Solution Manual for Shigleys Mechanical Engineering Design 10th Edition Budynas and Nisbett 0073398209 9780073398204

Fulllink download

Solution Manual

https://testbankpack.com/p/solution-manual-for-shigleys-mechanical-

engineering-design-10th-edition-budynas-and-nisbett-0073398209-

9780073398204/

Chapter 2

- **2-1** From Tables A-20, A-21, A-22, and A-24c,
 - (a) UNS G10200 HR: $S_{ut} = 380$ (55) MPa (kpsi), $S_{vt} = 210$ (30) MPa (kpsi) Ans.
 - **(b)** SAE 1050 CD: $S_{ut} = 690 (100) \text{ MPa (kpsi)}, S_{yt} = 580 (84) \text{ MPa (kpsi)} Ans.$
 - (c) AISI 1141 Q&T at 540°C (1000°F): $S_{ut} = 896$ (130) MPa (kpsi), $S_{yt} = 765$ (111) MPa (kpsi) Ans.
 - (d) 2024-T4: $S_{ut} = 446$ (64.8) MPa (kpsi), $S_{yt} = 296$ (43.0) MPa (kpsi) Ans.
 - (e) Ti-6Al-4V annealed: $S_{ut} = 900 (130) \text{ MPa (kpsi)}, S_{yt} = 830 (120) \text{ MPa (kpsi)} Ans.$
- **2-2** (a) Maximize yield strength: Q&T at 425°C (800°F) Ans.
 - (b) Maximize elongation: Q&T at 650°C (1200°F) Ans.
- **2-3** Conversion of kN/m^3 to kg/m^3 multiply by $1(10^3)/9.81 = 102$

AISI 1018 CD steel: Tables A-20 and A-5

$$\frac{S_y}{\rho} = \frac{370(10^3)}{76.5(102)} = 47.4 \text{ kN} \cdot \text{m/kg}$$
 Ans.

2011-T6 aluminum: Tables A-22 and A-5

$$\frac{S_y}{\rho} = \frac{169(10^3)}{26.6(102)} = 62.3 \text{ kN} \cdot \text{m/kg}$$
 Ans.

Ti-6Al-4V titanium: Tables A-24c and A-5

$$\frac{S_y}{\rho} = \frac{830(10^3)}{43.4(102)} = 187 \text{ kN} \cdot \text{m/kg}$$
 Ans.

ASTM No. 40 cast iron: Tables A-24a and A-5.Does not have a yield strength. Using the ultimate strength in tension

$$\frac{S_{ut}}{\rho} = \frac{42.5(6.89)(10^3)}{70.6(102)} = 40.7 \text{ kN} \cdot \text{m/kg}$$
Ans

2-4

AISI 1018 CD steel: Table A-5

$$\frac{E}{\gamma} = \frac{30.0(10^6)}{0.282} = 106(10^6)$$
 in Ans.

2011-T6 aluminum: Table A-5

$$\frac{E}{\gamma} = \frac{10.4(10^6)}{0.098} = 106(10^6)$$
 in Ans.

Ti-6Al-6V titanium: Table A-5

$$\frac{E}{} = \frac{16.5(10^6)}{0.160} = 103(10^6)$$
 in Ans.

 $\gamma = 0.160$

No. 40 cast iron: Table A-5

$$\frac{E}{\gamma} = \frac{14.5(10^6)}{0.260} = 55.8(10^6)$$
 in Ans.

2-5

$$2G(1+v) = E$$
 \Rightarrow $v = \frac{E-2G}{2G}$

Using values for E and G from Table A-5,

Steel:
$$v = \frac{30.0 - 2(11.5)}{2(11.5)} = 0.304$$
 Ans.

The percent difference from the value in Table A-5 is

$$\frac{0.304 - 0.292}{0.292} = 0.0411 = 4.11$$
 Ans.

Aluminum:
$$v = \frac{10.4 - 2(3.90)}{2(3.90)} = 0.333$$
 Ans.

The percent difference from the value in Table A-5 is 0 percent *Ans*.

Beryllium copper:
$$v = \frac{18.0 - 2(7.0)}{2(7.0)} = 0.286$$
 Ans.

The percent difference from the value in Table A-5 is

$$\frac{0.286 - 0.285}{0.285} = 0.00351 = 0.351$$
 percent Ans.

Gray cast iron:
$$v = \frac{14.5 - 2(6.0)}{2(6.0)} = 0.208$$
 Ans.

The percent difference from the value in Table A-5 is

$$\frac{0.208 - 0.211}{0.211} = -0.0142 = -1.42$$
 Ans.

2-6 (a) $A_0 = \pi (0.503)^2/4 = 0.1987 \text{ in}^2$, $\sigma = P_i / A_0$

For data in elastic range, $\delta = \Delta l/l_0 = \Delta l/2$ For data in plastic range, $\delta = \frac{\Delta l}{l} = \frac{l-l_0}{l} = \frac{l}{l} - 1 = \frac{A_0}{l} - 1$

$$l_0 \qquad l_0 \qquad l_0 \qquad A$$

On the next two pages, the data and plots are presented. Figure (a) shows the linear part of the curve from data points 1-7. Figure (b) shows data points 1-12. Figure (c) shows the complete range. **Note**: The exact value of A_0 is used without rounding off.

