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These solutions represent a preliminary  version of the Instructors’ Solutions Manual  (ISM). 

The book has a total  of 350 problems,  so it is possible and even likely that at this preliminary 

stage  of preparing  the  ISM there  are  some omissions and  errors  in the  draft  solutions.   It  is 

also possible that an occasional problem  in the  book is now slightly  different from an earlier 

version for which the solution here was generated.  It is therefore  important for an instructor to 

carefully review the solutions  to problems  of interest, and to modify them  as needed.  We will, 

from time to time, update  these solutions  with clarifications,  elaborations, or corrections. 
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Fisher  Jepsen,  Tarek  Lahlou, Catherine Medlock, Lucas Nissenbaum,  Ehimwenma  Nosakhare, 
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Solution 2.1 
 
 

(a)  Recall that the phase delay and group delay of a frequency response H(jω) are respectively 

defined by 
 

∠H(jω)                                    d
rp(ω) = − and     r  (ω) =       ∠   H(jω) 

ω                                                  dω
 

where  ∠H(jω)  may  contain  discontinuities of size ±π in  order  to  compensate  for the 

non-negativity of the magnitude function  |H(jω)| while the function  ∠AH(jω) does not. 

For  the  frequency  response  H(jω) = 3e-j3k  we have  that A(ω) = |H(jω)| = 3 for all ω  

hence ∠AH(jω)  = ∠H(jω)  = −3ω.   Plugging  this  into  the  expressions  above  yields rp(ω) 

= rg (ω) = 3 for all ω. 

✗            ✔ 

TRUE                        FALSE 
✖            ✕ 

 

(b)  This  statement is true  by the  combined  definition  of eigenfunction  and  time-invariance 

properties. 

✗            ✔ 

TRUE                        FALSE 
✖            ✕ 

 
K 

(c)  Let  a(t) be a linear  combination of K  > 1 eigenfunctions,  i.e. a(t) = 
X 

akejk(-,  and 
k=1

observe that  
 
 

y(t)   = 

 
Z ∞                  K 

h(r ) 
X 

akejk(t--r )dr 
-∞        k=1 

K                      Z ∞

=  
X 

akejk(-
 

k=1 

K 

h(r )e-jk(r dr 
-∞

=  
X 

akH(ejk( 

)ejk(-
 

k=1 
 

which is in general not equal to a single scalar times a(t). 

✗            ✔ 

TRUE                        FALSE 
✖            ✕ 

 

For the remaining  parts,  we refer to the system  characterized by:
 

 

h[n] = 

 
 

2 
  n 

3 

 
2 e-j9 

u[n] − δ[n]       H(ej9) =      3                 . 
1 − 2 e-

j9
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(d)  The system  is causal since h[n] = 0 for all n < 0. 

✗            ✔ 

TRUE                        FALSE 
✖            ✕ 

 

(e)  The system  is BIBO stable  since the impulse response is absolutely  summable,  i.e. 
∞ X 

 
n=0 

 

|h[n]| < ∞.

 

This  result  can also be established  by the  fact that the  ROC  of the  z-transform of h[n] 

includes the unit  circle. We may conclude this since we know that the Fourier  transform 

H(ej9) exists. 

✗            ✔ 

TRUE                        FALSE 
✖            ✕ 

 

(f)  The  input  a[n] = (−1)n  for all n is an eigenfunction  of a DT  LTI system.  This  may be 

more visually  apparent by rewriting  a[n]  as a[n]  = ejπn   for all n.   Therefore,  from  (b) 

we are guaranteed that the  output is purely  a (possibly  complex)  scalar  times  a[n]  and 

therefore  does not take  the form

 
y[n] = K1(−1)n + 

K2 
 

 

since K2  is expressly forbidden  to be zero. 

 
 

2 
  n-1 

3 

 

 

u[n − 1]

✗            ✔ 

TRUE                        FALSE 
✖            ✕ 
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Solution 2.2  

 

3 
n 

n 

− 

3  
n 

2n 

3 

3 

j 
3 

j 
3 

 

(a)  This part  deals with an input  signal a[n] = cos 
7 

r n
, 

= 1 ej n      

+
 

1 e-j 
3 

n.

3              2                  2 
 

The output is given by (ii) y[n] = 2a[n − 1]. 
 

A short  derivation reveals this: 
 

1          n        n        1             n           n

y[n]   = H 
,

ej 
3 

, 
ej 

3 
n 

+ 
2 

H 
,

e-j 
3 

, 
e-j 

3 
n 

2

1 
,   

 n        n

 

1 
,   

n         n

=      2e-j 
3 

, 
ej 

3 
n + 

2                             2 
n                      n

 

2ej 
3 

, 
e-j 

3 
n

=  ej 
3 
tn-1) + e-j 

3 
tn-

1) 

=  2 cos 
,n 

(n     1)
,

 
3 

=  2a[n − 
1] 

 

(b)  This part  deals with an input  signal a[n] = s[n] cos 
7 

2r n
, 

= 1 s[n]ej 2n      

+
 

 

 
 
 
 
 
 
1 s[n]e 

 

 
 
 
 
 
 
-j  

3  
n.

3               2                             2 

The output is approximately given by (ii) y[n] = 2s[n] cos 
7 

2r (n − 1)
,
. 

 

Assume s[n] is sufficiently bandlimited so that we may simply apply H(ej9) to the complex 

exponentials.  We do not  need to worry about  applying  a group  delay shift to s[n] since 

the phase curve has no slope at Ω = ±2r . 
 

y[n]   ≈ 
1 

s[n]H 
2 

, 
2n 
, 

e  3 

 

ej 2n n 1 
+    
s[n]H 

2 

,
e- 

2n 
, 

3 e-j 2n n

1                 2n         2n          1
 

2n            2n

=    s[n] 
,

2e-j  
3   

, 
ej  

3  
n 

+ 
2 

s[n] 
,

2ej  
3   

, 
e-j  

3  
n

 
2

2n                                  2n
 

=  s[n]ej  
3  

tn-1) + s[n]e-j  
3  

tn-1)

 

=  2s[n] cos 

 
2n 

3 

 

(n − 1)
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Solution 2.4  

 

|            |      
 ω   + 1  

 

− 

 

We are given the squared  magnitude frequency response of a filter H(jω) to be 
 

2 

H(jω) 2 =              . 
ω2 + 
100 

 

Making the substitution ω2  → −s2  gives 
 

2
 

H(s)H(   s)    =    
 −s + 1   
−s2 + 

100 

=  
  (−s + 1) (s 

+ 1)   
. 

