Solution Manual for Single Variable Calculus Early Transcendentals Volume I 8th Edition Stewart 13052703479781305270343

Full link download:

Solution Manual: https://testbankpack.com/p/solution-manual-for-single-variable-calculus-early-transcendentals-volume-i-8th-edition-stewart-1305270347-9781305270343/

$2 \square$ LIMIT AND DERIVATIVES

2.1 The Tangent and Velocity Problems

1. (a) Using ${ }^{\mid}$(15 250), we construct the following table:

1	7	slope $=$
5	(5694)	$\frac{694-250}{5-15}=-\frac{444}{10}=-444$
10	$(10 \cdot 444)$	$\frac{444-250}{10-15}=-\frac{194}{5}=-388$
20	$(20 \cdot 111)$	$\frac{111-250}{20-15}=-\frac{139}{5}=-27.8$
25	$(25 \cdot 28)$	$\frac{28-250}{25-15}=-\frac{222}{10}=-222$
30	(30.0)	$\frac{0-259}{30}=-\frac{259}{15}=-16.6$

(c) From the graph, we can estimate the slope of the tangent line at 7 to be $\frac{-300}{9}=-33 \overline{3}$.
2. (a) Slope $=\frac{2948-2530}{42-36}=\frac{418}{6} \approx 6967$
(c) Slope $=\frac{2948-2806}{42-40}=\frac{142}{2}=71$

From the data, we see that the patient's heart rate is decreasing from 71 to 66 heartbeats 7 minute after 42 minutes. After being stable for a while, the patient's heart rate is dropping.
3. $(\mathrm{a})=\frac{1}{1-7}, 1(2-1)$

		$7\left(1{ }^{-}\left(1-{ }^{-}\right)\right.$)	Γ
(i)	15	(1 $51-2)$	2
(ii)	19	(191-1111 111)	1111111
(iii)	199	(199 - 10010 101)	1010101
(iv)	1.999	(1999-1001 001)	1001001
(v)	2.5	$(2 \cdot 5-0.666667)$	0666667
(vi)	21	($2 \cdot 1_{\mathbf{I}}-0.909091$)	0909091
(vii)	2.01	(2.01.-0.990 099)	0990099
(viii)	2.001	(2.001. -0.999 001)	0.999001

(b) Using the values of that correspond to the points closest to $\rceil(=10$ and $=20)$, we have

$$
\frac{-388+(-278)}{2}=-3313
$$

(b) Slope $=\frac{2948}{42-38}=\frac{287}{4}=7175$
(d) Slope $=\frac{3080-2948}{44-42}=\frac{132}{2}=66$
,
© Cengage Learning. All Rights Reserved.

NOT FOR SALE INSTRU'CTOR USE ONLY

4. a) $^{-}=\cos ^{-},(050)$

		1	Γ
(i)	0	(0¢1)	-2
(ii)	04	$(04 \mid 0309017)$	-3090170
(iii)	0. 49	(0 49 0 031411)	-3141076
(iv)	0.499	(0 4990003142)	-3141587
(v)	1	(1. -1)	-2
(vi)	06	(0.6, -0.309017)	-3090170
(vii)	051	(0.51-0.031411)	-3141076
(viii)	0501	(0 501 -0 003142)	-3141587

(b) The slope appears to be -\urcorner.
(c) $-0=-^{-}(-05)$ or ${ }^{-}=-^{-}+\frac{1^{-}}{2}$.
(d)