(b) From Fig. (a) the slope of the line from a linear regression is E = 30.5 Mpsi Ans.

From Fig. (b) the equation for the dotted offset line is found to be

$$\sigma = 30.5(10^6)\int -61\ 000\tag{1}$$

The equation for the line between data points 8 and 9 is

$$\sigma = 7.60(10^5) \int +42\,900 \tag{2}$$

Solving Eqs. (1) and (2) simultaneously yields $\sigma = 45.6$ kpsi which is the 0.2 percent offset yield strength. Thus, $S_v = 45.6$ kpsi Ans.

The ultimate strength from Figure (c) is $S_u = 85.6$ kpsi Ans.

14800

17

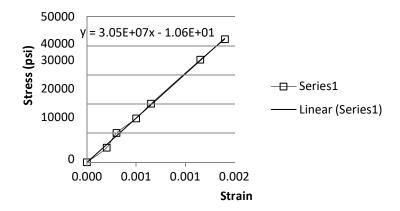
The reduction in area is given by Eq. (2-12) is

0.1077

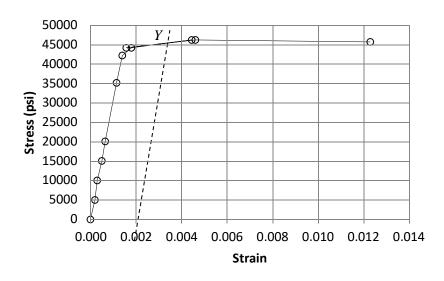
0.84506

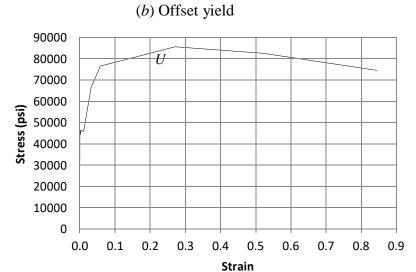
74479

Ans.



(a) Linear range





(c) Complete range

- (c) The material is ductile since there is a large amount of deformation beyond yield.
- (d) The closest material to the values of S_y , S_{ut} , and R is SAE 1045 HR with $S_y = 45$ kpsi, $S_{ut} = 82$ kpsi, and R = 40 %. Ans.
- **2-7** To plot σ_{true} vs. ε , the following equations are applied to the data.

$$\sigma_{\text{true}} = \frac{P}{A}$$
 Eq. (2-4)
$$\varepsilon = \ln \frac{l}{l_0} \quad \text{for } 0 \le \Delta l \le 0.0028 \text{ in} \qquad (0 \le P \le 8400 \text{ lbf})$$

$$\varepsilon = \ln \frac{A_0}{A} \quad \text{for } \Delta l > 0.0028 \text{ in} \qquad (P > 8400 \text{ lbf})$$

where
$$A_0 = \frac{\pi (0.503)^2}{4} = 0.1987 \text{ in}^2$$

The results are summarized in the table below and plotted on the next page. The last 5 points of data are used to plot $\log \sigma$ vs $\log \varepsilon$

The curve fit gives
$$m = 0.2306$$

 $\log \sigma_0 = 5.1852 \Rightarrow \sigma_0 = 153.2 \text{ kpsi}$ Ans

For 20% cold work, Eq. (2-14) and Eq. (2-17) give,

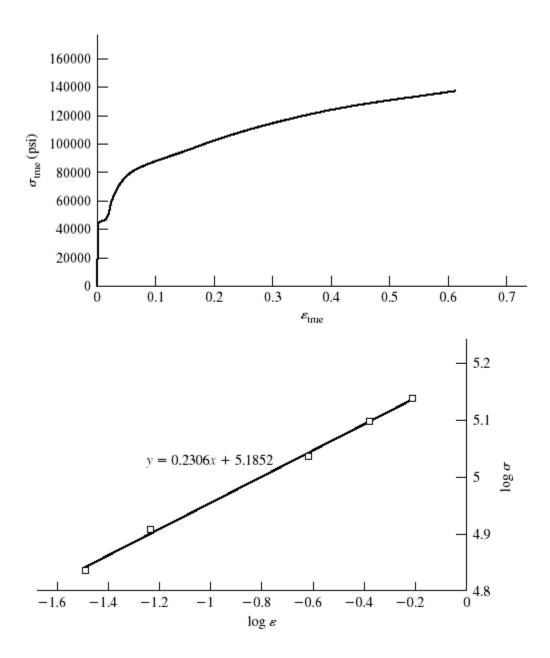
$$\varepsilon = \ln \frac{A_0}{A} = \ln \frac{0.1987}{0.1590} = 0.2231$$
Eq. (2-18): $S_{y'} = \sigma_0 \varepsilon^m = 153.2(0.2231)^{0.2306} = 108.4 \text{ kpsi}$ Ans