(−s + 10) (s 
+ 10) 

 

We now factor the terms  above in order to identify  H(s). Since the system  is both  causal and 

stable,  as well as has a causal and stable  inverse, then the filters poles and zeros must lie in the 

left half plane.  Therefore,

 
H(s)  = K 

 

s + 1 

s + 10
 

where K  may be either  plus or minus one.  Substituting s = jω gives 
 

jω + 
1

H(jω) =  

jω + 10
 

where we have taken  K = 1 so that H(jω) > 0 at ω = 0. 
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Solution 2.4  

 

Ω 

Ω 

a 

a          a 

3 

3 

Ω 

Ω 

 

We are given a DT LTI system with impulse response h[n] - δ[n] − δ[n − 

1]. a  We write the frequency response of h[n] as 

H 
7
ej9

,    
-  1 − e-j9

-  e-j 
2   

,
ej 2   − e-j 

2  

,

 

-  2je-j 
2   sin 

  
Ω 
  

2
 

-  2e-j( Ω
 

a               

 
Ω 
 

 
sin

2 
- 

2 ) 
2 

where we use the  identity j - ej 
2 .  Therefore  Θ(Ω) - −9  + 

n 
for −n  ≤ Ω < n.  The

2         2 
group delay of this system  is then  given by 

 

d         Ω     n 
      

1
rg (Ω) - −

dΩ 
− 

2 
+ 

2    
- 

2

 

for −n ≤ Ω < n. The phase delay must  take  into account the fact that the amplitude 

is negative  for n < Ω < 0, hence 
    

1         n

rp(Ω) -
 2 

− 
 29 

,   Ω ∈ [0, n)     
.

1         n
 

2 
+ 

29 
,   Ω ∈ [−n, 

0) 

(b)  We have that H 
,

ej a 
, 

- 1
  

e-j     - ej 
and likewise that H 

,
e-j a 

, 
- e-j a 

.
3 

 
We can now write 

 
y[n]   ≈ 

−   3                  

3 
 

 
 

1 
q[n]H 

,
ej a 

,
 

3 

2 

 
 
 
 

ej a n + 
 1 

q[n]H
 

3 

2 

 
 

 
,

e-j a 
,

 
3 

3                           3 
 

 
 
 

e-j a n 
3

 

-  q[n] cos 

 
n(n − η0) 

 
 

3

 

where η0 - rp( n ) - −1.  More generally,  η0 - −1 + 6k for any integer k. 
 

Loosely speaking, q[n] is related  to p[n] by q[n] - p“[n− rg ( 
n )]” where the quotes indicate 

further  clarification  is needed.  The  half-sample  delay of the  envelope p[n] by the  group 
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Solution 2.5 

 

 

2 

2 

delay  is to  be interpreted as if there  was an  underlying  appropriately bandlimited CT 

signal  p(t) satisfying  p[n] - p(nT ) for some arbitrary sampling  interval  T , say  T  - 1
without  loss of generality,  which then  got shifted  by T /2 - 1

 and  then  resampled,  i.e.,

q[n] - p(n −  1 ). 
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Xts) 

2 

τ 
  
(ω

) 
|H

(j
ω

)|
 

H
(j

ω
) 

g
 

 

Consider  the causal LTI system  characterized by the differential  equation 
 

dy(t) 
+ 2y(t) - 

a(t). dt 
 

(a)  Taking  Laplace transforms  of both  sides gives 
 

 

Solving for H(s)  - 
Y ts)

 

Y (s)(s  + 2) - X(s). 
 
and substituting s - jω yields 
 

1
H(jω) - . 

jω + 
2

 

The magnitude and phase responses of H(jω) are depicted  with the result  of (b) below. 
 

(b)  Recall that the phase response of a system  corresponds  to the contributions of the zeros 

minus the contributions from the poles. Therefore, from (a) we conclude that ∠AH(jω) - 

− tan-1 
7 

k 
,
.  The group delay is then  computed  by 

 

 d 
rg (ω)    -  −

dω
 

2 

, 
− 
tan-

 

1 
,ω ,, 

2

- 

 
and is depicted  in the figure below. 

 

ω2 + 4

 

 
0.5 

0.4 

0.3 

0.2 

0.1 

0 
-20              -15              -10               -5                0                 5                10               15               

20 
ω 

2 
 

1 
 

0 
 

-1 
 

-2 
-20              -15              -10               -5                0                 5                10               15               

20 
ω 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
-20              -15              -10               -5                0                 5                10               15               

20 
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Solution 2.6  

 

2000 

dk 

2000 

   
   5   

- 

- 

 
(a)  First,  we re-write  the piecewise linear function  ∠H(j@) in terms  of @  as 

 
10a -  5     @,       @ ∈ [0, 4000a] 

∠H(j@) - 
 
-10a -  5     @,    @ ∈ [-4000a, 0)   . 
 
0,                         elsewhere 

 

Computing the group-delay  Tg (@) - -  d  ∠H(j@) then  gives

 
Tg (@) - 

 

2000 
,   @ ∈ [-4000a, 4000a] 

0,        elsewhere
 

where we have chosen the value at DC to maintain continuity. A plot of the group delay 

is shown below. 
 
