Solution Manual for Signals Systems and Transforms 5th Edition Phillips Parr Riskin 01335064799780133506471

Full link download:
Solution Manual: https://testbankpack.com/p/solution-manual-for-signals-systems-and-transforms-5th-edition-phillips-parr-riskin-0133506479-9780133506471/
© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Chapter 2 solutions

2.1
(a)
(i)

(ii)

RO<GR2.1@~~LEA

$a(3+t)$

(iv)

$$
2(2--t)
$$

@ 201 Person Education, Inc., UpperSadde River, NJ. AI rights reserved. This publication ip erected byopyght andwritten permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronie, mechanical, photoco $\quad \therefore — \mathrm{~g}-\mathrm{se}$. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper - e re Saddd.l
0
7. ()

3

$$
\begin{array}{llllll}
-3 & -2_{--} & \mathbf{z} & 3 & 44 & 5
\end{array}
$$

2.1 (b)

(i) $x(-t / 3)=x(t) \Rightarrow \tau=-t / 3 \Rightarrow t=-3 \tau$

$$
\Rightarrow \quad \Rightarrow \quad=-=\tau / 3+2
$$

)

Problem 2.1(c)

(i) $x(-t / 3)=x(\tau) \Rightarrow \tau=-t / 3 \Rightarrow t=-3 \tau$

(Ai) $(G+t)-I V \Rightarrow c=3 t=t=\phi-3$

(v)

$$
x(2-v)=(c) \Rightarrow 7=2-t=2=-+2
$$

Pearson Education, Inc., Upper Saddle River, NJ. All right, reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

$$
\mathbf{- 1 5} \quad 1.5
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458

Pa.2(ф
() $\mathrm{g} t\rangle=4\left(\frac{\pi}{}\right)-2, \quad \tau= \pm$

$(\mathrm{c} 2)=2 O(\mathrm{r})+2 \rightarrow ?-2 t=\mathbb{L}=$ @

(v) $y v)=-\boldsymbol{W}(\pm)+2 \Rightarrow \boldsymbol{r}=\boldsymbol{t}$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

@ 2014 Pearson Education, Inc., Upper Saddle River, J- An I t reserved- This @ublicaion isprected bsopyrightandwrittenpermission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Solution P2.4
(a) $g(\pm)-x(/+2+4-$

(b)

$$
\begin{aligned}
& x(t)=-\frac{1}{2} y(-2 t+4)+2 \Rightarrow \tau=-2 t+4 \\
& \begin{array}{ll}
y & \Rightarrow t=-\frac{1}{2} \\
y & 7=-\frac{1}{2} y+2 \\
4 & -0 \\
2 & -1
\end{array} \\
& 0
\end{aligned}
$$

Problem 2.
(a)

$$
\begin{array}{lll}
x_{e}(t)=12 & \text { Le+x-v)] } & 2-) \\
x_{0}(t)=1 / 2 & {[t e--0]} & (z .1 ?)
\end{array}
$$

t	(e)	$Z(b)$	$\neq e)$	$-t b$
73	0	0	0	0
a	2	1	3	0
15	15	1	1.25	0.25
0	1	1	2	0
-15		1,5	1.25	-025
3		2	3	$-h a$
$(-3$	D	0	0	0

$$
\left.11 \quad x_{0}(t) \neq x_{e}(t)=x(t) \%\right\rangle
$$

veM£
© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458

Pol(em 2.5

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Probilem $2.5(d)$				
\pm	$x(t)$	$C(-0)$	Ket	$\%$.. (e)
$\pm \mathbf{8}$	-2	0	-1	-
3	1	0	$0 r 5$	0.5
1	3	0	1.5	1.5
$3+$	3	0	15	.5
37	3	3	3	0
$-3 t$	3	3	3	0
-37	0	3	1.5	-15
		-2	-	

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
role $0 . \%$
() $x()=h t \Rightarrow(-t)=4 \pm$
$X(-t)=\sim\left(--t^{\prime}\right) \quad /, \quad \prime L\left(\mathbb{C}^{\prime \prime}\right.$ add

()

$$
a-a(\mathrm{e}+\mathrm{am}=\underset{(l)=-\operatorname{cs} \&(\mathrm{st})}{ }=\underset{\operatorname{Ai}(3[4+4 \mathrm{~J}))}{ }
$$

(e) $x(t) \overline{(e}=d(-t)=x)$ is $e \underline{u} O$
(a)

$$
\begin{aligned}
& \text { vale) }-\boldsymbol{u}(-\boldsymbol{t}) \Rightarrow(-\mathbf{t})=(-\boldsymbol{t})-\mathrm{U}(e) \\
& \text { - [ts -ut-e] } \\
& 1(e)=-\Phi-\mathbf{t}):(e \text { Ts 3dd }
\end{aligned}
$$

< $4(\mathrm{el} u(\mathrm{e}-)+(-\mathbf{t}-)$
$\mathbf{L}(-\mathbb{t})=-(-\mathbf{t}-)+(\mathbb{t}-v)$
$\mathrm{a} 4(-\boldsymbol{t})=5 \mathrm{E}), \therefore \circ \mathrm{C})$ is Ad
© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Problem 2.7

