	-year
	discount rate?	
	A 4507	
	A. 15%	
	B. 20%	
	C. 25%	
	D. 50%	
	1 + r = (600)/(400) = 1.5; $r = 50%$.	
		Type: Medium
		Type. Iviculani

15. The present value formula for a cash flow expected one period from now is: A. $PV = C_1 \times (1 + r)$. B. $PV = C_1/(1 + r)$. C. $PV = C_1/r$. D. $PV = (1 + r)/C_1$. Type: Medium 16. The net present value formula for one period is: A. NPV = $C_0 + [C_1/(1 + r)]$. B. NPV = PV required investment. C. NPV = C_0/C_1 . D. NPV = C_1/C_0 . Type: Medium 17. An initial investment of \$400,000 is expected to produce an end-of-year cash flow of \$480,000. What is the NPV of the project at a discount rate of 20%? A. \$176,000 В. \$80,000 C. \$0 (zero) D. \$64,000

NPV = -400,000 + (480,000/1.2) = 0.

- 18. If the present value of a cash flow generated by an initial investment of \$200,000 is \$250,000, what is the NPV of the project?
 - A. \$250,000
 - B. \$50,000
 - C. \$200,000
 - D. -\$50,000

NPV = -200,000 + 250,000 = 50,000.

Type: Easy

19. What is the present value of the following cash flows at a discount rate of 9%?

Year 1 Year 2 Year 3 \$100,000 \$150,000 \$200,000

- A. \$372,431.81
- B. \$450,000.00
- C. \$405,950.68
- D. \$412,844.04

 $PV = (100,000/1.09) + (150,000/(1.09^2)) + 200,000/(1.09^3) = 372,431.81.$

Type: Medium

20. At an interest rate of 10%, which of the following sequences of cash flows should you prefer?

	Year 1	Year 2	Year 3
A)	500	300	100
B)	100	300	500
C)	300	300	300

- D) Any of the above as they all add up to \$900
- A. option A
- B. option B
- C. option C
- D. option D

$$PV(A) = 777.61$$
; $PV(B) = 714.50$; $PV(C) = 746.05$; A is preferred.

Type: Medium

21. What is the net present value of the following cash flow sequence at a discount rate of 11%?

$$\begin{array}{cccc} \underline{t=0} & \underline{t=1} & \underline{t=2} \\ -120,000 & 300,000 & -100,000 \end{array}$$

- A. \$69,108.03
- B. \$231,432.51
- C. \$80,000.00
- D. \$88,000.00

$$NPV = -120,000 + (300,000/1.11) - (100,000/(1.11^2)) = 69,108.03.$$

22. What is the net present value of the following sequence of annual cash flows at a discount rate of 16% APR?

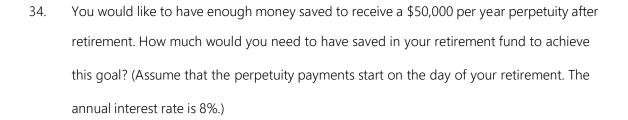
- A. \$136,741.97
- B. \$122,948.87
- C. \$158,620.69
- D. \$139,418.23

$$PV = (-100,000/1.16) + (300,000/(1.16^2)) = 136,741.97.$$

Type: Medium

23. What is the net present value (NPV) of the following sequence of cash flows at a discount rate of 9%?

- A. \$122,431.81
- B. \$200,000.00
- C. \$155,950.68
- D. \$177,483.77


$$NPV = -250,000 + (100,000/1.09) + (150,000/(1.09^2)) + (200,000/(1.09^3)).$$

 $NPV = 122,431.81.$

24.	Which of the following statements regarding the NPV rule and the rate of return rule is false?
	A. Accept a project if its NPV > 0.B. Reject a project if the NPV < 0.
	C. Accept a project if its rate of return > 0.
	D. Accept a project if its rate of return > opportunity cost of capital.
	Type: Difficult
25.	An initial investment of \$500 produces a cash flow of \$550 one year from today. Calculate
	the rate of return on the project.
	A. 10%
	B. 15%
	C. 20%
	D. 25%
	Rate of return = (550 - 500)/500 = 10%.
	Type: Easy
26.	According to the net present value rule, an investment in a project should be made if the:
	A. net present value is greater than the cost of investment.
	B. net present value is greater than the present value of cash flows.
	C. net present value is positive.
	D. net present value is negative.