 

 
  

    

  

 

(b)  In obtaining  an expression for y(t) we make use of the fact the bandwidth of p(t) is small 

as compared  with  wl  and  w2  allowing the  approximations discussed  in Section  2.2.1 to 

hold.  In particular, we make use of the following processing approximations: 
 

h(t) ∗ anp(t - nT ) cos (@lt)    ≈   anp(t - nT - Tg (@l)) cos (@l(t - Tp(@l))) 

h(t) ∗ bnp(t - nT ) cos (@2t)    ≈  bnp(t - nT - Tg (@2)) cos (@2(t - Tp(@2))) . 
 

From  (a)  we compute  the  following values:  Tg (@l)  -  
   5     , Tg (@2)  - 0, Tp(@l)  -  

   5     ,2000 2000

and Tp(@2) - 0 Finally,  we obtain  an expression for the output using the linearity  of the 
channel  as:

 
y(t)   ≈ 

∞ e 
 
n=-∞ 

 
anp(t - nT - Tg (@l)) cos(@l(t - Tp(@l))) t 

∞ e 
 
n=-∞ 

 
bnp(t - nT - Tg (@2)) cos(@2(t - Tp(@2)))

∞ 

-    
e

 

n=-∞ 
∞ 

 
anp 

 

t - nT - 
1  
\

 

400 

1  
\ 

 
cos   @l 

1  
\\

 
t 

400 

  

∞ 

t 
e

 

n=-∞ 

1  
\\ 

 

bnp(t - nT ) cos(@2t) 

 
∞

-    
e

 

n=-∞ 

anp t - nT -  

400 
cos 2a n 1000 t 

400 
t 
e

 

n=-∞ 

bnp(t - nT ) cos((2a n 3000)t)

 
 

mailto:@lt
mailto:@l
mailto:@l
mailto:@l
mailto:@2t
mailto:@2
mailto:@2
mailto:@2
mailto:@l
mailto:@2
mailto:@l
mailto:@2
mailto:@l
mailto:@l
mailto:@l
mailto:@2
mailto:@2
mailto:@2
mailto:@l
mailto:@2t
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Solution 2.8  

 

 

y2[n] 
 

By examining  the magnitude response of the filter, we see that the packet  with the lowest 

frequency  in the  input  is attenuated, while the  intermediate frequency  is only slightly  atten- 

uated  relative  to the  highest  frequency.   The  limits  the  choices to y2[n] and  y4[n].  The  group 

delay of the filter shows that the packet  with the highest  frequency  in the input  is delayed  by 

approximately 75 samples, and the intermediate-frequency packet  is delayed by approximately 

40 samples.  These facts point to y2[n]. 
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Solution 2.9  

 

 

G(z)  has a pole at  z - 0.7 and  a zero at  infinity.  This  system  does not  have a causal  and 

stable  inverse,  because  the  inverse system  must  have a pole at  infinity,  which means  that the 

system cannot  be both  causal and stable. 

Two decompositions  of G(z) into a minimum-phase and an all-pass system are: 
 

1 
GMP (z) - ±

1 - 0.7z-l   
,    |z| > 0.7

 
 

GAP (z) - ±z-l  ,    |z| > 0 . 
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6 

6 

6 

± 

 

(a)  We know  
G(s)G(-s) - A(s)A(-s)M (s)M (-s) - M (s)M (-s) ,

 

so M (s)  must  have the left-half-plane  poles and zeros of 

(s - 2)(-s - 2) (s - 2)(s t 2)

Thus 

and 

G(s)G(-s) - 
(s t 1)(-s t 1) 

- 
(s t 1)(s - 1) 

.
 

 

 

s t 2 
M (s) - ±

s t 1 
,

A(s) - 
G(s) 

M (s) 
-   

s - 2 
. 

s t 2

 

All-pass A(s) - ± s-2  .                           Minimum-phase M (s) - ± s+2  .
 

(b)  Similarly, 

s+2 s+l

 

H(z)H(z-l) - (1 - 6z)(1 - 6z-l) - B(z)B(z-l)N (z)N (z-l) - N (z)N (z-l) , 
 

so N (z) must  have the  poles and  zeros of this  that are inside the  unit  circle.  The  zeros 

are at  l  and 6, while the poles are at 0 and ∞.  Hence 
 

N (z) - K 
z -  l 

z 

 

- K(1 - 
1 

z-l) , 
6

 

and comparing  with the preceding expression shows K - ±6. Then 
 

H(z)
B(z) -  

N (z) 
- ∓z .

 

All-pass B(z) - ∓z ,                                        Minimum-phase N (z) - ±6(1 -  l z-l) . 
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If we represent the frequency responses using a magnitude and phase decomposition, 
 

Hl(j@) - |Hl(j@)|ej∠H1tjk)  and H2(j@) - |H2(j@)|ej∠H2tjk)  , 
 

then  the cascade of the two systems  has frequency response 
 

H(j@) - Hl(j@)H2(j@) - |Hl(j@)H2(j@)|ej∠H1tjk)+j∠H2tjk). 
 

Therefore,  the group delay of the cascaded  system will be 
 

d                         d 
Tg  - -

d@ 
∠H(j@) - -

d@ 
(∠Hl(j@) t ∠H2(j@)) - Tgl t Tg2.
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y2[n]  is the most likely output signal for the given system. 

The  filter  is a low-pass,  so the  high  frequency  components  are  removed,  so it  cannot  be 

either  yl[n] or y3[n] since they  still contain  the high frequency pulse. 

There should be about  a 40-sample delay of the low-frequency pulse and an 80-sample delay 

of the  mid-frequency  component.    y4[n] has  no delay  for the  mid-frequency  component,   but 

y2[n] has both  of these delays. 
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2 

2 

5 

5 

 

Consider  the DT causal LTI system with frequency response 
 

1   j9
 

H 
7
ej9

, 
- e-j49  1 - 

2 
e     

. 
1 -  1 e-j9 

 

(a)  The magnitude of the cascade of two systems is the product  of the magnitudes and so 

I                I
I            I          I I  I  1 - 1 ej9  I

IH(ej9)I    - Ie-j49I · 
I            2          I

I 
1 - 1 e-j9 

I I       
2            

I
 

I        
1   j9 

I 

-  
I  1 - 2 e     I I                  I I 

1 -  1 e-j9 
I I       

2            
I
 

 

since e-j49  is a linear phase factor and thus  is an all-pass system  with unity  gain.  Con- 

sistent with  Eq. (2.28),  the  remaining  term  is an all-pass term  since it corresponds  to a 

system  function  H(z)  whose pole and  zero are in a conjugate  reciprocal  location.   This

can be seen by replacing  ej9  by z and  observing  the  pole is at  z - 1
 and  the  zero is at

z - 2. Since the frequency response magnitude is constant, evaluating it for any value of 

Ω provides its value for all Ω. Substituting Ω - 0 above gives 

I        I 
I           I          I 1 -  1 I 
IH(ej0)I    -  

I       2 I I 
1 - 1 I I       

2 
I
 

-  1. 