(a) $\int_{-T}^{T} x_{\Delta}(t)=\int_{-T}^{0} x_{0}(t) d\left(\int_{D}^{T} x_{0}(t) d t ; x_{0}(t)=-x_{0}(-t)\right.$
$\therefore \int_{-T}^{0} x_{0}(t) d t=-\left.\int_{-T}^{0} x_{0}(-t) d t\right|_{t=-\tau}=\int_{-T}^{0} x_{0}(\tau) d T=-\int_{0}^{T} x_{D}(\tau) d \tau$
$\therefore \int_{-T}^{T} x_{0}(t) d t=0$
(b)

$$
\begin{aligned}
& \quad \int_{T}^{T} x(t) d t=\int_{-T}^{T}\left[x_{e}(t)+x_{\Delta}(t)\right] d t=\int_{-T}^{T} X_{e}^{T}(t) d t \\
& \text { and } A_{x}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{e}(t) d T
\end{aligned}
$$

(c) $x^{n}(0)=-\mathbf{x},(-0)=-\mathbf{x} \sim(0)$. The only number with $\mathbf{x}-\mathrm{a}$ is $\mathrm{a}=\mathbf{0}$ so this implies $\mathbf{x}(0)=\mathbf{0}$. $\mathbf{x}(\mathbf{0})=\mathbf{x}(\mathbf{0})+\mathbf{x}_{\|}^{\prime \prime}(\mathbf{0})=\mathbf{x}(\mathbf{0})$.

PR03UE 2.8

(a) Let $z(t)$ be the sum of two even functions $\mathbf{a}(\mathbf{t})$ and $\boldsymbol{a}(t)$. To show that $z(\mathbf{t})$ is even. we need to show that $z(t)=z(--t)$ for $11 t$. This is easy to show, since $z(t)=x(\mathbf{t})+\boldsymbol{9}(t)$ and $z(-\mathbf{t}) \Longrightarrow(-\mathbf{t})+(-\mathbf{t})$ (since to get $z(-\boldsymbol{t})$ we just plug in --t everywhere for t. which amounts to just plugging in $-t$ in $\mathrm{a} ;(\mathrm{t})$ and $\mathbf{g}(\mathrm{t})$). Now since $x(t)$ and $x(\mathrm{t})$ are even. by definition $x(t)=\mathbf{a}(-t)$ and $x(\mathrm{t})=\mathbf{g}(-\mathbf{t})$ so $x(t)+-(\mathrm{t})=a ;(-t)+2(-\mathrm{t})$ so $\mathrm{z}(\mathrm{t})=z(-t)$.
(b) Let $;(\mathbf{t})$ and $\mathbf{g}(\mathrm{t})$ be two odd functions. Then $;(-\mathbf{t})+(-\mathbf{t})=-2(\mathrm{t})+(-9(\mathrm{t}))=<(\mathrm{t})+$ $x(\mathrm{t}))$ which shows that $\overline{\boldsymbol{\prime}}(\mathrm{t})-(\mathrm{t})$ is odd.
(c) Let $\mathrm{z}(\mathrm{t})=x(\mathrm{t}) \rightarrow(\mathrm{t})$ as in part a, where now $\mathbf{1}(-\mathrm{t})=x(\mathrm{t})$ and $\mathrm{rs}(--\mathrm{t})=-\mathrm{g}(\mathrm{t})$. We need to show that $z(t) \neq z(-t), z(t) \#--z(--t)$. Consider that $z(-t)=(-t)+2(-t)=(t)-(t)$. In order to have $z(t)$ be even, we would therefore need to have $(t) \Psi(t)=(t)-(t)$ for all t. which is equivalent to having $x(\mathbf{t})=-\boldsymbol{r}(\mathrm{t})$ for all t, which is not possible for nonzero $\mathbf{a}(\mathrm{t})$. Similarly, in order to have $z_{\text {: }}(\mathrm{t})$ be odd, we would need to have $z(t)=-z(t)=x(\mathrm{t}) \mp(\mathrm{t})=\mathbf{9}(\mathrm{t})-\mathrm{a} ;(\mathrm{t})$. which is not possible for nonzero $x(\mathrm{t})$. So the sum of an even and odd function must be neither even nor odd.
(d) Let $z(t)=x(t) \cdot(t)$ where $;(t)=r(-t)$ and $x(t)=\mathbf{r}(-t)$. Then $z(-t)=x(-\mathbf{t}) \operatorname{vs}(-\mathbf{t})=$ $x(\mathrm{t})(\mathrm{t})=\mathrm{z}(\mathrm{t})$ which shows that $\mathrm{z}(\mathrm{t})$ is even.
(e) Let $\mathrm{z}(\mathrm{t})={ }_{x}(\mathrm{t}) \cdot(\mathrm{t})$. where ${ }_{x}(\mathrm{t})=-x(-\mathbf{t})$ and $-(\boldsymbol{t})=-\mathbf{r}(-\mathrm{t})$. Clearly $\mathrm{z}(\mathrm{t})$ is even because $z(-t)=\boldsymbol{a}(-t)-(-t)=(-(\mathrm{t}))(-3(\mathrm{t}))=x_{x}(\mathrm{t})(\mathrm{t})=z(t)$. which is the definition of evenness.
(f) Let $-(t)={ }_{x}(\mathrm{t}) \cdot(\mathrm{t})$. where ${ }_{x}(\mathrm{t})=-(-\mathrm{t})$ and ${ }_{x}(\mathrm{t})=-(-\mathrm{t})$. Clearly $\mathrm{z}(\mathrm{t})$ is odd because $\mathrm{z}(-\mathrm{t})=\mathrm{r}(-\mathbf{t})(-\mathbf{t})=(-(\mathrm{t}))(\mathrm{t})=\amalg(\mathrm{t}) \mathrm{r} 3(\mathrm{t})=_{-}(\mathrm{t})$. which is the definition of oddness.