27.	Which of the following statements regarding the net present value rule and the rate of
	return rule is false?
	A. Accept a project if NPV > cost of investment.
	B. Accept a project if NPV is positive.
	C. Accept a project if return on investment exceeds the rate of return on an equivalent-
	risk investment in the financial market.
	D. Reject a project if NPV is negative.
	Turn Difficult
	Type: Difficult
28.	The opportunity cost of capital for a risky project is:
	A. the expected rate of return on a government security having the same maturity as
	the project.
	B. the expected rate of return on a well-diversified portfolio of common stocks.
	C. the expected rate of return on a security of similar risk as the project.
	D. The expected rate of return on a typical bond portfolio.
	Type: Difficult
29.	A perpetuity is defined as a sequence of:
23.	A perpetuity is defined as a sequence of.
	A. equal cash flows occurring at equal intervals of time for a specific number of periods.
	B. equal cash flows occurring at equal intervals of time forever.
	C. unequal cash flows occurring at equal intervals of time forever.
	D. unequal cash flows occurring at equal intervals of time for a specific number of periods.

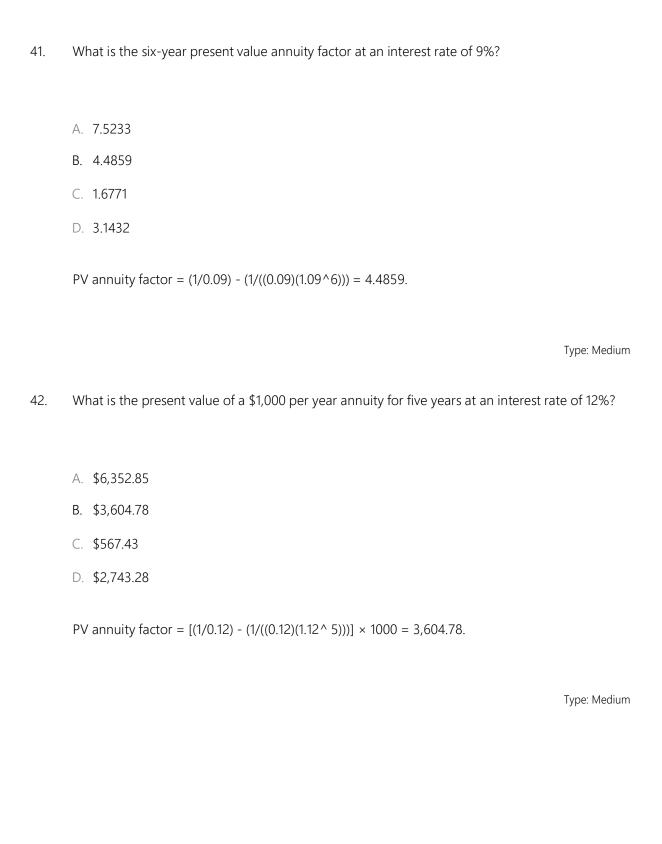
30.	Which of the following is generally considered an example of a perpetuity?
	A. Interest payments on a 10-year bond
	B. Interest payments on a 30-year bond
	C. Interest payments on a consol
	D. Interest payments on government bonds
	Type: Easy
31.	You would like to have enough money saved after your retirement such that you and your
	heirs can receive \$100,000 per year in perpetuity. How much would you need to have saved at
	the time of your retirement in order to achieve this goal? (Assume that the perpetuity
	payments start one year after the date of your retirement. The annual interest rate is 12.5%.)
	A. \$1,000,000
	B. \$10,000,000
	C. \$800,000
	D. \$1,125,000
	PV = (100,000/0.125) = 800,000.
	Type: Medium

32.	What is the present value of \$10,000 per year in perpetuity at an interest rate of 10%?	
	A. \$10,000	
	B. \$100,000	
	C. \$200,000	
	D. \$1,000	
	PV = (10,000/0.10) = 100,000.	
	_	F F
	· · · · · · · · · · · · · · · · · · ·	Гуре: Easy
33.	You would like to have enough money saved to receive \$80,000 per year in perpetuity af	ter
	retirement for you and your heirs. How much would you need to have saved in your	
	retirement fund to achieve this goal? (Assume that the perpetuity payments start one year	ar
	from the date of your retirement. The annual interest rate is 8%.)	
	A. \$7,500,000	
	B. \$750,000	
	C. \$1,000,000	
	D. \$800,000	
	PV = (80,000/0.08) = 1,000,000.	
	Туре	:: Medium