 
(b)  We are given that the group delay of the system 

F 
7
ej9

,    
-  ej39H 

7
ej9

, 

 

is given by
 

 

Tg,F (Ω)   - 

 
3 

          4            . 
4 - cos Ω

Note that F (ej9) only differs from H 
7
ej9

, 
by a linear phase factor.  Moreover, the phases 

 
(and  group delays) of a cascade of systems are the sum of the phases (and  group delays), 

therefore  it follows that the group delay of H 
7
ej9

, 
is the group delay of F (ej9) raised by 

3 for all Ω, i.e. 
 

Tg,H (Ω)   -  Tg,F (Ω) t 3 
3 

-            4            t 3. 
4 - cos Ω 

 

The group delay curve Tg,H (Ω) is plotted below for Ω ∈ [0, a]. 
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(c)  We know the  magnitude of the  input  signal a[n] - cos (0.1n) cos 
7 

n n
, 

is preserved  since 

the  system  is an all-pass  with  unity  gain.   We make  use of the  fact  that the  frequency 

content  of cos(0.1n)  is concentrated (impulses  in fact)  and  that Ω - 0.1 is sufficiently

small as compared  to Ω - n
 so that the approximation

 

y[n] ≈ cos 

,

0.1 
, 

n - Tg,H 

,a ,,, 

3 

 

cos 
,a , 

3 

 

n - Tp,H 

,a ,,, 

3

is reasonable.   Using the  expression  obtained  in (b)  we have that Tg,H 

7 
n 
, 

- 4 and  that

Tp,H 

7 
n 
, 
- 1 therefore  

 
 

y[n] ≈ cos (0.1(n - 4)) cos 

 

 

,
a 

(n     1)
, 

. 
3
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n-/T 

←→ 

 

 
 
 
 
 

Solution 2.13 
 

The input  signal is a(t) - m(t) cos (@0t) where m(t) - 
sintn-/T ) 

. 

 
(a)  Sketch X(j@).  Recall the Fourier  transform pairs 

cos(@0t)     
F T

 a [δ(@ - @0) t δ(@ t @0)]

sin(at/T ) 
F T     

    
T,   @ ∈ [- n ,  n ]

T    T
 

at/T 
←→        

0     elsewhere       
.

 

Utilizing the fact that multiplication of two signals in the time domain corresponds  to the 

convolution  of their  Fourier  transforms  in the frequency domain,  we obtain  the following 

plot for X(j@). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b)  Express  y(t) if H (j@) - e-jkt4·10−6). 
 

We have that the  corresponding  impulse  response  is h(t) - δ(t - 4 · 10-6).  Recall from 

the  sifting  property that a(t) ∗ δ(t - T ) - a(t - T ).   Therefore,  y(t) corresponds  to  a 

time-delay  of the input,  i.e. 
 

y(t)  -   a(t - 4 · 10-6) 

-   m(t - 4 · 10-6) cos(@0(t - 4 · 10-6)). 
 

This  can  equivalently   be  seen by  using  the  approximation found  in  Section  2.2.1.   In 

particular we can express the output as 
 

y(t) ≈ m (t - Tg (@0)) cos (@0 (t - Tp (@0))) . 
 

For an impulse response h(t) corresponding  to a simple delay the phase and group delays 

are the same.  (See Problem  2.1(a) for an example) 
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T 

650 

 

 
 
 
 
 

(c)  We shall make use of the fact that the bandwidth of the sinc function m(t) is rather small 

as compared  to the  frequency  of the  cosine.  Specifically, we are given that @0  - 2600a

while   1 - 75 kHz.   This  validates  the  approximation model discussed  in Section  2.2.1

where  the  effect of the  filter  on the  envelope  is shown  to  be approximately equal  to  a 

time delay by the group delay of the filter at @0  and the effect on the filter on the carrier 

sinusoid is a delay by the phase delay of the system.  This is summarized  as 
 

y(t) ≈ m (t - Tg (@0)) cos (@0 (t - Tp (@0))) . 
 

From Fig. P2.13-2 we find that Tg (@0) ≈ 1µs and Tp(@0) ≈ 4n  -   1     seconds.  Note that it k0          650 

is also sufficient to take  Tp(@) - 0 since when multiplied  by @0  the quantity    1     becomes 

a multiple  of 2a. Therefore,  our final approximation is given by 

y(t) ≈ m 
7
t - 1 · 10-6

, 
cos (@0t) . 

 

 

Note that if we were to use the same approximation in part  (b) the solution  to (b) would 

not change.  This follows from the fact that the phase delay and group delay for a system 

with an impulse response δ(t - ∆) are equal. 
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Solution 2.14 
 
 

(a)  Calculate the group delay of the filter H(ej9) and sketch w[n] and |W (ej9)|. 
 

We  are  told  that the  first  filter  h[n] and  its  associated  frequency  response  H(ej9) are 

purely  real.   From  this  information  we may  conclude  that the  impulse  response  h[n] is 

even symmetric  about  0, i.e.  h[-n]  - h[n]  for all n,  and  consequently  that the  phase 

∠H(ej9) is zero for all Ω ∈ [-a, a). Therefore, 
 

Tg (Ω) - 0,   -a ≤ Ω < a. 