 $A = A_0 (1 - W) = 0.1987 (1 - 0.2) = 0.1590 \text{ in}^2$

Eq. (2-19), with
$$S_u = 85.6$$
 from Prob. 2-6,
 $S' = \frac{S_u}{S_u} = \frac{85.6}{S_u} = 107$ kpsi Ans.

u
 1-W 1-0.2

P	Δl	A	3	σ _{true}	logε	$\log \sigma_{true}$
0	0	0.198 7	0	0		
1 000	0.0004	0.198 7	0.000 2	5 032.71	-3.699	3.702
2 000	0.0006	0.198 7	0.000 3	10 065.4	-3.523	4.003
3 000	0.001 0	0.198 7	0.000 5	15 098.1	-3.301	4.179
4 000	0.001 3	0.198 7	0.00065	20 130.9	-3.187	4.304
7 000	0.002 3	0.198 7	0.001 15	35 229	-2.940	4.547
8 400	0.002 8	0.198 7	0.001 4	42 274.8	-2.854	4.626
8 800		0.198 4	0.001 51	44 354.8	-2.821	4.647
9 200		0.197 8	0.004 54	46 511.6	-2.343	4.668
9 100		0.1963	0.012 15	46 357.6	-1.915	4.666
13 200		0.192 4	0.032 22	68 607.1	-1.492	4.836
15 200		0.187 5	0.058 02	81 066.7	-1.236	4.909
17 000		0.156 3	0.240 02	108 765	-0.620	5.036
16 400		0.130 7	0.418 89	125 478	-0.378	5.099
14 800		0.107 7	0.612 45	137 419	-0.213	5.138



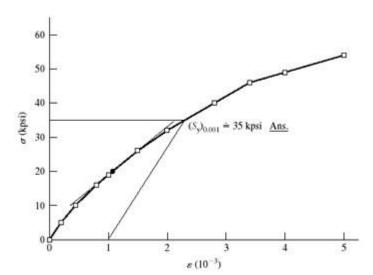
2-8 Tangent modulus at $\sigma = 0$ is

$$E = \frac{\Delta \sigma}{\Delta \delta} \approx \frac{5000 - 0}{0.2(10^{-3}) - 0} = 25 \, {10^6} \, \text{psi}$$
 Ans.

At
$$\sigma = 20 \text{ kpsi}$$

$$E_{20} \approx \frac{(26-19)(10^3)}{(1.5-1)(10^{-3})} = 14.0(10^6) \text{ psi}$$
 Ans.

$\int (10^{-3}) \sigma (kpsi)$					
0	0				
0.20	5				
0.44	10				
0.80	16				
1.0	19				
1.5	26				
2.0	32				
2.8	40				
3.4	46				
4.0	49				
5.0	54				



2-9 W = 0.20,

(a) Before cold working: Annealed AISI 1018 steel. Table A-22, $S_y = 32$ kpsi, $S_u = 49.5$ kpsi, $\sigma_0 = 90.0$ kpsi, m = 0.25, $\int_f = 1.05$

After cold working: Eq. (2-16), $\int_u = m = 0.25$

Eq. (2-14),
$$\frac{A_0}{A_0} = \frac{1}{1} = \frac{1}{1} = 1.25$$

$$A_i = 1 - W = 1 - 0.20$$

Eq. (2-17),
$$\varepsilon = \ln \frac{A_0}{\epsilon} = \ln 1.25 = 0.223 < \varepsilon$$

Eq. (2-18),
$$S' = \sigma \varepsilon^m = 90(0.223)^{0.25} = 61.8 \text{ kpsi}$$
 Ans. 93% increase Ans.

Eq. (2-19),
$$S' = \frac{S_u}{} = \frac{49.5}{} = 61.9 \text{ kpsi}$$
 Ans. 25% increase Ans. $^u 1-W 1-0.20$

(**b**) Before:
$$\frac{S_u}{S_v} = \frac{49.5}{1.55} = 1.55$$
 After: $\frac{S_u'}{S_v} = \frac{61.9}{1.00} = 1.00$ Ans.

Lost most of its ductility.

2-10 W = 0.20,

(a) Before cold working: AISI 1212 HR steel. Table A-22, $S_y = 28$ kpsi, $S_u = 61.5$ kpsi, $\sigma_0 = 110$ kpsi, m = 0.24, $\int_f = 0.85$ After cold working: Eq. (2-16), $\int_u = m = 0.24$

Eq. (2-14),
$$\frac{A_0}{A_0} = \frac{1}{1 - W} = \frac{1}{1 - 0.20} = 1.25$$

Eq. (2-17),
$$\varepsilon = \ln \frac{A_0}{\epsilon} = \ln 1.25 = 0.223 < \varepsilon$$

Eq. (2-18),
$$S' = \sigma \varepsilon^m = 110(0.223)^{0.24} = 76.7$$
 kpsi Ans. 174% increase Ans.