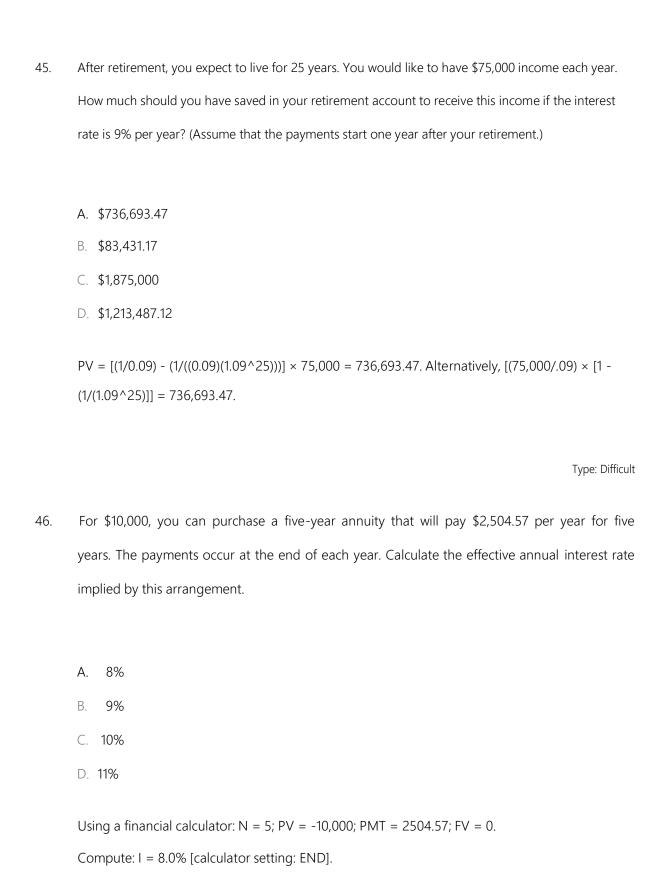
- A. \$1,000,000
- B. \$675,000
- C. \$625,000
- D. \$500,000

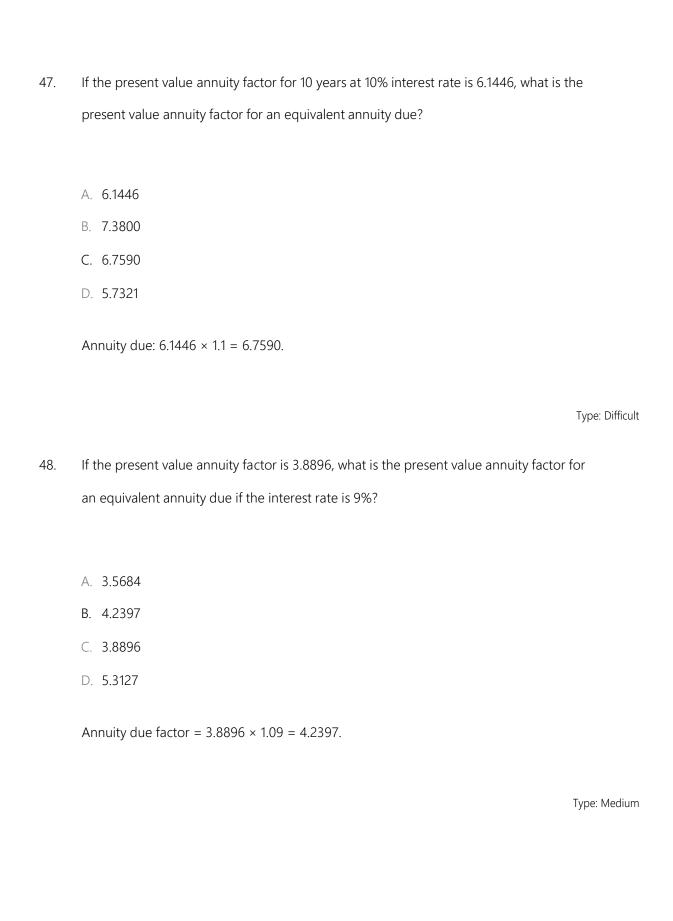
 $PV = [50,000/0.08)] \times (1.08) = 675,000$; or PV = 50,000 + 50,000/0.08.

Type: Difficult


- 35. You would like to have enough money saved to receive an \$80,000 per year perpetuity after retirement. How much would you need to have saved in your retirement fund to achieve this goal? (Assume that the perpetuity payments start on the day of your retirement. The annual interest rate is 10%.)
 - A. \$1,500,000
 - B. \$880,000
 - C. \$800,000
 - D. \$80,000

 $PV = [(80,000/0.10)] \times (1.1) = 880,000$; or PV = 80,000 + 80,000/0.10.