 
The magnitude of H(ej9) is such that the high frequency pulse associated with a2[n-150] 

will be attenuated by -60 dB or more while the low frequency pulse associated  with a1[n] 

is passed  with  no magnitude change.  The  high frequency  pulse has a strength of about 

20 dB and thus will have a magnitude of approximately -40dB in the output.  Therefore, 

the  output w[n] is approximately given  by  w[n] ≈ a1[n] t 0.001a2[n - 150].  A rough 

approximation to this is depicted  in the figure below. 
 

1 
 

0.8 
 

0.6 
 

0.4 
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-0.8 
 

-1 
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40 
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(b)  Sketch what  the output y[n] will look like. 
 

Our sketch of y[n] will be focused on the effect of the all-pass filter on the envelope of the 

waveform a1[n] and  not  the  phase  shift of the  higher frequency  carrier.   To this  end, we 

approximate the group delay at Ω - 0.25a from the phase curve in Figure  P2.14-5 as: 
 

   5a - (-1a)
Tg (0.25a)  ≈   -

-
 

0.3a - 0.2a 
- 40 samples.

 

Therefore,  we conclude  that y[n] ≈ a1[n - 40] as is depicted  in the  figure below.  The 

signal a1[n] is also depicted  for comparison. 
1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

 
y[n] 

              x
1
[n] 
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Solution 2.15  

 

 

The output of filter A for the depicted  input  a[n] is y6[n]. 

 
The  sharp  peaks  in the  Fourier  transform magnitude of the  input  signal  a[n]  corresponding 

to  high frequency  content, i.e. the  peaks  closest to  Ω - a, are  attenuated by approximately 

-100 dB or more and thus the output y[n] of the filter will essentially not contain  signal content 

at  these  frequencies.  The frequency  response  magnitude of the  filter is also such that the  fre- 

quency content associated  with the slow and medium varying pulses pass essentially  untouched 

in magnitude. From  this  analysis  we can eliminate  the  possible outputs yi[n] for i - 1, 3, 4, 5, 

and 7 since they  each contain  the high frequency pulse. 

 
The  group  delay  experienced  by  the  low frequency  pulse  is approximately 220 samples.    If 

we approximate the center  of this pulse at n - 100 then  the pulse should appear  in the output 

centered  at  n - 320. The group delay experienced  by the medium  frequency  pulse is approxi- 

mately  60 samples.  If we approximate the center of this pulse at n - 170 then the pulse should 

appear  in the  output centered  at  n  - 230.   The  only filter  output yi[n] of those  remaining 

consistent with these observations  is y6[n]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20



© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Solution 2.16  

 

 

The impulse responses h1[n] and h2[h] are both zero before time n - 20 which manifests itself 

in the group delay curves as an additive  offset of 20 samples.  We conclude from this observation 

that we must  select between  A and  C.  As compared  with  h2[n], the  impulse  response  h1[n] 

appears  to contain  lower frequency  content  that emerges later,  at  a time  that corresponds  to 

the  associated  group  delay  of 40 in plot  C.   On  the  other  hand,  h2[n] has  higher-frequency 

content that dominates  around  the associated  group delay of 60 in plot A. 

 
(1)  Impulse response h1[n] corresponds  to group delay plot C. 

(2)  Impulse response h2[n] corresponds  to group delay plot A. 

The  remaining  impulse  responses  h3[n] and  h4[h] must  correspond  to choices B  and  D.  The 

impulse response h3[n] ends with a low-frequency component that dominates  around  the associ- 

ated  group delay of 10 in plot D, whereas h4[n] had a higher-frequency  component dominating 

at around  the corresponding  group delay of 10 in plot B. 
 

(3)  Impulse response h3[n] corresponds  to group delay plot D. 

(4)  Impulse response h4[n] corresponds  to group delay plot B. 
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Solution 2.17  

 

 
 

(i)  The impulse response h3(t) corresponds  to group delay plot B. 
 

A feature  of the  impulse  response  h3(t) that clearly  distinguishes  it  from the  others  is 

that it is zero for all t approximately less than  0.01, which manifests  itself in the  group 

delay curve as an additive  offset of 0.01 seconds. 
 

(ii)  The impulse response h4(t) corresponds  to group delay plot A. 
 

The  impulse  response  h4(t) exhibits  stronger  high-frequency  oscillations  that persist  to 

times around  0.06, and these are unaccompanied by low-frequency oscillations.  Contrast 

this  with  h1(t), for which the  low-frequency  and  high-frequency  oscillations  have  equal 

group delays and are both  visible out to time around  0.07. 
 

(iii)  The impulse response h2(t) corresponds  to group delay plot C. 
 

Note  that h2(t), in  contrast to  h4(t), exhibits  stronger  low-frequency  oscillations  that 

persist to times around  0.08, and these are unaccompanied by high-frequency  oscillations. 
 

(iv)  The impulse response h1(t) corresponds  to group delay plot D. 
 

The impulse response h1(t) appears  to have an equal mix of low and high frequencies in 

its impulse response, and they  both  settle  by times around  0.02. 
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Solution 2.18  

 

T 

5 

5 

5 

T 

 

 

(a)  Express Sc(j@) in terms of Sd(ej9) and give a fully labeled sketch of Sc(j@) in the interval 

|@| < 2a n 2000 rad/sec. 
 

Recall from the discussion of periodic sampling  and reconstruction in Chapter 1 that 
    

T Sd(ej9)|9=kT      |@| ≤ m

Sc(j@) -    
0, elsewhere   

.

 

Using this equation  we assemble the sketch of Sc(j@) depicted  below. Notice the periodic 

replications  do not persist in the @ domain due to the interpolating LPF in the reconstruc- 

tion process.  This is relevant since we are asked to produce  the plot for |@| < 2a n 2000 

and  m   - 2a n 1000. 
 
 
 

  

    

       
 

 
(b)  Draw a detailed  sketch of Xc(j@) for |@| < 2a n 2000 rad/sec. 

 

The effect of the sinusoid translates two duplicates  of the spectrum  of Sc(j@) scaled by a 

to the CT equivalent of ±4m . This is depicted  in the figure below. 
 