5. (a) ${ }^{-}()=40-16^{2}$. At $=2,^{\prime}=40(2)-16(2)^{2}=16$. The average velocity between times 2 and $2+$ is $\mathrm{T}_{\text {ave }}=\frac{\left(2+{ }^{-}\right)-{ }^{-}(2)}{(2+7)-2}=\frac{40(2+7) 16(2+7)^{2^{-}}-16}{-}=\frac{-247-167^{2}}{-}=-24-16^{-}$, if $^{-}=0$.
(i) $\left[\begin{array}{lll}2 & 2 & 5\end{array}\right]:=05,{ }^{\circ}$ ave $=-32 \mathrm{ft} \mathrm{s}^{\prime}$
(ii) $\left[\begin{array}{ll}2 & 2\end{array}\right]:=01,{ }^{\circ}$ ave $=-256 \mathrm{ft} \mathrm{s}$ (iii)
[2 $\left.2 \begin{array}{lll}2 & 05\end{array}\right]=005,{ }^{\circ}$ ave $=-248 \mathrm{ft} \mathrm{s}$
(iv) [2 2001$]:=001$, ave $=-2416 \mathbf{f ~ s}$
(b) The instantaneous velocity when ${ }^{-}=2(7$ approaches 0$)$ is -24 ft 7 s .
6. a $^{\prime}=()=10^{\circ}-186^{2}$. At $=1,=10(1)-186(1)^{2}=814$. The average velocity between times 1 and $1+$ is $龴_{\text {ave }}=\frac{\left(1+{ }^{-}\right)-{ }^{-}(1)}{\left.(1+\rceil^{\prime}\right)-1}=\frac{10\left(1+^{-}\right) 186\left(1+^{-}\right)^{2}--814}{628^{-}-186^{-2}}=628-186^{\circ}$, if $6=0$.
(i) [1 2]: ${ }^{\circ}=1,{ }^{\circ}$ ave $=442 \mathrm{~m} \mathrm{~s}$
(ii) $\left[\begin{array}{ll}1 & 1\end{array}\right]:=05$, ave $=535 \mathrm{~m} \mathrm{~s}$
(iii) $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]:=01,{ }^{\circ}$ ave $=6094 \mathrm{~m} \mathrm{~s}$
(iv) $\left[\begin{array}{lll}1 & 1 & 01\end{array}\right]:=001$, ave $=62614 \mathrm{~m}_{\mathrm{s}}$
(v) $[11001]:=0001,{ }^{\circ}{ }^{\text {ave }}=627814 \mathrm{~m} \mathrm{~s}$
(b) The instantaneous velocity when $=1$ (approaches 0) is 628 m s.
7. (a) (i) On the interval [2 4], $\mathbf{1}_{\text {ave }}=\frac{1(4)-1(2)}{4-2}=\frac{792-206}{2}=293 \mathrm{ft}^{-\mathrm{s}}$.
(ii) On the interval [34], $\boldsymbol{1}_{\text {ave }}=\frac{1(4)-1(3)}{4-3}=\frac{792-4615}{1}=327 \mathrm{ft}^{-} \mathrm{s}$.
(iii) On the interval [45], ${ }_{\text {ave }}=\frac{1(5)-1(4)}{5-4}=\frac{1248-792}{1}=456 \mathrm{ft}^{-} \mathrm{s}$.
(iv) On the interval [416], ${ }_{\text {ave }}=\frac{1(6)-1(4)}{6-4}=\frac{17617-792}{2}=4875 \mathrm{ft}^{-} \mathrm{s}$.

NOT FOR SALE INSTRUCTOR USE ONLY

(b) Using the points (216) and (5105) from the approximate tangent line, the instantaneous velocity at $=3$ is about $\underline{105-16}=\underline{89} \approx 297 \mathrm{ft} \mathrm{s}$.

$$
5-2 \quad 3
$$

8. (a) (i) $1=1\left(0=2 \sin 11+3 \cos 11\right.$. On the interval $[12], 7$ ave $=\frac{1(2)-1(1)}{2-1}=\frac{3-(-3)}{1}=6 \mathrm{~cm} \mathrm{~s}$.
(ii) On the interval [1111], ${ }_{\text {ave }}=\frac{1(11)-1(1)}{11-1} \approx \frac{-3471-(-3)}{01}=-471 \mathrm{~cm}^{-} \mathrm{s}$.
(iii) On the interval [1101], \quad ave $=\frac{1(101)-1(1)}{1.01-1} \approx \frac{-30613-(-3)}{0.01}=-6.13 \mathrm{~cm}^{-} \mathrm{s}$.
(iv) On the interval [1 1001], ave $=\frac{1(1001)-1(1)}{1001-1} \approx \frac{-300627-(-3)}{0001}=-627 \mathrm{~cm}^{-} \mathrm{s}$.
(b) The instantaneous velocity of the particle when $=1$ appears to be about $-613 \mathrm{~cm}^{\circ} \mathrm{s}$.
9. (a) For the curve $=\sin \left(10^{-}\right)$and the point ${ }^{\circ}$ (10):

-	7	
2	(20)	0
15	(1 5008660)	17321
14	(14-04339)	-1 0847
13	(13-0 8230)	-2 7433
12	(1 2008660)	43301
11	$(11-02817)$	-28173

As 7 approaches 1 , the slopes do not appear to be approaching any particular value.
(b)

We see that problems with estimation are caused by the frequent oscillations of the graph. The tangent is so steep at 7 that we need to take \neg-values much closer to 1 in order to get accurate estimates of its slope.
(c) If we choose $=1001$, then the point 7 is $(1001-00314)$ and $\Gamma \quad \approx-313794$. If $=0999$, then 7 is $(0999$ 00314) and $\Gamma \quad=-314422$. The average of these slopes is -314108 . So we estimate that the slope of tatangent line at 7 is about -3114 .