36.	An annuity is defined as a set of:
	 A. equal cash flows occurring at equal intervals of time for a specified period. B. equal cash flows occurring at equal intervals of time forever. C. unequal cash flows occurring at equal intervals of time forever. D. unequal cash flows occurring at equal intervals of time for a specified period.
	Type: Easy
37.	If you are paid \$1,000 at the end of each year for the next five years, what type of cash flow did you receive?
	A. uneven cash flow stream
	B. an annuity
	C. an annuity due
	D. a perpetuity
	Type: Easy
38.	If the three-year present value annuity factor is 2.673 and the two-year present value
	annuity factor is 1.833, what is the present value of \$1 received at the end of the three years?
	A. \$1.19
	B. \$0.84
	C. \$0.89
	D. \$0.92


 $PV = (2.673 - 1.833) \times (1) = 0.84.$

39.	If the five-year present value annuity factor is 3.60478 and the four-year present va	lue
	annuity factor is 3.03735, what is the present value at the \$1 received at the end of	five years?
	A. \$0.63552	
	B. \$1.76233	
	C. \$0.56743	
	D. \$1.2132	
	$PV = (3.60478 - 3.03735) \times (1) = 0.56743.$	
		Type: Difficult
40.	What is the eight-year present value annuity factor at a discount rate of 11%?	
	A F 7122	
	A. 5.7122 B. 11.8594	
	C. 5.1461	
	D. 6.9158	
	D. 0.9130	
	PV annuity factor = (1/0.11) - (1/((0.11)(1.11^8))) = 5.1461.	
		Type: Medium

43.	What is the present value of a six-year, \$5,000 per year annuity at a discount rate of	10%?
	A. \$21,776.30	
	B. \$3,371.91	
	C. \$16,760.78	
	D. \$18,327.82	
	$PV = [(1/0.10) - (1/((0.10)(1.10^6)))] \times 5000 = 21,776.30.$	
		Type: Medium
44.	After retirement, you expect to live for 25 years. You would like to have \$75,000 income 6	each year.
	How much should you have saved in your retirement account to receive this income, if the	e interest
	rate is 9% per year? (Assume that the payments start on the day of your retirement.)	
	A. \$736,693.47	
	B. \$802,995.88	
	C. \$2,043,750.21D. \$1,427,831.93	
	$PV = [[(1/0.09) - (1/((0.09)(1.09^25)))] \times 75,000] \times (1.09) = 802,995.88$. Alternatively,	
	$[(75,000/.09) \times [1 - (1/(1.09^25))] \times (1.09) = 802,995.88.$	
		Type: Difficult

49.	For \$10,000, you can purchase a five-year annuity that will pay \$2,358.65 per year for five
	years. The payments occur at the beginning of each year. Calculate the effective annual
	interest rate implied by this arrangement.

- A. 8%
- B. 9%
- C. 10%
- D. 11%

Using a financial calculator: N = 5; PV = -10,000; PMT = 2358.65; FV = 0.

Compute: I = 9.0% [Calculator setting: BEGIN (BGN)].

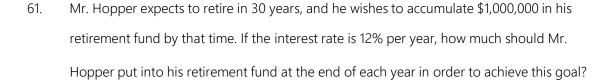
Type: Medium

- 50. John House has taken a \$250,000 mortgage on his house at an interest rate of 6% per year.

 If the mortgage calls for 20 equal, annual payments, what is the amount of each payment?
 - A. \$21,796.14
 - B. \$10,500.00
 - C. \$16,882.43
 - D. \$24,327.18

Use a financial calculator: PV = 250,000; I - = 6%; N = 20; FV = 0.

Compute PMT = -\$21,796.14.