044 pearson Euaton inc., Upper saddle River, NJ. All rightsirese wed. This publicationiS potected by Copyright and written _in permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
PL. \%

$$
x(t)=x_{0}(t)+x_{e}(t)
$$

(a) $\sin (t)=\sin (t+n ? n)$ for an integer n. so $7 \sin (3 t)=7 \sin (3 t+n 2)=7 \sin (3(t+n \neq))$; dererfore $r(t)$ is periodic with fundamental period $T=$ and fundamental frequency $\mathbf{n}=\# \mathbf{f}=3$.
(b) $\sin (8(\mathrm{t}+\boldsymbol{\mathrm { T }})+\mathbf{O})=\sin (8 \mathrm{t}+2 \mathrm{n}+30)=\sin (8 /+30)$.
$\mathbf{g}=8$ and $T=^{\boldsymbol{V}}=\mathbf{f}$.
(c) $e!^{\prime}=\cos (t)+j \sin (t)$ is periodic with fundamental period 2 m . so $e!^{\prime \prime}$ is periodic with fundamental period $t^{\prime},=A$ and fundamental frequency $e n=2$.

$$
T_{1}=\frac{2 \pi}{2}=\pi, T_{2}=\frac{2 \pi}{5} \Rightarrow \frac{T_{1}}{T_{2}}=\frac{\pi}{2 \pi / 5}=5 / 2 \text { ratio of }
$$

$$
T_{0}=k_{0} T_{1} \therefore T_{0}=2 \pi(\Delta),(\text { peswdic })
$$

$$
k_{\Delta}=2
$$

(e)

$$
\begin{aligned}
& \left.e^{-j(10 t+\pi / 3)}=e^{-j \pi / 3} e^{-j 10 t}=\cos \pi / 3-j \sin \pi / 3\right) e^{-j 10 t} \\
& =(0.5+j 0.866) e^{-j 10 t}
\end{aligned}
$$

$$
T_{0}=\frac{2 \pi}{10}=\pi / 5(s)_{j} \text { periodic }
$$

$$
e^{\hat{j 15 t}-e^{j 20 t}}
$$

$$
e^{115 t} \neq e^{f 20 t} \text { are }
$$

$$
\begin{aligned}
& T_{1}=\frac{2 \pi}{15}, T_{2}=\frac{2 \pi}{20}=1 \quad \frac{20}{15} \text { ration of } \\
& \text { interact } \\
& \text { in prude } \\
& 20 \\
& =4
\end{aligned}
$$

$$
\begin{array}{lc}
\frac{20}{15}=\frac{4}{3} & \text { hoof/po-ode }=: \\
\frac{2 \pi}{\frac{2 \pi}{5}}=3, \frac{\frac{2 \pi}{5}}{15} & \frac{1}{20} / o=-1 / \mathrm{s},
\end{array}
$$

0

O2014 Pearson Education, Inc., UpperSaddl eiver.N. Al rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in anyform or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

P2,W
$\pi x e=a \neq \pm=5 t$
(b) $x(t)=\cos t+\sin \pi t$
(c) $x(t)=\cos 3 t+\sin 9 t$
(d) $V(\mathrm{Ce})=\operatorname{Cr} \pm+\mathrm{An} \mathrm{\phi}+\mathrm{Ca}(t)$
$(e \equiv=$ Cart $+\ldots \& n 4, C D T \pm$
(£) \&e= 0% \%. $\left(8 \mathrm{u}+\mathrm{so}^{\circ}\right)+@^{2 t}$ a_-(3u)
5% (utu_
(al T_{1}

$$
\begin{aligned}
& T_{1}=2 I I, \quad T_{2}=\frac{2 \pi}{5}, \frac{T_{1}}{T_{2}}=\frac{2 \pi / 3}{2 \pi / 5}=\frac{5}{3}, \\
& 7 \%=3 T, 1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 9^{=}, T \%=\frac{\mathrm{an}}{\bar{E}}=1 \quad \frac{T_{1}}{T_{2}}=2 \pi \begin{array}{l}
\text { not } \\
\text { a ration } \\
\text { of enfegens }
\end{array} \\
& \therefore .7 \% \text { UWOC }
\end{aligned}
$$

(c)
(d)
(e)

$$
T_{1}=\frac{2 \pi}{4 \pi}=1 / 2, T_{2}=\frac{2 \pi}{8 \pi}=1 / 3, T_{3}=\frac{2 \pi}{5 \pi}=\frac{2}{5}
$$

$$
\frac{T_{1}}{T_{2}}=\frac{r_{2}}{1 / 3}=\frac{3}{2}, \frac{T_{1}}{T_{3}}=1 / 2 / 2 / 5=5 / 4 \text { bath ratios of integer } \quad \begin{aligned}
& \text { sum period }
\end{aligned}
$$

lcm of denorecenators $=4 \times 2=8=k 0$

$$
T_{0}=8 T_{1}=4 A_{1}
$$

(f) $T_{1}=\frac{2 \pi}{3}, T_{2}=\frac{2 \pi}{2}, T_{3}=\frac{2 \pi}{3 \pi}, \frac{T_{1}}{T_{3}}=\frac{2 \pi / 3}{2 / 3}=\pi \begin{gathered}\text { not rational } \\ \therefore \text { seminal } \\ \text { peracid }\end{gathered}$