 
 

 
 

 
 

    

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

           

 
(c)  Give a time-domain expression for ac(t) in terms  of sc(t). 

We are given a[n] - sd[n] cos 
7 

4m n
,
.  Going through  the  D/C converter  with  T - 0.5ms

translates the  DT frequency  Ω - 4m
 to the  CT  frequency  @  - 2a n 800.  The  output of

the D/C  due to sd[n] will be denoted  sc(t). Therefore,  ac(t) - sc(t) cos (1600at). 
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g         n                             p         n 

T 

5 2 

2 

2 

- 

 

 
 
 
 
 

(d)  Determine  an approximate time-domain expression for yc(t) and yd[n] in terms  of sc(t). 
 

In  determining an  expression  for yc(t) we make  the  approximations discussed  in  Sec- 

tion 2.2.1. In particular, we approximate the output of the filter by 
 

yc(t) ≈ sc (t - Tg (2a n 800)) cos (2a n 800 (t - Tp (2a n 800))) . 
 

We justify  these  approximations from the  sketch  in part  (b).   In  particular, the  figure 

illustrates that the  spectrum  of sc(t) is sufficiently concentrated and  small as compared 

with the carriers  frequency of 2a n 800. From the phase and group delay curves in Figure 

P2.18-3 we find that T  (2a   800) - 0.25ms and T  (2a   800) -      1        . Finally,  we obtain 2m×800
the expression 

 

yc(t) ≈ sc 

7
t - 0.25 n 10-3

, 
cos 

 

 
 

2a n 800 

 

1       
\\

 
t -           . 

2a n 800

 

Using the relation  yd[n] - yc(nT ) for T - 0.5ms we obtain  the expression 
 

yd[n]    -  yc(0.5 n 10-3n)
 

-  sc 

 

0.5 n 10-3
 

1 
\\

 
n 

2 

 

cos 

 
4a 

5 

\ 

n - 1   .

 
(e)  The  mapping  from  ad[n] to  yd[n] does  indeed  correspond  to  an  LTI  system  since  no 

aliasing is introduced during  either  of the domain  conversion systems.  Subsequently, the 

frequency response H(ej9) is related  to Hc(j@) via 

H 
7
ej9

, 
- Hc(j@)| 

k= Ω ,       -a ≤ Ω < a.

The  group  delay  of H(ej9)  at  Ω -  4m
 is  1

 sample,  as is illustrated in the  expression

for yd[n]  in part  (d).   We can  develop  a nice interpretation for what  this  means  using 

the  procedure  developed  in this  problem.   Namely,  the  action  of a discrete  time  system 

corresponding  to a half-sample  delay is equivalently  thought of as periodically  sampling

a continuous  time signal every T seconds where the continuous  time signal is a  T
 delayed

version of the bandlimited interpolation (using parameter T ) of the original discrete time 

signal.  Notice that this  interpretation does not  depend  on the  value taken  by T so long 

as the D/C  and C/D  both  use the same value and that the time-shift  is by  T . 
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Solution 2.19 
 

This problem  pertains  to a CT all-pass system  of the form 
 

M    
s t b∗ 

HAP (s) = B 
Y 

      k .                                                            (1) 
s - bk 

k=1 
 

(a)  Draw the pole-zero plot for HAP (s)  with M = 1 and bk real. 
 

The  pole-zero plot  for HAP (s)  is depicted  below.  Consistent with  the  convention  estab- 

lished by Eq. (1),  the  pole is found in the  s-plane  at  the  value s = bk  while the  zero is 

found at  s = -b∗ .  In our illustration we have selected b < 0 hence the pole is contained

within  the strict  left half plane.  Further, since b is chosen to be real we have that b∗ = b.

 
 
 
 
 
 
 
 
 
 
 

 
(b)  In this part  we let bk be complex valued.  However, in order to ensure the system HAP (s) 

is both  causal and stable,  we require  Re(b) < 0, as is discussed in (a).  We now argue the 

fact that the group delay of such a system is always positive at every frequency. 
 

To  see this  geometrically,  consider  the  example  pole-zero plot  in the  figure below with 

M  = 1 and  b = -1 t j. Recall that the  frequency  response  phase  at  any value @  is the 

angle of the  vector  from the  zero to s = j@  (shown with  a dotted  line) minus  the  angle 

of the  vector  from the  pole to s = j@  (also shown with  a dotted  line).  The group  delay 

corresponds  to the negative  rate  of change of these vectors as we move @.  Since the pole 

is always in the left half plane and the zero is in the right half plane it is straightforward 

to see that the  contribution of each is positive,  hence the  overall group delay is positive 

at all frequencies. 
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(c)  For  a general stable,  causal  CT  all-pass system  of the  form of Eq. (1), we can conclude 

that the  group  delay  is always  positive  for each frequency.   From  (b)  we conclude  that 

for M = 1 this  is true.   To extend  our reasoning  to M > 1 we rely upon the  linearity  of 

the  phase response and  the  derivative  required  to compute  the  group delay.  Recall that 

the phase response for M > 0 is the sum of the phase responses of each factor  described 

in (b).   Since the  derivative  is also a linear  operator, the  group  delay is the  sum of the 

group delays each factor in Eq. (1), each satisfying  (b).  Finally,  since the sum of positive 

numbers  is necessarily  a positive  number  we conclude that the  group  delay of a causal, 

stable,  all-pass CT system  is positive everywhere. 
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Solution 2.20 

t2 

We are given an input  signal a(t) of the form a(t) = s(t) cos(@0t) where s(t) = e
- 

T 2 .  The 

figure below sketches  the  Fourier  transform X(j@)  of the signal a(t).  The  width  of S(j@)  is 

over exaggerated  for clarity;  the  frequency  @0   = 4a n 1014  is about  108  times  greater  than 
m                                  6

 

T   
= a n 10 .   We  remark  that the  signal  s(t) is a  Gaussian  function  which  has  a  Fourier 

transform which is also a Gaussian  function. 
 