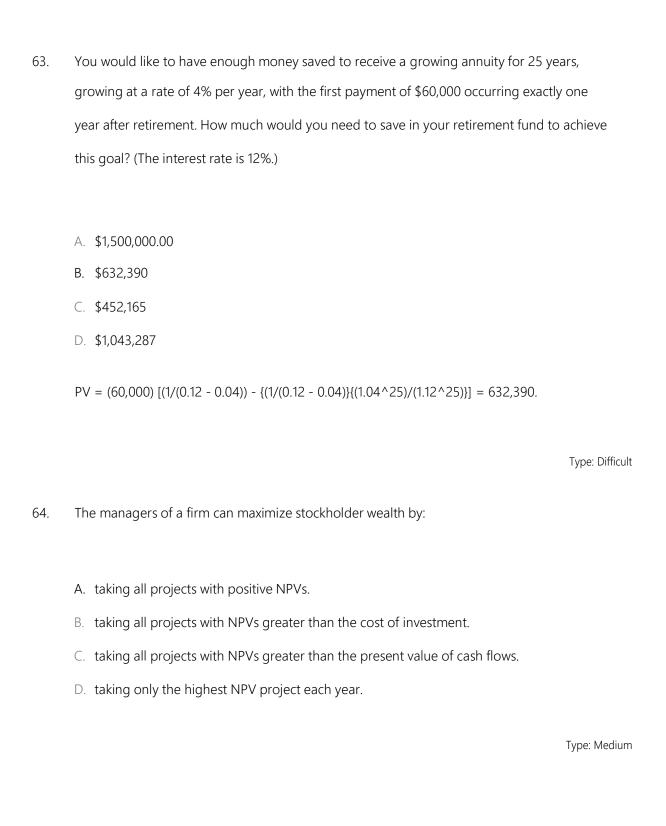

51.	John House has taken a 20-year, \$250,000 mortgage on his house at an interest rate of 6% per year. What is the value of the mortgage after the payment of the fifth annual installment?
	 A. \$128,958.41 B. \$211,689.53 C. \$141,019.50 D. \$248,719.21 Step 1: I = 6%; N = 20; PV = 250,000; FV = 0. Compute PMT = 21,796.14.
	Step 2: I = 6%; N = 15; PMT = 21,796.14. Compute PV = 211,689. 53.
52.	Type: Difficult If the present value of \$1.00 received n years from today at an interest rate of r is 0.3855, then what is the future value of $$1.00$ invested today at an interest rate of r% for n years?
	A. \$1.3855
	B. \$2.594
	C. \$1.701
	D. not enough information is given to solve the problem
	FV = 1/(0.3855) = 2.594.
	Type: Difficult

53.	If the present value of \$1.00 received n years from today at an interest rate of r is 0.621, then what is the future value of \$1.00 invested today at an interest rate of r% for n years?
	A. \$1.000
	B. \$1.610
	C. \$1.621
	D. not enough information is given to solve the problem
	FV = 1/(0.621) = 1.61.
	Type: Difficult
54.	If the future value of \$1 invested today at an interest rate of r% for n years is 9.6463, what is
	the present value of \$1 to be received in n years at r% interest rate?
	A. \$9.6463
	B. \$1.0000
	C. \$0.1037
	D. \$0.4132
	PV = 1/9.6463 = 0.1037.
	Type: Difficult

55.	If the future value annuity factor at 10% and five years is 6.1051, calculate the equivalent	ent
	present value annuity factor:	
	A. 6.1051	
	B. 3.7908	
	C. 6.7156	
	D. 4.8127	
	$PV = 6.1051/(1.1)^5 = 3.7908.$	
		Type: Difficult
56.	If the present value annuity factor at 10% for 10 years is 6.1446, what is the equivalen	t
	future value annuity factor?	
	A. 3.1080	
	B. 15.9375	
	C. 2.5937	
	D. 8.4132	
	FV annuity factor = $6.1446 \times (1.1^{10}) = 15.9375$.	
		Type: Difficult

57.	If the present value annuity factor at 12% for five years is 3.6048, what is the equivalent
	future value annuity factor?
	A. 2.0455
	B. 6.3529
	C. 1.7623
	D. 5.1237
	FV annuity factor = $3.6048 \times (1.12^5) = 6.3529$.
	Type: Difficult
58.	If the present value annuity factor at 8% for 10 years is 6.71, what is the equivalent future
	value annuity factor?
	A. 3.108
	B. 14.486
	C. 2.159
	D. 5.384
	FV annuity factor = $6.71 \times (1.08^{10}) = 14.486$.
	Type: Difficult

59.	You are considering investing in a retirement fund that requires you to deposit \$5,000 per
	year, and you want to know how much the fund will be worth when you retire. What financial
	technique should you use to calculate this value?
	A. Future value of a single payment
	A. Future value of a single payment
	B. Future value of an annuity
	C. Present value of an annuity
	D. Present value of a perpetuity
	Type: Easy
	туре. Lasy
60.	Mr. Hopper expects to retire in 25 years, and he wishes to accumulate \$750,000 in his
	retirement fund by that time. If the interest rate is 10% per year, how much should Mr.
	Hopper put into his retirement fund each year in order to achieve this goal? (Assume that he
	makes payments at the end of each year.)
	A. \$4,559.44
	В. \$2,500
	C. \$7,626.05
	D. \$8,418.29
	D. \$0,410.29
	Future value annuity factor = $[(1.1^25) - 1]/(0.1) =$
	98.347; payment = 750,000/98.347 = 7626.05.


- A. \$4,143.66
- B. \$8,287.32
- C. \$4,000.00
- D. \$12,483.17

Future value annuity factor = $[(1.12^30 - 1]/(0.12) = 241.3327;$ payment = 1,000,000/241.3327 = 4143.66.

Type: Difficult

- 62. You would like to have enough money saved to receive a growing annuity for 20 years, growing at a rate of 5% per year, with the first payment of \$50,000 occurring exactly one year after retirement. How much would you need to save in your retirement fund to achieve this goal? (The interest rate is 10%.)
 - A. \$1,000,000.00
 - B. \$425,678.19
 - C. \$605,604.20
 - D. \$827,431.28