$$
\begin{aligned}
& T_{1}=\frac{2 \pi}{3 \pi}=2 / 3,7, T \\
& \frac{T_{1}}{T_{2}}=\frac{2 / 3}{1 / 2}=\frac{4}{3}, \frac{T_{1}}{T_{3}}=\frac{2 / 3}{2 \pi / 5}=\frac{10}{6 \pi}=\frac{5}{3 \pi} \longleftarrow \stackrel{\substack{\text { NOTARATIO OF } \\
\text { INTEgERS }}}{ }
\end{aligned}
$$

$$
\begin{aligned}
& T,=a 2, T 2=2, T\left(T=\frac{a}{9}=3 / 1 \Rightarrow\right. \text { ration of } \\
& T \%=\underline{21} \text { food } \\
& \text { integers }
\end{aligned}
$$

@ 2014 Pearson Education, Inc., UpperSadle River, NJ. All rights reserved. This publication is protected by Copyrightand written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission ian yform or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
3.12

$$
\begin{aligned}
& \text { (a) e) }=5<\left(\pm-00^{\circ}\right)+202(7 \pm) \\
& ¥()=54 .(\tau-10) \text { Pi. V/C } \\
& \text { 1, }=16 n \not Z_{5} \\
& ¥ 5<=2 \text { ar. (vt } \\
& 00,=74 \mathrm{~d} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=\frac{2 \pi}{15} ; T_{2}=\frac{2 \pi}{7} \quad \frac{T_{*}}{T_{2}}=\frac{7}{15} \text { \& ratio of in leger } \\
& k_{0}=15 \Rightarrow T_{0}=15 T_{1}=2 \pi \text { sum is pereocte }
\end{aligned}
$$

()

$$
\begin{aligned}
& d,(e=5 \text { a. } \underset{5}{2} \rightarrow p a d \quad v=5
\end{aligned}
$$

$$
\begin{aligned}
& 77=2, \quad \rightarrow=3 \times \sqrt{7}, f \%=a \mathbf{n} \\
& K,={ }^{1} 73074,=00_{5}^{5} \text { 2. do=5 } \\
& 7 \%=57=27
\end{aligned}
$$

$x_{1}(t)$ is persodec $\quad T_{1}=\frac{2 \pi}{\pi}=2$
$x_{2} \leq$ is peruder $T_{2}=\frac{2 \pi}{3}$
$\frac{T_{1}}{T_{2}}=\frac{2}{2 \pi / 3}=\frac{3}{\pi}$ not rational \therefore Sum nat
(d) $\sum_{n=-\infty}^{\infty} \cos 4 \pi t \rightarrow \infty$ perioche $\left(\frac{t+n / 2}{0.2}\right)$ is periodic with $T_{1}=2 \pi / 4 \pi=1 / 2, ~ T_{1}=0.5$ i $4 \sin \left(\frac{5 \pi}{7} t-\pi / 4\right) \Leftrightarrow$ periodic $\omega / T_{z}=\frac{2 \pi}{5 \pi / 7}=\frac{14}{5}$

$$
\frac{T_{1}}{T_{2}}=\frac{12}{1 / 2}=1, \quad \frac{T_{1}}{T_{3}}=\frac{1 / 2}{14 / 5}=\frac{5}{28} \Rightarrow k_{0}=28, \quad T_{6}=28 T_{11}=142
$$

Problem 2.13

(a) For $\mathrm{a} \backslash(\mathrm{t})+(\mathrm{t})$ to be periodic we need some number T such that $\mathbf{r} ;(\mathrm{t}+T)+\mathbf{r}(\mathrm{t}+T)=\mathbf{r}(\mathrm{t})+1 \mathrm{~g}(\mathrm{t})$ for all t . This can only be true if $1 \cdot 1(\mathbf{t}+\mathrm{T})=1 \cdot \mathrm{i}(\mathrm{t})$ and $l \cdot 2(t+T)=\mathrm{J} .2(\mathbf{t})$. which can only be true if $T=\mathrm{k}_{1} \mathrm{~T}_{\text {}}$ and $T=k T$ (T is an integer multiple of both the periods). So we need there to be some intesers k and $A^{\prime} 2$ such that $k T=\sim 2 T 2 \sim \sim=\mid /$,
(b) Put \# in its most reduced frm '\{ by canceling any common terms in the numerator and denominator; then $\mathrm{Ti}=n T=m \mathbf{T}$,

Problem 2.14

(a)
 ```>> syms t \\ >> xa=5exp(-t/2); \\ >> ezplot(xa), grid```

(c)
>> symS t
$\gg \mathrm{xc}=5 \exp (\mathrm{t} / 2)$;
>> ezplot(xo),grid

```
(e)
>> syms t
\(\gg\) xe=5(1-exp(-2t)); >> ezplot(xe), grid
```

(g)

```
>> syms t
>> xg=5exp(-20)2sin(2t);
>> ezplot(xg),grid
```

```
(b)
>> syms t
>> xb=5exp(-2\mathbb{t});
>> ezplot(xb),grid
```

(d)
>> syms t
$\gg \mathrm{xd}=5(1-\exp (-\mathrm{t} / 2))$; >> ezplot(xd), grid
(f)
>> syms t
$\gg x f=52 \sin (2 t)$;
>> ezplot(xf),grid
(h)