Eq. (2-19),
$$S' = \frac{S_u}{1 - W} = \frac{61.5}{1 - 0.20} = 76.9 \text{ kpsi}$$
 Ans. 25% increase Ans.

(**b**) Before:
$$\frac{S_u}{S_y} = \frac{61.5}{2} = 2.20$$
 After: $\frac{S_u'}{S_y'} = \frac{76.9}{2} = 1.00$ Ans. $\frac{S_u'}{S_y'} = \frac{76.9}{2} = 1.00$

Lost most of its ductility.

- **2-11** W = 0.20,
 - (a) Before cold working: 2024-T4 aluminum alloy. Table A-22, $S_y = 43.0$ kpsi, $S_u = 64.8$ kpsi, $\sigma_0 = 100$ kpsi, m = 0.15, $f_0 = 0.18$

After cold working: Eq. (2-16), $\int_u = m = 0.15$

Eq. (2-14),
$$\frac{A_0}{A_0} = \frac{1}{1 - W} = \frac{1}{1 - 0.20} = 1.25$$

Eq. (2-17),
$$\varepsilon = \ln \frac{A_0}{2} = \ln 1.25 = 0.223$$
 Material fractures. Ans. $> \varepsilon$

- **2-12** For $H_B = 275$, Eq. (2-21), $S_u = 3.4(275) = 935$ MPa Ans.
- **2-13** Gray cast iron, $H_B = 200$. Eq. (2-22), $S_u = 0.23(200) - 12.5 = 33.5$ kpsi Ans

From Table A-24, this is probably ASTM No. 30 Gray cast iron Ans.

2-14 Eq. (2-21), $0.5H_B = 100 \implies H_B = 200$ Ans.

2-15 For the data given, converting H_B to S_u using Eq. (2-21)

H_{B}	S_u (kpsi)	S_u^2 (kpsi)
230	115	13225
232	116	13456
232	116	13456
234	117	13689
235	117.5	13806.25
235	117.5	13806.25
235	117.5	13806.25
236	118	13924
236	118	13924
239	119.5	14280.25
$\Sigma S_u =$	1172	$ES_u^2 = 137373$

Eq. (1-6)
$$\overline{S} = \frac{\sum \underline{S}_{\underline{u}}}{N} = \frac{1172}{10} = 117.2 \approx 117 \qquad Ans.$$
kpsi
N 10

$$s = \sqrt{\frac{\sum_{i=1}^{10} \vec{S}_{u} - N\vec{S}_{u}^{2}}{N - 1}} = \sqrt{\frac{137373 - 10(117.2)^{2}}{9}} = 1.27 \text{ kpsi}$$
 Ans.

2-16 For the data given, converting H_B to S_u using Eq. (2-22)

H_{B}	S_u (kpsi)	S_u^2 (kpsi)
230	40.4	1632.16
232	40.86	1669.54
232	40.86	1669.54
234	41.32	1707.342
235	41.55	1726.403
235	41.55	1726.403
235	41.55	1726.403
236	41.78	1745.568
236	41.78	1745.568
239	42.47	1803.701
ΣS_u	= 414.12	$ES_u^2 = 17152.63$

Eq. (1-6)
$$\overline{S} = \sum_{\underline{S}_{\underline{u}}} \underline{S}_{\underline{u}} = \underbrace{\frac{414.12}{12}}_{} = 41.4 \qquad Ans.$$
kpsi
$$N \qquad 10$$
Eq. (1-7),
$$S = \sqrt{\frac{\sum_{i=1}^{10} S_{\underline{u}}^{2} - NS_{\underline{u}}^{2}}{N}}_{} = \sqrt{\frac{17152.63 - 10(41.4)^{2}}{N}}_{} = 1.20 \qquad Ans.$$

2-17 (a) Eq. (2-9)
$$u_R \approx \frac{45.6^2}{2(30)} = 34.7 \text{ in} \cdot \text{lbf} / \text{in}^3$$
 Ans.

(b)
$$A_0 = \pi (0.503^2)/4 = 0.19871 \text{ in}^2$$

<i>P</i>	ΔL	\boldsymbol{A}	$(A_0/A)-1$	∫ σ=	P/A_0
0	0			0	0
1 000	0.0004			0.000 2	5 032.
2 000	0.0006			0.000 3	10 070
3 000	0.0010			0.000 5	15 100
4 000	0.001 3			0.000 65	20 130
7 000	0.002 3			0.001 15	35 230
8 400	0.0028			0.001 4	42 270
8 800	0.003 6			0.0018	44 290
9 200	0.0089			0.004 45	46 300
9 100		0.1963	0.012 28	0.012 28	45 800
13 200		0.1924	0.032 80	0.032 80	66 430
15 200		0.187 5	0.059 79	0.059 79	76 500
17 000		0.1563	0.271 34	0.271 34	85 550
16 400		0.130 7	0.520 35	0.520 35	82 530
14 800		0.107 7	0.845 03	0.845 03	74 480