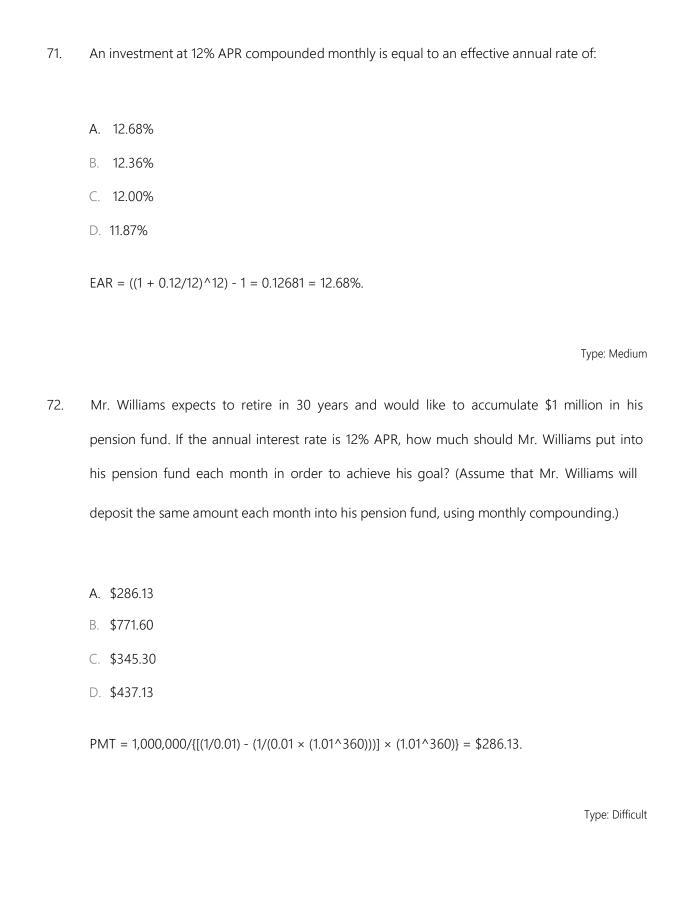
 $PV = (50,000)[(1/(0.1 - 0.05)) - \{(1/(0.1 - 0.05))\}((1.05^20)/(1.10^20)\}] = 605,604.20.$

A. \$136.00 B. \$140.49 C. \$240.18 D. \$187.13
$FV = 100 + (100 \times 0.12 \times 3) = $136.$ Type: Medium
If you invest \$100 at 12% APR for three years, how much would you have at the end of three years using compound interest?
A. \$136 B. \$140.49 C. \$240.18 D. \$173.18 FV = 100 × (1.12^3) = \$140.49.

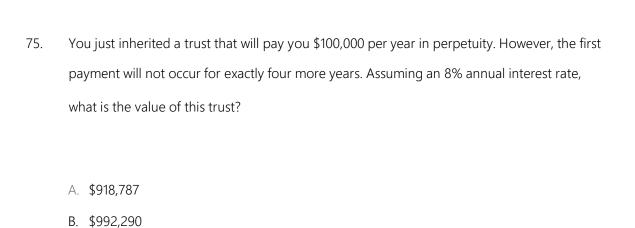
Type: Medium

67.	Which of the following statements is true?	
	 A. The process of discounting is the inverse of the process of compounding. B. Ending balances using simple interest are always greater than ending balances using compound interest at positive interest rates. C. The present value of an annuity due is always less than the present value of an equivalent ordinary annuity at positive interest rates. D. The future value of an annuity due is always less than the present value of an 	
	equivalent ordinary annuity at positive interest rates.	Type: Difficult
68.	The concept of compound interest is best described as:A. interest earned on an investment.B. the total amount of interest earned over the life of an investment.	
	C. interest earned on interest. D. the inverse of simple interest.	Type: Medium

69.	Ms. Colonial has just taken out a \$150,000 mortgage at an interest rate of 6% per year. If the
	mortgage calls for equal monthly payments for 20 years, what is the amount of each
	payment? (Assume monthly compounding or discounting.)


- A. \$1,254.70
- B. \$1,625.00
- C. \$1,263.06
- D. \$1,074.65

$$PMT = 150,000/[(1/0.005) - 1/((0.005 \times ((1 + 0.005)^240)))] = $1,074.65.$$


Type: Difficult

- 70. An investment having a 10.47% effective annual rate (EAR) has what APR? (Assume monthly compounding.)
 - A. 10.99%
 - B. 9.57%
 - C. 10.00%
 - D. 8.87%

NOM =
$$[(1.1047)^{(1/12)} - 1] \times 12 = 0.1 = 10.00\%$$
.