```
>> syms t
>> xh=5exp(-0.5t)2 sin(2);
>> ezplot(xh),grid
```

(a)

$$
\begin{gathered}
\cos (0+\phi)=\operatorname{Re}\{\mathrm{e}\}=\operatorname{Re}\{\mathrm{e} \mathrm{e} \mathbf{l}\} \\
=\operatorname{Re}\{(\cos 6+\mathbf{j} \sin 0) \cos \phi+\mathbf{j} \sin \phi)\} \\
=\operatorname{Re}\{\cos 6 \cos \phi+\mathbf{j} \sin 6 \cos \phi \\
+\boldsymbol{j} \cos \sigma \sin \phi-\sin \sigma \sin \phi\} \\
=\cos \sigma \cos \phi--\sin \sigma \sin \phi
\end{gathered}
$$

(b)
(d)

$$
\begin{aligned}
& \text { (c) }
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Re}\{\overline{\mathrm{e}}(B+;)+\overline{\mathrm{e}(0-;)}\}=\overline{\cos (B+C)}+\overline{\cos (B-\phi)} \\
& 222
\end{aligned}
$$

$$
\begin{aligned}
\sin (0+\phi) & =\operatorname{Im}\left\{e^{(\theta+}=\operatorname{Im}\left\{e^{\prime \prime} e r\right)\right. \\
= & \operatorname{Im}\{(\cos 6+j \sin 6) \cos \phi+j \sin 4 \\
= & \operatorname{Im}\{(\cos 6 \cos \phi+\mathbf{j} \sin 6 \cos \phi \\
& +\mathbf{j} \cos 6 \sin \phi-\sin 6 \sin \varphi\} \\
= & \cos 6 \sin \phi+\sin 6 \cos \phi
\end{aligned}
$$

$$
\begin{aligned}
\sin \theta & \cos \phi=\operatorname{Im}\left\{e^{j \theta} \frac{e^{/ \phi}+e^{-j \phi}}{2}\right\} \\
& =\operatorname{Im}\left\{\frac{e^{j(\theta+\phi)}+e^{\lambda(\theta-\phi)}}{2}\right\} \\
& =\frac{1}{2}[\sin (\theta+\phi)+\sin (\theta-\phi)]
\end{aligned}
$$

$\mathrm{P} @ \mathrm{Bu} \supseteq 2.1 \%-$

$$
\begin{aligned}
& \int C e=3 C a(a \pm)+02(z \pm) \\
& \begin{array}{l}
3-02) e^{"^{t}}\left(+2 e^{11} t^{2 t}\right.
\end{array} \\
& -\overline{2}-\overline{9} e^{\prime \prime} \cdot ब_{2} \\
& \left\{\begin{array} { l }
{ 7 1 } \\
{ l _ { 0 } , }
\end{array} \left(\begin{array}{l}
\%)=-3^{2 r a 4} \\
+6 \backslash=+0 . \% 2 \ll d_{-}-
\end{array}\right.\right. \\
& V O=e^{40.322 \phi} 5^{-j 032-d \phi} \\
& \begin{array}{ll}
{ }^{\prime} \mathbf{S} & \mathrm{e}^{8 .(3 \pm-0.32)}+\boldsymbol{\epsilon}
\end{array} \underset{(2 \phi-a .32)}{\boldsymbol{e}} \\
& 2 \\
& (e)=\mathrm{Vi}^{\prime} \mathrm{C} .(A \pm-0.32 \mathrm{az} 2) \\
& =5<\&<(z \pm-18.59)
\end{aligned}
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Problem 2.16. (continued)
(d)

$$
(0)=5 \operatorname{ca}(\&-o \nmid a d)
$$

$$
\begin{aligned}
& =A \frac{e^{j \omega_{0} t}+e^{-j \omega_{0} t}}{2}+\mathbb{B} \frac{e^{j \omega_{0} t}}{j z} e^{-j \omega_{0} t} \\
& =\frac{A-j B}{2} e^{j \omega \Delta t}+\frac{A+j B}{2} e^{-j \omega_{0} t} \\
& =\sqrt{\frac{A^{2}+B^{2}}{4}}\left[\tan ^{-1} \frac{B}{A} e^{j \omega_{0} t}+\sqrt{\frac{A^{2}+B^{21}}{2}} / \tan ^{-1}\left(\frac{B}{4}\right) e^{-j \omega 0 t}\right. \\
& =\frac{\sqrt{A^{2}+B^{2}}}{2} e^{\operatorname{stan}^{-1}\left(\frac{-B}{A}\right)} e^{j \omega_{0} t}+\frac{\sqrt{A^{2}+B^{3}}}{2} e^{\operatorname{jam}^{-1}\left(\frac{B}{A}\right)} e^{-j \omega_{0} t} \\
& \tan ^{-1}\left(\frac{B}{A}\right)=-\tan ^{-1}\left(-B^{2} / A\right) \\
& \therefore x(t)=\sqrt{A^{2}+3^{2}} \frac{e^{f\left(\omega_{0} t-\tan ^{-1} B / A\right)}+e^{-j\left(\omega_{0} t-\tan ^{-1} B / A\right)}}{2} \\
& =\sqrt{A^{2}+B^{2}} \cos \left(\omega_{0} t-\tan ^{-1}(B / A)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{vb})=\# e e(m e)+54-@ T \pm) \\
& =4\left(\begin{array}{l}
\text { res } \\
4
\end{array}\right. \\
& =\left(-3 \$ \backslash e^{4 \pi},(+40)\right. \text { e38\% } \\
& \begin{array}{c}