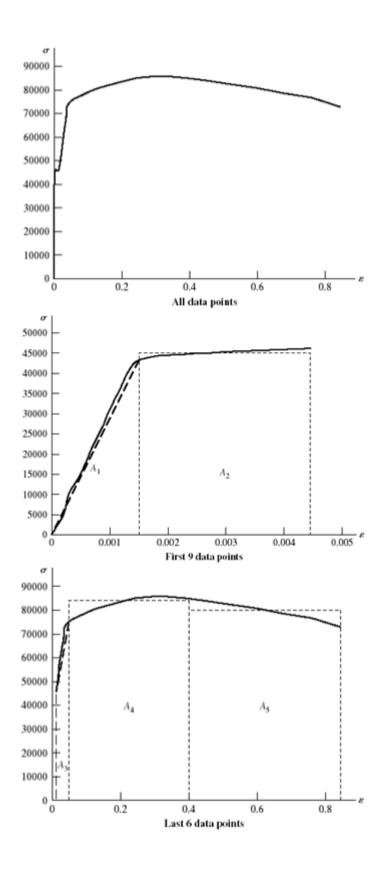
From the figures on the next page,

$$u_T \approx \sum_{i=1}^{5} A_i = \frac{1}{2} (43\ 000)(0.001\ 5) + 45\ 000(0.004\ 45 - 0.001\ 5)$$

$$+ \frac{1}{2} (45\ 000 + 76\ 500)(0.059\ 8 - 0.004\ 45)$$

$$+ 81\ 000(0.4 - 0.059\ 8) + 80\ 000(0.845 - 0.4)$$

$$\approx 66.7 (10^3) \text{in} \cdot \text{lbf/in}^3 \qquad Ans.$$



2-20 Appropriate tables: Young's modulus and Density (Table A-5)1020 HR and CD (Table A-20), 1040 and 4140 (Table A-21), Aluminum (Table A-24), Titanium (Table A-24c)

Appropriate equations:

For diameter,
$$\sigma = \frac{F}{ds} = \frac{F}{ds} = S$$
 \Rightarrow $d = \sqrt{\frac{4F}{ds}}$

$$A \left(\frac{\pi}{4}\right)d^{2} \qquad \qquad \pi S_{y}$$

Weight/length = ρA , Cost/length = $\frac{\sin = (\frac{\sinh \theta}{\ln \theta})}{\ln \theta}$ Weight/length, Deflection/length = $\frac{\delta}{L} = \frac{F}{AE}$

With $F = 100 \text{ kips} = 100(10^3) \text{ lbf}$,

Material units	Young's Modulus Mpsi	Density lbf/in ³	Yield Strength kpsi	Cost/lbf \$/lbf	Diameter in	Weight/ length lbf/in	Cost/ length \$/in	Deflection/ length in/in
1020 110	20	0.202	20	0.27	2.0.00	0.0400	0.25	1 0005 02
1020 HR	30	0.282	30	0.27		0.9400	0.25	
1020 CD	30	0.282	57	0.30	1.495	0.4947	0.15	1.900E-03
1040	30	0.282	80	0.35	1.262	0.3525	0.12	2.667E-03
4140	30	0.282	165	0.80	0.878	0.1709	0.14	5.500E-03
Al	10.4	0.098	50	1.10	1.596	0.1960	0.22	4.808E-03
Ti	16.5	0.16	120	7.00	1.030	0.1333	\$0.93	7.273E-03

The selected materials with minimum values are shaded in the table above.

Ans.

2-21 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three would favor steel, cast iron, or maybe a less common ferrous material. The expectation would likely be hot-rolled steel. If it is desired to confirm this, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 7.95 lbf, the unit weight is determined to be

$$w = \frac{W}{Al} = \frac{7.95 \text{ lbf}}{\left[\pi (1 \text{ in})^2 / 4\right] (36 \text{ in})} = 0.281 \text{ lbf/in}^3$$

which agrees well with the unit weight of 0.282 lbf/in³ reported in Table A-5 for carbon steel. Nickel steel and stainless steel have similar unit weights, but surface finish and darker coloring do not favor their selection. To select a likely specification from Table A-20, perform a Brinell hardness test, then use Eq. (2-21) to estimate an ultimate strength Shigley's MED, 10th edition

Chapter 2 Solutions, Page 13/22

of $S_u = 0.5H_B = 0.5(200) = 100$ kpsi. Assuming the material is hot-rolled due to the rough surface finish, appropriate choices from Table A-20 would be one of the higher carbon steels, such as hot-rolled AISI 1050, 1060, or 1080. Ans.