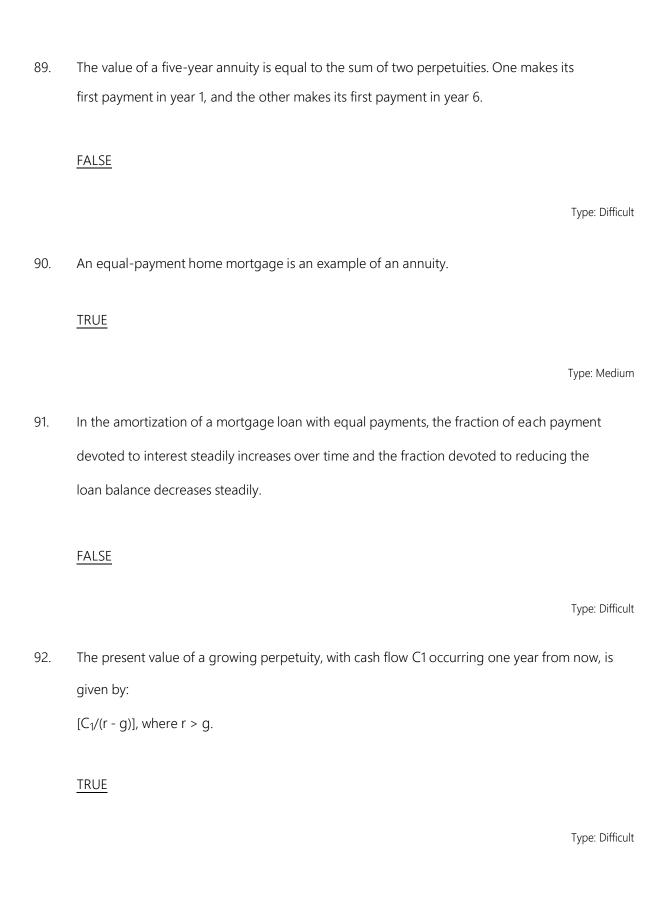
73.	An investment at 10% compounded continuously has an equivalent annual rate of:
	A. 10.250%.
	B. 10.517%.
	C. 10.381%.
	D. none of the options.
	$(e^{(0.1)}) - 1 = 0.10517 = 10.517\%.$
	Type: Difficult
74.	The present value of a \$100 per year perpetuity at 10% per year interest rate is \$1000. What would
	be the present value of this perpetuity if the payments were compounded continuously?
	A. \$1000.00
	B. \$1049.21
	C. \$1024.40
	D. \$986.14
	(e^r) = 1.1; r = ln(1.1) = 0.09531; PV = 100/0.09531 = \$1049.21.
	Type: Difficult

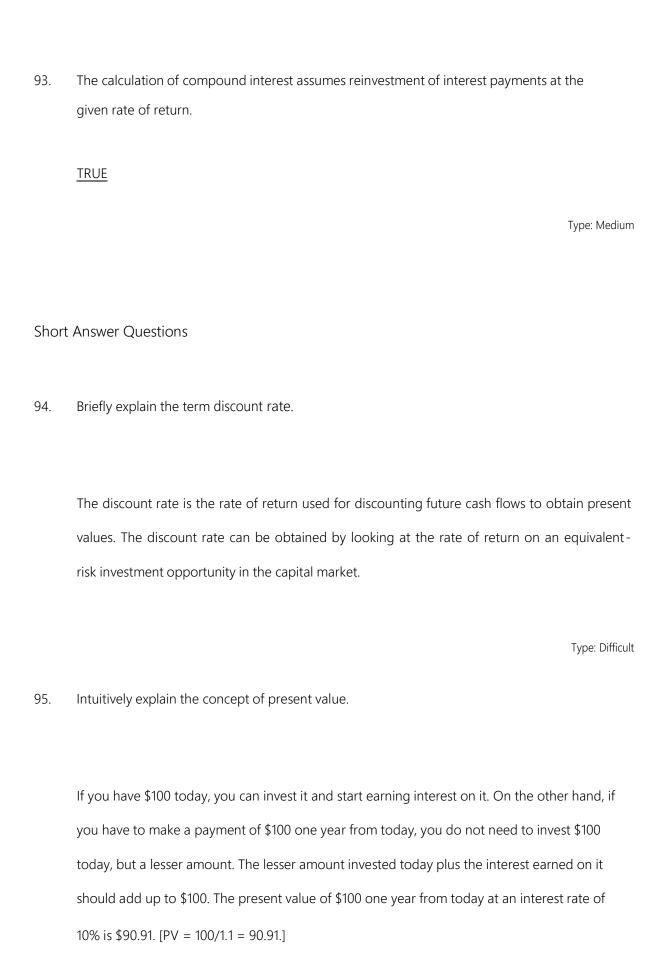
$$PV (@t = 3) = 100,000/0.08 = \$1,250,000; PV (@t = 0) = 1,250,000/(1.08)^3 = \$992,290.$$

Type: Difficult

76. You just inherited a trust that will pay you \$100,000 per year in perpetuity. However, the first payment will not occur for exactly four more years. Assuming a 10% annual interest rate, what is the value of this trust?