(2-3 / 2 j=N \overline{r \ll} h r)=\% /-M \\
=53 \text { F } \\
=5 e^{-40 \%} e^{\not f t \pm}+s e^{20.4} e^{-j 4 n \phi}
\end{array}
\end{aligned}
$$

\bullet

PROBLEM 2.17

$$
\begin{aligned}
& \mathbb{F}_{-\infty} a-0-(-0 \% \mathrm{e} \\
& \quad \text { stat }-8=5\left(\left(+-b W_{(\omega)}\right)\right)=L S(\phi z)
\end{aligned}
$$

$$
\% / 4-121) 43(\phi->=A / \pm-) S(\phi-\%)
$$

$$
\text { 't-se-ea- }=W b-) A
$$

$$
\frac{-0}{C}= \pm 453 \text { (-c }
$$

Pagulw2.1g
(S)

$$
\begin{aligned}
& \delta(2 t-3)=\frac{1}{2} \delta(t-3 / 2) \\
& \frac{1}{2} \delta(t-3 / 2) x(t) e^{j \pi / 2 / 2}=\frac{1}{2} x(3 / 2) e^{j 3 \pi / 4} \\
\therefore y(t)= & \frac{1}{4} x(3 / 2) e^{j 3 \pi / 4} \int_{-\sigma}^{\sigma} \delta(t-3 / 2) d T \\
y(t) & =1 / 4 x(3 / 2) e^{j 3 \pi / 4}
\end{aligned}
$$

$$
\begin{aligned}
& 7^{2 . \lg } \mathrm{at}-\boldsymbol{1}_{\mathrm{E}}^{\mathrm{a}}[\mathrm{~s}(+\mathrm{n}) \mathrm{g})-\mathrm{s}(-\mathrm{s}] \mathrm{J} \\
& \left(-0^{-0} £\left(-a=-\quad(-<)^{\sigma}\right.\right. \\
& \text { - } \left.\left.9(4)+=0,{ }^{\text {gppo }}, 2 r s\right) 4 z-(s) M S_{-s}^{m}\right) \mathrm{JC}
\end{aligned}
$$

0
© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

PROBE 2.19
(a) Let $\tau=a t$, then $\int_{-\infty}^{\infty} \delta(a t) d t=\int_{-\infty}^{\infty} \delta(\tau) \frac{d \tau}{a}$

$$
=\frac{1}{a} \int_{-\infty}^{\infty} \delta(\tau) d \tau \Rightarrow \delta(a t)=\frac{1}{a} \delta(t), a>0
$$

for $a<0, \quad \epsilon t=\tau \Rightarrow-|a| t=c$

$$
\Rightarrow d t=-\frac{d \tau}{|a|}
$$

$$
\therefore \int_{-\infty}^{\infty} \delta\left(a-t d t=\int_{\infty}^{-\infty} \delta(\tau)-\frac{d \tau}{|a|}=\frac{1}{|a|} \int_{-\infty}^{\infty} \delta(\tau) d \tau\right.
$$

$\therefore \delta(a t)=\frac{1}{|a|} d(t)$ for the general case.
b)

$$
\begin{aligned}
& \quad \int_{-\infty}^{t} \delta(\sigma) d \sigma=\left\{\begin{array}{l}
1, t>0 \\
0, t<0
\end{array}=u(t)\right. \\
& \therefore \int_{-\infty}^{t} \delta\left(\tau-t_{0}\right)=\left\{\begin{array}{l}
1, t>t_{0} \\
0, t<t_{0}
\end{array}=u\left(t-t_{0}\right)\right.
\end{aligned}
$$

(c)

Recall the rules about integrating delta functions: (t) is nonzero only' at $t=0$. so $r(t)(t)=r(0)(t)$. and $\boldsymbol{F}_{\mathscr{F}_{\infty}} 8\left(\mathbb{z} d t=1,0 \mathcal{F}_{x}^{-} \mathrm{rtt}\right) 6(\mathrm{t}) \mathrm{dt}=\mathcal{C}_{\infty} \boldsymbol{a}(0)(t)<d t=a(0) \mathcal{E}_{-\infty} d(t) \boldsymbol{t}=r(0)$. We can time-shit the delta function: $(t-\mathrm{to})$ is nonzero only at $t=$ to. so $(\mathrm{t}) 6(\mathrm{t}-\mathrm{to})=(\mathrm{to}) 6(\mathrm{t}-\mathrm{t} 0)$ and $F_{\mathrm{x}}:(\mathrm{t}) 6(\mathrm{t}-\mathrm{to}) d t=(\mathrm{t} 0)$.

$$
\text { 9) }\left[\cos (20) 8(0) \mathbf{t}=\cos (2 \cdot 0) \sum_{\mathrm{x}}(t) r=1\right. \text {. }
$$

ii) $(\mathrm{t}-\mathbf{I})$ is a time-shifted version of (t), and is nonzero on $\mathbf{l} \cdot$ at $t=0$ So:

$$
\begin{aligned}
\left.\int_{-\mathbf{a}}^{N} \sin (2 t)\right)(t-!) d t & =\quad \int_{-\mathbf{a}}^{\rho_{0} \cdot \sin (2 \cdot \underbrace{}_{A} \cdot \operatorname{li}) J(t-) d t} \\
& \equiv \sin \Theta \cdot 6 t-F) d t=\sin (\mathbf{i})=1
\end{aligned}
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

$$
\begin{aligned}
& \begin{array}{l}
\text { 2.19 (c) (vie) }[.=\mathrm{abs}-\mathrm{oa} \\