 

 
 
 
 
 
 
 
 
 

We now make use of the fact that the response of the optical fiber to the input  signal cos(@t) 

is given  by  10-αtk)L cos (@t - β(@)L).   Referring  to  the  input  signal  a(t), the  bandwidth of 

envelope  signal  s(t) is sufficiently small as compared  to  @0  so that the  output of the  optical 

fiber is approximated by 
 

y(t) = s(t - Tg (@0))10-αtk0)L cos(@0t - β(@0)L) 
 

where Tg (@0) is the group delay of the fiber at @0.  We now justify this formula.  The standard 

approximation formula when the frequency response is all-pass (Eq. (2.23a) or Eq. (2.23b)),  is 
 

y(t) = s(t - Tg (@0)) cos (@0 (t - Tp(@0))) . 

Comparing  these two equations  we see that β(@0)L plays the  role of @0Tp(@0).  Using the  fact 

that Tp(@0) = -
∠HLtjk0)  

we conclude that 
 

∠HL(j@0) = -β(@0)L 
 

Moreover,  the  function  β(@0)  is essentially  linear  over  the frequency  band  of interest, as  is

depicted  by the  curve  
 dβtk)

 in Figure  P2.20-2.   So, from the  perspective  of our  input  signal

the optical  fiber phase response is linear hence the fiber acts as a simple delay with magnitude 

10-αtk)L.  With  this approximation we compute  the group delay as Tg (@0) = Tp(@0) since linear 

phase systems have equal phase and group delays.  (See problem 2.1(a) for an example of this). 

Therefore we have that Tg (@0) = 
βtk0)L 

. We also obtain  the values a(@0) = 0.1 and β(@0) = 109
 

from Figure P2.20-2 and are given that L = 10 and T = 10-6.  Finally,  we write the output as:
 

y(t)   =   s 
1      

\
 

t - 
4a n 104 

 

10-10α(4m×1014) 
 
cos 

7
4a n 1014

 

 
t - β 

7
4a n 10 14

, 10
,

 

=  0.1e
-10

 

 
12
 

        1       
  2 

- 
4a×104 cos 

7
4a n 1014t - 1010

, 
. 

 

 
,     ,

Note that the output is equivalently  expressed as y(t) = a(t) ∗ 0.1δ t       1          . 
4m×104
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Problem 2.1 
 

 

(i)    (a)  State  variable  choice: 

A natural choice is q1(t) = position  y(t), and q2(t) = velocity ẏ(t). 

State-space model (state evolution  equations  and instantaneous output equation): 
 

 
q̇1(t)    =  q2(t) 

q̇2(t)    =  −q3(t) + x(t) 
 

y(t)  =   q1(t) 
 

(b)  Equilibrium  values of state  variables  when x(t) ≡ 8: 

Set  q1(t)  ≡  q1  and  q2(t)  ≡  q2, and  accordingly  set 

preceding state-space model.  This immediately  yields 

 
 
 
 

q̇1(t)  ≡  0, 

 
 
 
 

q̇2(t)  ≡  0 in  the

 

q1 = (8)1/3  = 2 ,                          q2 = 0 . 
 

(c)  Linearized  state-space model at the equilibrium  above: 

The key step here is to linearize the nonlinear  term y3(t) or q3(t).  Note that d(y3) =

3y2 dy, so with  
q1(t) = q1(t) − q1

(and  similar  notation for all the  other  perturbations from equilibrium)  we get,  for 

small perturbations,

q3                3
 

2   q1 

 

The linearized model is then 

1 (t) = q1 + (3q1) ­ .

 

q̇ 
1

 

q2(t)­ (t)    =    ­      

q̇ 
2                                

2
  

q1 + x(t) = −12 q1 + x(t)

­ (t)  =  −(3q1) ­   ­          ­   ­ 
 

 

­        q1(t)

mailto:lbarnes@mit.edu
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2 

 

 

dt 

1 

1 

in 

 
 
 
 
 
 
 

 
(ii)  Now we are supposing  that the given system is described  by 

d2y(t)          3 

dt2      
= by

 

 

(t) + 
dx(t) 

+ x(t) . 
dt

 

(a)  The obvious state  variables  chosen in (i) will not work as there  is no way to account 

for the  
dx(t) 

term.  Note that we cannot  have differentials in the functions fi because 

q̇ (t) = f (q(t), x(t)) must  fit the standard form for a system of first order ODE’s. 

 
The choice q1(t) = y(t) and q2(t) = ẏ(t) b x(t) gives 

 
q̇1(t)    =  q2(t) + x(t) 

q̇2(t)    =  bq3(t) + x(t) 
 
 

y(t)  =   q1(t) . 

 
(b)  Setting  q̇1(t) = q̇2(t) = 0 and x(t) ≡ 8 we get q1 = 2 and q2 = b8 .

(c)  Again, the only nonlinear  term  is bq3(t) and q1 has not changed.  Thus  we have

 

q̇ 
1

  

q2(t) + ­ t)
­ (t)  =  ­ 

q̇ 
2

 
x( 

2   q1 + x(t) = b12 q1 + x(t)
­ (t)  =  b(3q1) ­   ­          ­   ­ 

 

 

­        q1(t) . 
 
 

Proalem 2.2 
 

Using the given instantaneous output equation,  we can write 
 

x(t) = bd
-1cT q(t) + d-1y(t) 

 

which will become the instantaneous output equation  for the inverse system.  Substituting the 

above equation  in the given state  evolution  equation,  we obtain 

q̇ (t) = Aq(t) + a
 
bd

-1cT q(t) + d-1y(t)
  

= 
 
A b ad-1cT 

, 
q(t) + ad-1y(t) , 

 
which is now a state  evolution equation  driven by y(t) rather than  x(t), but with the same state 

vector q(t) as before.  Thus, 

Ain = A b ad-1cT ,  ain = ad-1,  cT
 = bd

-1cT ,  din  = d-1  .
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dt 

 
 
 
 
 
 
 

 
Proalem 2.3 

 

 

(a)  Assuming temperature is held constant, the reaction rates kf , kr, and kc are also constant. 