- A. \$683,013
- B. \$751,315
- C. \$1,000,000
- D. \$1,100,000


$$PV (@t = 3) = 100,000/0.10 = \$1,000,000; PV (@t = 0) = 1,000,000/(1.10)^3 = \$751,315.$$


77.	You just inherited a trust that will pay you \$100,000 per year in perpetuity. However, the first
	payment will not occur for exactly five more years. Assuming an 8% annual interest rate, what
	is the value of this trust?
	A. \$850,729
	B. \$918,787
	C. \$1,000,000
	D. \$1,250,000
	PV (@ t = 3) = 100,000/0.08 = \$1,250,000; PV (@ t = 0) = 1,250,000/(1.08)^4 = \$918,787.
	Type: Difficult
78.	You just inherited a trust that will pay you \$100,000 per year in perpetuity. However, the first
	payment will not occur for exactly five more years. Assuming a 10% annual interest rate, what
	is the value of this trust?
	A. \$620,921
	B. \$683,013
	C. \$1,000,000
	D. \$1,100,000
	PV (@ t = 3) = 100,000/0.10 = \$1,000,000; PV (@ t = 0) = 1,000,000/(1.10)^4 = \$683,013.
	Type: Difficult

79.	9. The rate of return, discount rate, hurdle rate, and opportunity cost of capital all have same meaning.	
	Same meaning.	
	TRUE	
		Type: Medium
80.	A dollar today is worth more than a dollar tomorrow if the interest rate is positive.	
	TRUE	
		Type: Easy
81.	One can find the present value of a future cash flow by dividing it by an appropriate	
	discount factor.	
	FALSE	
		Type: Medium
82.	One can find a project's net present value by subtracting the present value of its	
	required investment from the present value of its future cash flows.	
	TRUE	
		Type: Medium
83.	The opportunity cost of capital is higher for safe investments than for risky ones.	
	FALSE	

Type: Medium

84.	A safe dollar is always worth less than a risky dollar because the rate of return on a sa	afe
	investment is generally low and the rate of return on a risky investment is generally high.	
	FALSE	
	TALSE	
	ī	Type: Difficult
		,,,
85.	"Accept investments that have positive net present values" is called the net present val	ue rule.
	TRUE	
	Ту	ype: Medium
86.	Generally, one should accept investments that offer rates of return in excess of	
	their opportunity costs of capital.	
	TRUE	
	ту	ype: Medium
87.	The rate of return on any perpetuity is equal to its cash flow multiplied by its price.	
	<u>FALSE</u>	
	Ту	ype: Medium
0.0		
88.	An annuity is an asset that pays a fixed amount each period for a specified number of	periods.
	TRUE	
		Type: Easy

96. State the net present value rule.

Invest in projects with positive net present values. Net present value is the difference between the present value of future cash flows from the project and the present value of the initial investment.

Type: Medium

97. Briefly explain the concept of risk.

If the future cash flows from an investment are not certain, then we call such an investment risky. That means there is an uncertainty about the future cash flows or future cash flows could be different from expected cash flows. The degree of uncertainty varies from investment to investment. Uncertain cash flows are discounted using a higher discount rate than certain cash flows. This is only one method of dealing with risk. There are many ways to consider risk while making financial decisions.

Type: Difficult

98. State the rate of return rule.

Invest as long as the rate of return on the investment exceeds the rate of return on equivalentrisk investments in the capital market.

99. Discuss why a dollar tomorrow cannot be worth less than a dollar the day after tomorrow.

If a dollar tomorrow were worth less than a dollar a day after tomorrow, it would be possible to earn a very large amount of money through a "money-machine" effect. This is only possible if someone else is losing a very large amount of money. These conditions can only exist for a short period and cannot exist in equilibrium as the source of money is quickly exhausted. Thus, a dollar tomorrow cannot be worth less than a dollar the day after tomorrow.

Type: Difficult

100. Define the term perpetuity.

A perpetuity is defined as a sequence of equal cash flows occurring each period forever.

Type: Medium

101. Describe how you would go about finding the present value of any annuity given the formula for the present value of a perpetuity.

The present value of any annuity can be thought of as the difference between two perpetuities: one payment starting in year 1 (immediate) and one starting in year (n + 1)(delayed). By calculating the difference between the present values of these two perpetuities today we can find the present value of an annuity.

102. What is the difference between simple interest and compound interest?

When money is invested at compound interest, each interest payment is reinvested to earn more interest in subsequent periods. In the simple interest case, the interest is paid only on the initial investment.

Type: Medium

103. Briefly explain continuous compounding.

As the frequency of compounding increases, the effective rate on an investment also increases. In the case of continuous compounding, the compounding frequency goes to infinity. In this case, the nature of the function also changes. The effective interest rate is given by (e^r - 1), where the value of e = 2.718, where e is the base for natural logarithms.

Type: Difficult