2-22 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three favor a softer, non-ferrous material like aluminum. If it is desired to confirm this, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 2.90 lbf, the unit weight is determined to be

$$w = \frac{W}{Al} = \frac{2.9 \text{ lbf}}{\left[\pi (1 \text{ in})^2 / 4\right] (36 \text{ in})} = 0.103 \text{ lbf/in}^3$$

which agrees reasonably well with the unit weight of 0.098 lbf/in^3 reported in Table A-5 for aluminum. No other materials come close to this unit weight, so the material is likely aluminum. *Ans.*

2-23 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three favor a softer, non-ferrous copper-based material such as copper, brass, or bronze. To further distinguish the material, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 9 lbf, the unit weight is determined to be

$$w = \frac{W}{Al} = \frac{9.0 \text{ lbf}}{[\pi (1 \text{ in})^2 / 4](36 \text{ in})} = 0.318 \text{ lbf/in}^3$$

which agrees reasonably well with the unit weight of 0.322 lbf/in³ reported in Table A-5 for copper. Brass is not far off (0.309 lbf/in³), so the deflection test could be used to gain additional insight. From the measured deflection and utilizing the deflection equation for an end-loaded cantilever beam from Table A-9, Young's modulus is determined to be

$$E = \frac{Fl^3}{3Iy} = \frac{100(24)^3}{3(\pi (1)^4/64)(17/32)} = 17.7 \text{ Mpsi}$$

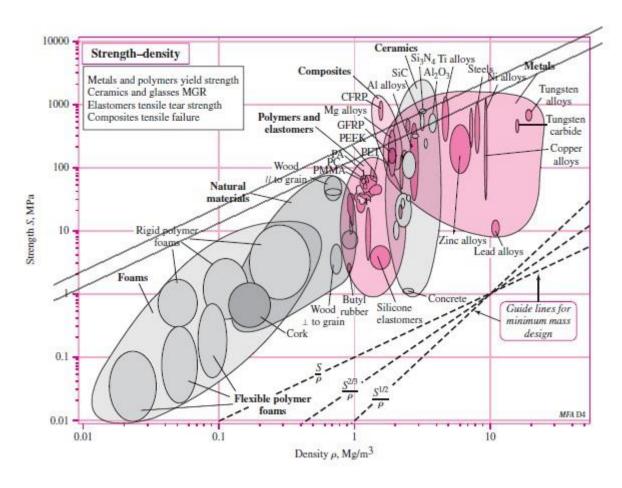
which agrees better with the modulus for copper (17.2 Mpsi) than with brass (15.4 Mpsi). The conclusion is that the material is likely copper. *Ans*.

2-24 and 2-25 These problems are for student research. No standard solutions are provided.

For mass,
$$m = Al\rho = (F/S) l\rho$$

Thus,
$$f_3(M) = \rho / S$$
, and maximize S/ρ ($\beta = 1$)

In Fig. (2-19), draw lines parallel to S/ρ



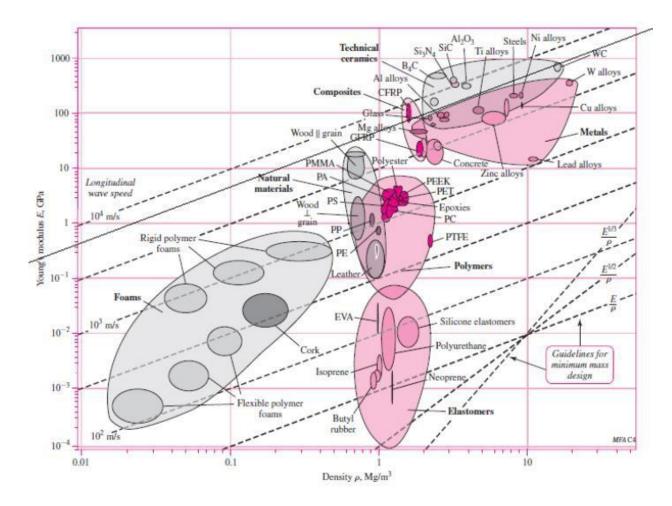
The higher strength aluminum alloys have the greatest potential, as determined by comparing each material's bubble to the S/ρ guidelines. Ans.

2-27 For stiffness,
$$k = AE/l \implies A = kl/E$$

For mass, $m = Al\rho = (kl/E) l\rho = kl^2 \rho /E$

Thus,
$$f_3(M) = \rho / E$$
, and maximize E/ρ ($\beta = 1$)

In Fig. (2-16), draw lines parallel to E/ρ



From the list of materials given, **tungsten carbide** (WC) is best, closely followed by aluminum alloys. They are close enough that other factors, like cost or availability, would likely dictate the best choice. Polycarbonate polymer is clearly not a good choice compared to the other candidate materials. *Ans*.