+(\%=\mathrm{We}-\operatorname{en}[a-1 \mathrm{l}
\end{array} \\
& =0 \& \% \text { c } \\
& \text { so } \\
& \mathrm{e}-\mathbf{i} @->1 \mathrm{e}=\int_{-\infty}^{\infty} \sin \left(\frac{\pi}{2}-\pi / 4\right) d(t-\pi / 2) d t \\
& -\rightarrow ク\left[8 \mathrm{E}^{\pi / 1} 1 \mathrm{e}=0.7 \mathrm{o}^{\prime} 7\right. \\
& (v-) \int_{-\infty}^{\infty} \sin (t-\pi / 6) \delta(2 t-2 \pi / 3) d t=\int_{-\infty}^{\infty} \sin (t-\pi / 6) \delta[(2(t-\pi / 3)] d t \\
& =\int_{-\infty}^{\infty} \tan (\pi / 3-\pi / 0) \delta[2(t-\pi / 3)] d t=\frac{1}{2} \sin (\pi / 6)=0.25
\end{aligned}
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Problem 2.20

$$
(a) u(2 t+6)=(t+3)
$$

(b) $u(-3 t+6)=u[-3(t-2)]=u(-t+2)$
(c) $\left.u(t / 3+1)=\frac{\uparrow^{u(-t+2)}}{\sum_{(-1}^{\left.\left(e^{2}+\right)\right)}}=I(t+\rangle\right)$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.Problem 2.21
(a)

$$
u u(-t)=1-u(t)
$$

$$
\uparrow u(-t)
$$

(b)

$$
t u(-\tau)=t[1-u(t)]
$$

$\left.\Phi \mathbf{V}(-\mathbf{t}+\mathbf{2})=\square_{1--(t-2}(-2)\right]=1-u(t-2)$

(d) (4-2 ${ }^{\text {a- }}$) $=$ (uf-(e-2]

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Problem 2.22

$$
\begin{aligned}
& (2 t-4)=4(2 t-2)(2 t-2)-(2 t-4) u(2 t-4)-u(2 t-6)-(2 t-8) u(2 t-8)-(2 t-9)(2 t-9) \\
& =4(2 t-2) u(t-1)-(2 t-4)(t-2)-u(t-3)-(2 t-8)(t-4)-(2 t-9)(t-4.5)
\end{aligned}
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Problem 2.23

$$
G \notin=3(\pm+3)-2 b)+3 u(\pm-s)-5 k(t)
$$

(?t,"

(b) $x(3 t-6)-$

$$
\begin{aligned}
& \equiv3 \mathbf{u}(3 \mathbf{t}-\mathrm{G}+3)-\mathbf{u}(\mathbf{t}-\mathrm{v})+\mathrm{Bu} \mathbf{t}-\%-3) \\
&-5(3 \mathbf{t}-\%-\% \\
& 3 \mathbf{u}(\mathbf{\$}-)-u(3 \mathrm{e}-2)+3(\mathbf{t}-)-5 u(\mathbf{t}-12) \\
&=3 \mathbf{u}(\mathbf{t}-)-\mathbf{u}(\mathbf{t}-2)+3(\Phi 3)-5 u \Phi-) \\
& 4(3 \pm-0
\end{aligned}
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
?ea~Lesman $2 \sim, J$.
(a) $x(t)=1-(t+1)[u(t+1)-u(t-1)]$

$$
=\|-(t+) u t)+3(\pm-u(\&-)-2 \&-2) \&-2)
$$

(»)
use time transformation

$$
=1 t-3=\Phi-3 \pm+
$$

1 ande amplitide 15 rans forma

3

$$
-t
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

PROBLEM 2.25
(a) $x,>=2 t u(t- \pm-)(t-))+2(-2)(t \pm-2)$

$$
\text { 46) } \begin{array}{ll}
t<0, & \rightarrow \&=0 \\
0 \lll l, & =2 \varnothing \\
1 \pm<2, & I,=2 \pm- \pm+=4-2 \pm \\
z< \pm, & z, \#)= \\
& -2 \pm+2 \pm=0{ }^{\prime}
\end{array}
$$

《e»

$$
W-B E L
$$

Peossusy 2.21

$$
\begin{aligned}
& \ll Z 4+\text { (t) } 3[\text { tats-@) @-)] } \\
& \text { - } \left.\left.\left[+\frac{1}{x}-3[K-\mathrm{a} e-2)-3\right) \pi k \&-\right)\right] \\
& \text { \&ea } \ll \\
& \text { (be<1 } \quad \text { le=s } \\
& \text { t<2> (e) }=s t-3 \phi+3=3 \\
& (3 k t<3, d U e)=-t-3 t+33 t+\%=3 t+ \\
& (\Phi>13), \quad \&=3 \pm 3 \phi 3-3 \phi \%+3-8=0 \sim 1
\end{aligned}
$$

() ale) is periodic $\angle \boldsymbol{T}=4$

$$
\begin{aligned}
& \%(\Phi \equiv \underset{1}{\leq a} \\
&= X(c+4 n) \\
&, Z_{-}=\text {unate-4)-- }-0) \text { teeal } \\
&-3 /(t-2++)\langle(-2+>)-(3+>-3+0)]
\end{aligned}
$$

© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. Fhbpheanical, photocopying, recording, or likewise. For information regarding permissions), write to: Rights and Permissions Department, Pearson Inc., Upper Saddle River, NJ 07458.