In this  case the  model  is time-invariant.  However,  the  model is nonlinear  because  the 

q1(t)q2(t) terms  ensure that some of the  q̇i(t) cannot  be written  as a linear combination 

of the state  variables  and the input. 
 

(b)  First  we look at the rate  of change   d (q2(t) + q3(t)) = q̇2(t) + q̇3(t). 
 

 
 

q̇2(t) + q̇3(t)    =  bkf q1(t)q2(t) + (kr + kc)q3(t) 

+kf q1(t)q2(t) b (kr + kc)q3(t) 

=  0 . 

 
This means that q2(t) + q3(t) will stay  constant at its initial  value q2(0) + q3(0). 

 

(c)  Now we are assuming that x(t) ≡ 0 and we would like to find the equilibrium  values q̄i  in 

terms  of q̄2 + q̄3 = E0  > 0. Setting  q̇ (t) = 0 the state  evolution  equations  become 
 

0   =  bkf q̄1q̄2 + krq̄3 

0   =  bkf q̄1q̄2 + (kr + kc)q̄3 

0   =  kf q̄1q̄2 b (kr + kc)q̄3 

0   =  kcq̄3 . 

Immediately we get that 

and thus 

and 

 
q̄3 = 0 

 
 

q̄2 = E0  > 0

kf q̄1q̄2 = 0  =⇒ q̄1 = 0 .

 

Finally note that the equilibrium value of q4(t) will depend on the dynamics of the reaction 

as it approaches  equilibrium.  Namely,
 

 

q4(t) = q4(0) + 

Z t 

kcq3(τ )dτ 
0

 

The linearized model around  this equilibrium  will have

bkf q̄2    bkf q̄1               kr               0  bkf E0     0          kr             0

A = 
bkf q̄2    bkf q̄1         kr + kc         0  

= 
bkf E0     0      kr + kc         

0                                                                    
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 kf q̄2         kf q̄1       b(kr + kc)    0  
0            0               kc               0 

 kf E0        0   b(kr + kc)   0  
0        0          kc               0
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1  

b = 
,0,  

, cT  = 
,
0    0   0   1

,  
, d = 0 .

 , , 
0  

0 
 

(d)  Suppose now we are looking for an equilibrium  when x(t) ≡ x̄ > 0.  This  time  the  state 

evolution  equations  give 

0   =  bkf q̄1q̄2 + krq̄3 + x̄ (1)

0   =  bkf q̄1q̄2 + (kr + kc)q̄3                                                                (2) 

0   =  kf q̄1q̄2 b (kr + kc)q̄3                                                                    (3) 

0   =  kcq̄3 .                                                                           (4) 
 

Again q̄3 = 0 and q̄2 = E0.  This time,  however, (2) and (3) require  that q̄1 = 0 while (1) 

requires q̄1 = x̄/(E0kf ) = 0. This means that no full equilibrium  is possible! 

If we only require  that the first three  state  variables  are in equilibrium  we instead  get 
 

0   =  bkf q̄1q̄2 + krq̄3 + x̄ 

0   =  bkf q̄1q̄2 + (kr + kc)q̄3 

0   =  kf q̄1q̄2 b (kr + kc)q̄3 . 

Solving this system gives  
q̄3 = x̄/kc 

 

q̄2 = E0  b x̄/kc

 x̄ + krx̄/kc  
    (kc + kr)x̄  

q̄1 = 
k  (E

 = 
b x̄/k  )      k k  E

 . 
b k  x̄

f    0               c c   f   0         f

 

The  rate  of change  of y(t) = q4(t)  is kcq3(t)  which in this  partial equilibirum  is simply 

kcq̄3 = x̄. 
 
 

Problem 2.4 
 
 

(a)  The following figure shows the response of the SIR model for a variety of initial conditions. 

In all cases the parameters used were P = 10000, β = .01, γ = .2, ρ = .1, and x[n] = x̄ = 

.2. The blue curves show s[n] and the red curves show the corresponding  i[n].
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(b)  In the simulations  from (a) we see that i[n] settles to approximately 227.3 for large values 

of n.  This is consistent with the computed  equilibrium  value i.e. 

 

ī = 
βP 

R  

   

1    
  1 

       
100 20 

         
 11 

x̄    =            1
 25 

.2    =
 

 

227.27.

γ     
0         b 

R0  
b

 .2  11 
b 

20 
b

 .11 
=

(c)  
 

AEE = 

 

, 
1 b βR0(1 b x̄)     bγ/R0 

β(R0(1 b x̄) b 1)        1 

 

,  , 
.9855   b.1100  

,
 

=    
.0045        1

 

The matrix  AEE has eigenvalues 
 

λ1     =  0.9927 + 0.0211j = .9930e.0213j
 

λ2     =  0.9927 b 0.0211j = .9930e-.0213j
 

 
with associated  eigenvectors 

 

1      =  [0.9800, b0.0648 b 0.1884j] 

2      =  [0.9800, b0.0648 + 0.1884j] . 

 
Note that since the  eigenvalues have magnitude less than  one, the  linearized  model is a 

stable  system.
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(d)  If we use the feedback rule x[n] = gi[n]/P , then the endemic equilibrium value of i changes 

along with the gain g. See, for example, the plot with g = 1 and various initial conditions 

below. 
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We can  find the  new endemic  equilibrium  values  by plugging  x[n]  = gi[n]/P  in to  the 

state  evolution  equations: 
 

γis 
0   =  b 

P   
+ β(P  b s) b βgi

 
γis 

0   =   
P   

b ρi b βi .
 

 

The endemic (i.e.  nonzero)  solution  for i is 

P β                   1 
,

 
i =                 1 

gβ + ρ + β           R0 
 

which for our values gives i = 375 as in the plot.  Note that as g increases,  the value of i 

will decrease.  However, there  is no point at  which a high enough gain will get rid of the 

endemic equilibrium  entirely. 