2-28 For strength,

$$\sigma = Fl/Z = S \tag{1}$$

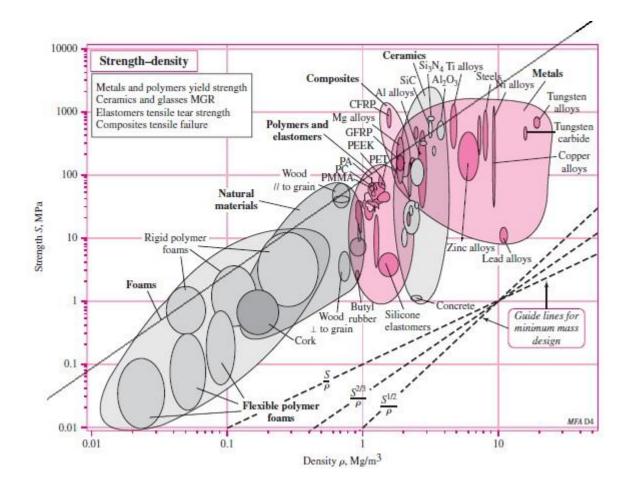
where Fl is the bending moment and Z is the section modulus [see Eq. (3-26b), p. 104]. The section modulus is strictly a function of the dimensions of the cross section and has the units in³ (ips) or m³ (SI). Thus, for a given cross section, $Z = C(A)^{3/2}$, where C is a number. For example, for a circular cross section, $C = \left(4\sqrt{\pi}\right)^{-1}$. Then, for strength, Eq. (1) is

$$\frac{Fl}{CA^{3/2}} = S \qquad \Rightarrow \qquad A = \left(\frac{Fl}{CS}\right)^{2/3} \tag{2}$$

For mass,
$$m = Al\rho = \left(\frac{Fl}{CS}\right)^{2/3} l\rho = \left(\frac{F}{C}\right)^{2/3} l^{5/3} \left(\frac{\rho}{C}\right)$$

Thus, $f_3(M) = \rho / S^{2/3}$, and maximize $S^{2/3} / \rho$ ($\beta = 2/3$)

In Fig. (2-19), draw lines parallel to $S^{2/3}/\rho$



From the list of materials given, a higher strength **aluminum alloy** has the greatest potential, followed closely by high carbon heat-treated steel. Tungsten carbide is clearly not a good choice compared to the other candidate materials. .*Ans*.

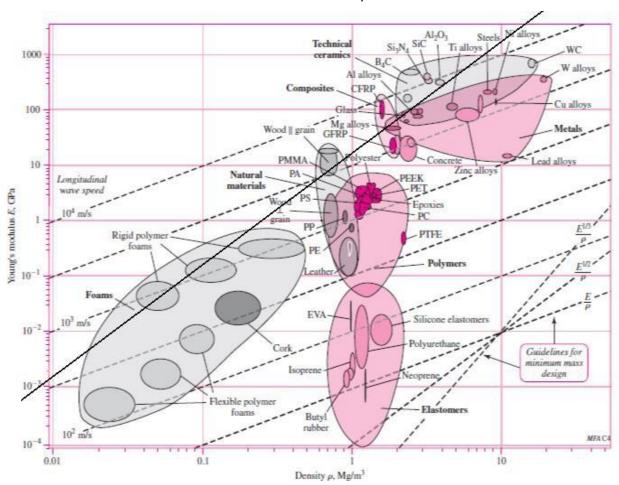
2-29 Eq. (2-26), p. 77, applies to a circular cross section. However, for any cross section *shape* it can be shown that $I = CA^2$, where C is a constant. For example, consider a rectangular section of height h and width b, where for a given scaled shape, h = cb, where c is a constant. The moment of inertia is $I = bh^3/12$, and the area is A = bh. Then $I = h(bh^2)/12 = cb (bh^2)/12 = (c/12)(bh)^2 = CA^2$, where C = c/12 (a constant). Thus, Eq. (2-27) becomes

$$A = \left(\frac{kl^3}{3CE}\right)^{1/2}$$
becomes

and Eq. (2-29) becomes

$$m = Al\rho = \left(\frac{k}{3C}\right)^{1/2} l^{5/2} \left(\frac{\rho}{E^{1/2}}\right)$$

 $m = Al\rho = \left(\frac{k}{3C}\right)^{1/2} l^{5/2} \left(\frac{\rho}{E^{1/2}}\right)$ Thus, minimize $f_3(M) = \frac{\rho}{E^{1/2}}$, or maximize $M = \frac{E^{1/2}}{\rho}$. From Fig. (2-16)



From the list of materials given, aluminum alloys are clearly the best followed by steels and tungsten carbide. Polycarbonate polymer is not a good choice compared to the other candidate materials. Ans.

2-30 For stiffness,
$$k = AE/l \implies A = kl/E$$

For mass, $m = Al\rho = (kl/E) l\rho = kl^2 \rho /E$

So, $f_3(M) = \rho / E$, and maximize E/ρ . Thus, $\beta = 1$. **2-31** For strength, $\sigma = F/A = S \implies A = F/S$

For mass, $m = Al\rho = (F/S) l\rho$

So, $f_3(M) = \rho / S$, and maximize S/ρ . Thus, $\beta = 1$. Ans.