(d) $\mathrm{gt}=\mathrm{Lt} \boldsymbol{\mathrm { L }}$) $\times \mathbf{s}$ I) 3-1MT-[Mes]\} T< [x Pees_EM 2.2\%

$$
\mathbf{a z}=\mathrm{Ta}<\phi-1 a 4[\mathbf{g} t 03)\}
$$

$$
a-E\{0-1 \lll \ll\}
$$

$$
a=-\left\{1\left[i-1 \mathrm{ig} \ll \pm C_{t}\right\}\right.
$$

$$
\text { Pager } 2.291
$$

$$
\overline{C s}-1\{4 \ll-1[\ll-\operatorname{Te}[\mathrm{gs}]\}
$$

$$
y_{H}=T_{T}(a)
$$

$$
3 \mathrm{~N}-\{[\mathrm{O}-\mathrm{site} \rightarrow \mathrm{its}]]
$$

$$
\begin{aligned}
& \text { ? @ @152.3.7. } \\
& \text { </h.) -T[mei], g-- TiL } n, \mathbf{E} \text { a] }
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\bullet} \boldsymbol{y}-7\{11, \text { rust } 3 r+\{,, \mathrm{D}, \mathrm{Ba}] ?+\text { T IT,Ea] } \\
& \ll=1=7 \text { [TT[5JT] } \\
& s(三 \mathrm{CT}[\mathrm{ET}] \\
& 4\left(\boldsymbol{L}^{\prime}=\operatorname{SO} 4\right. \text { CO +st+. } \\
& \text { aka }=\mathbb{r}-[\mathbf{f i r}[(\mathbb{Z} 1+T r .[01] \\
& \text { - - +m17LG57 }
\end{aligned}
$$

@ 2014-Pearon-Education,-Inc., Upper SaddleRiver, NJ. Al rightsreserved - Thispublication is protected-byCopyrightand writen permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson
Educ \Longleftrightarrow Inc., Upper Saddle River, NJ 07458.

$$
\begin{aligned}
& \text { Posise ipis skhes llls, the }=a 8 \text {, } \\
& \text { T dat d } \\
& \text { ds }
\end{aligned}
$$ (dq) $\overline{\boldsymbol{S} \boldsymbol{S} \boldsymbol{Z} m}$ isml veyzt, de vpuc

\qquad B.

1 \qquad
\qquad - 10
<@ (meta\}Cannot \% de~rah Rrn knosdge o.f: tPu. 6-Eul ut t-os

$$
\begin{aligned}
& \left.\|\}=\frac{m+z}{-<Q 2 t 1} 4<\right] \text { sd?sf } \quad \text { s\%a boate| }
\end{aligned}
$$

8
(du-) \#-CSIf~ス~is~e-in vet
${ }^{l}$ [(v) 7% s,jshi liea.
(al) $27 h e$ systzm is [aasaliA $9 l e 2$) $4 z$. ves calfullt

$n \& c l a \not \subset \subset / \mathbb{Z}$,

7rolle 2,32

$$
\begin{aligned}
& \text { C } \% \rightarrow \text {) }=2(u-1)-u e)-u(t-t)
\end{aligned}
$$

- $\quad l e)=2 g(+6 \longrightarrow+$

$$
\text { - bi z }=\mathbb{A}-z-r)=\stackrel{-1}{\boldsymbol{-}} \mathbf{t}+\|)]
$$

Protolem 2. 33
(a)
(i) The system is memoryless only if $t_{0}=0$.
(ii) The system is invertible; $x(t)=y\left(t+t_{0}\right)$.
(iii) The system is causal only if to ≥ 0.
(iv) The systems BIBO st ble.
(v) The system is time invariant.

$$
x\left(t-t_{0}-t_{1}\right) \longleftrightarrow y\left(t-t_{1}\right)
$$

(vi) The system is linear.

$$
\begin{aligned}
& x_{1}\left(\frac{1}{t}-t_{0}\right) \\
& x_{2}\left(t-t_{0}\right) \\
& \rightarrow y_{1}(t) \\
& a x_{1}\left(t=t_{0}\right)+b x_{2}\left(t-t_{0}\right)
\end{aligned} \rightarrow a y_{1}(t)+b y_{2}(t) .
$$

Problem 2.34

2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

0 eesls_ass
(a)

Li?) 1-be $x \rightarrow T$ l, hialibk
tz) $\frac{r}{\mathrm{coal}}$
(iv) Sable
(w) his inaiu.nk
(w) $\rightarrow+1,1+\mathrm{miH}_{2}$

() ".ww44ghu4

$$
\text { () } \overline{g-} \pm 2, Z \text { in..le }
$$

$t \sim$ cesas
(r) sh Td $d e^{F}$
u) hís $==$
(wv) $7 l_{-1} \quad g h_{r}$, nit
(Q) (~) $)^{N-}$ evro Zess:: g^{t} () detewinel by @vent vaowt. () ot Dertihl - $=$ Fox all 1) tf. (2) cusal
g able:[a\|<t.
(บ) bimne inv~vianz-,
ob lnecv> $\left.g \mathbb{z}^{\prime}\right)^{\prime}=1$ alules é<-L.
()t t ve<cv9(ess

) so/ble: @40\4
(U) zine invariant
(V) Ob linear $>=4$, at $(\&)>2$
© 2014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