2-32 Eq. (2-26), p. 77, applies to a circular cross section. However, for any cross section shape it can be shown that $I = CA^2$, where C is a constant. For the circular cross section (see p.77), $C = (4\pi)^{-1}$. Another example, consider a rectangular section of height h and width b, where for a given scaled shape, h = cb, where c is a constant. The moment of inertia is $I = bh^3/12$, and the area is A = bh. Then $I = h(bh^2)/12 = cb (bh^2)/12 = (c/12)(bh)^2 = CA^2$, where C = c/12, a constant.

Thus, Eq. (2-27) becomes

$$A = \left(\frac{kl^3}{3CE}\right)^{1/2}$$

and Eq. (2-29) becomes

$$m = Al\rho = \left(\frac{k}{3C}\right)^{1/2} l^{5/2} \left(\frac{\rho}{E^{1/2}}\right)$$

 $m = Al \rho = \left(\frac{k}{3C}\right)^{1/2} l^{5/2} \left(\frac{\rho}{E^{1/2}}\right)$ So, minimize $f_3(M) = \frac{\rho}{E^{1/2}}$, or maximize $M = \frac{E^{1/2}}{\rho}$. Thus, $\beta = 1/2$. Ans.

2-33 For strength,

$$\sigma = Fl/Z = S \tag{1}$$

where Fl is the bending moment and Z is the section modulus [see Eq. (3-26b), p. 104]. The section modulus is strictly a function of the dimensions of the cross section and has the units in³ (ips) or m³ (SI). The area of the cross section has the units in² or m². Thus, for a given cross section, $Z = C(A)^{3/2}$, where C is a number. For example, for a circular cross

section, $Z = \pi d^3/(32)$ and the area is $A = \pi d^2/4$. This leads to $C = \left(4\sqrt{\pi}\right)^{-1}$. So, with $Z = C(A)^{3/2}$, for strength, Eq. (1) is

$$\frac{Fl}{CA^{3/2}} = S \qquad \Rightarrow \qquad A = \left(\frac{Fl}{CS}\right)^{2/3} \tag{2}$$

For mass,

$$m = Al\rho = \left(\frac{Fl}{CS}\right)^{2/3} l\rho = \left(\frac{F}{C}\right)^{2/3} l^{5/3} \left(\frac{\rho}{S^{2/3}}\right)$$

So, $f_3(M) = \rho / S^{2/3}$, and maximize $S^{2/3}/\rho$. Thus, $\beta = 2/3$.

2-34 For stiffness, k=AE/l, or, A=kl/E.

Thus, $m = \rho A l = \rho (kl/E) l = kl^2 \rho / E$. Then, $M = E / \rho$ and $\beta = 1$.

From Fig. 2-16, lines parallel to E/ρ for ductile materials include steel, titanium, molybdenum, aluminum alloys, and composites.

For strength, S = F/A, or, A = F/S.

Thus, $m = \rho A l = \rho F/S l = F l \rho / S$. Then, $M = S/\rho$ and $\beta = 1$.

From Fig. 2-19, lines parallel to S/ρ give for ductile materials, steel, aluminum alloys, nickel alloys, titanium, and composites.

Common to both stiffness and strength are steel, titanium, aluminum alloys, and composites. *Ans*.

2-35 See Prob. 1-13 solution for $\bar{x} = 122.9$ kcycles and $s_x = 30.3$ kcycles. Also, in that solution

it is observed that the number of instances less than 115 kcycles predicted by the normal distribution is 27; whereas, the data indicates the number to be 31.

From Eq. (1-4), the probability density function (PDF), with $\mu = \overline{x}$ and $\hat{\sigma} = s_x$, is

$$f(x) = \frac{1}{\exp\left[-\frac{1}{2}\left(\frac{x-\overline{x}}{x-\overline{x}}\right)^2\right]} = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-122.9}{x-122.9}\right)^2\right]}$$

$$s_x \sqrt{2\pi} \qquad 2\left(-s_x\right) \qquad 30.3 \quad 2\pi \qquad 2\left(-30.3\right)$$
(1)

The discrete PDF is given by f/(Nw), where N = 69 and w = 10 kcycles. From the Eq. (1) and the data of Prob. 1-13, the following plots are obtained.

Range midpoint (kcycles)	Frequency	Observed PDF	Normal PDF
х	f	f/(Nw)	f(x)
60	2	0.002898551	0.001526493
70	1	0.001449275	0.002868043
80	3	0.004347826	0.004832507
90	5	0.007246377	0.007302224
100	8	0.011594203	0.009895407
110	12	0.017391304	0.012025636
120	6	0.008695652	0.013106245
130	10	0.014492754	0.012809861
140	8	0.011594203	0.011228104
150	5	0.007246377	0.008826008
160	2	0.002898551	0.006221829
170	3	0.004347826	0.003933396
180	2	0.002898551	0.002230043
190	1	0.001449275	0.001133847
200	0	0	0.0001133047
210	1	0.001449275	0.000317001

Plots of the PDF's are shown below.