2.2 The Limit of a Function

1. As ${ }^{`}$ approaches 2 , " (\|) approaches 5 . [Or, the values of " ($\|$) can be made as close to 5 as we like by taking " sufficiently close to 2 (but ${ }^{-} 6=2$).] Yes, the graph could have a hole at (2 5) and be defined such that ${ }^{*}(2)=3$.
2. As * approaches 1 from the left, " ($\|$) approaches 3; and as *approaches 1 from the right, " (") approaches 7. No, the imt does not exist because the left- and right-hand limits are different.
3. (a) $\lim _{1 \rightarrow-3}(\bigcirc)=\infty$ means that the values of () can be made arbitrarily large (as large as we please) by taking
sufficiently close to -3 (but not equal to -3).
(b) $\lim _{1 \rightarrow 4^{+}}(\mathbb{I})=-\infty$ means that the values of (`) can be made arbitrarily large negative by taking sufficiently close to 4 through values larger than 4.
4. (a) As^{-}approaches 2 from the left, the values of ${ }^{-}$(II) approach 3, so $\lim _{\rightarrow 2^{-}}{ }^{-}()=3$.
(b) As ${ }^{-}$approaches 2 from the right, the values of ${ }^{-}$(I) approach 1 , so $\lim _{\rightarrow 2^{+}}{ }^{+}(\mathbb{I})=1$.
(c) $\lim _{\rightarrow 2}(\| l)$ does not exist since the left-hand limit does not equal the right-hand limit.
(d) When $\urcorner=2,7=3$, so $\urcorner(2)=3$.
(e) As ${ }^{-}$approaches 4, the values of ${ }^{-}(\|)$approach 4 , so $\lim _{\rightarrow 4}^{*}(\Pi)=4$.
(f) There is no value of ${ }^{-}$(*) when ${ }^{*}=4$, so * (4) does not exist.
5. (a) As^{-}approaches 1 , the values of ${ }^{-}(\|)$approach 2 , so $\lim _{\rightarrow 1}^{*}(\Pi)=2$.
(b) As ${ }^{`}$ approaches 3 from the left, the values of ${ }^{*}(\Pi)$ approach 1, so $\lim _{\rightarrow 3^{-}}{ }^{(}$() $=1$.
(c) As approaches 3 from the right, the values of (() approach 4, so $\underset{\rightarrow 3^{+}}{\lim }(\mathbb{C})=4$.
(d) $\lim _{\rightarrow 3}(\|)$ does not exist since the left-hand limit does not equal the right-hand limit.
(e) When $7=3,7=3$, so $7(3)=3$.
6. (a) $\urcorner(7)$ approaches 4 as \urcorner approaches 3 from the left, so $\left.\lim _{\rightarrow-3^{-}}\right\urcorner(7)=4$.
(b) $\urcorner(7)$ approaches 4 as 7 approaches 3 from the right, so $\lim _{\rightarrow-3^{+}} 7(7)=4$.
(c) $\left.\lim _{1 \rightarrow-3}\right\urcorner(7)=4$ because the limits in part (a) and part (b) are equal.
(d) $\urcorner(-3)$ is not defined, so it doesn't exist.
(e) $\urcorner(7)$ approaches 1 as \urcorner approaches 0 from the left, so $\left.\left.\lim _{\rightarrow 0^{-}}\right\urcorner(\urcorner\right)=1$.
(f) $\urcorner(\urcorner)$ approaches 1 as \urcorner approaches 0 from the right, so $\lim \urcorner(\urcorner)=-1$.
$\rightarrow 0^{+}$
(g) $\left.\lim _{\rightarrow 0}\right\urcorner(7)$ does not exist because the limits in part (e) and part (f) are not equal.
(h) ${ }^{-}(0)=1$ since the point $\left(\begin{array}{ll}0 & 1\end{array}\right)$ is on the graph of ${ }^{-}$.
(i) Since $\left.\lim _{\rightarrow 2^{-}}\right\urcorner(7)=2$ and $\lim _{1 \rightarrow 2^{+}}\left(\cap_{7}\right)=2$, we have $\lim _{\rightarrow 2} \quad(\quad)=2$.
(j) \urcorner (2) is not defined, so it doesn't exist.

NOT FOR SALE INSTRUCTOR USE ONLY

(k) $\urcorner(\urcorner)$ approaches 3 as \urcorner approaches 5 from the right, so $\left.\left.\lim _{\rightarrow 5^{+}}\right\urcorner(\urcorner\right)=3$.
(l) $7(7)$ does not approach any one number as 7 approaches 5 from the left, so $\lim _{\rightarrow 5^{-}}{ }^{-}$() does not exist.
7. (a) $\lim _{\rightarrow 0^{-}}(1)=-1$
(b) $\lim _{\rightarrow 0^{+}}(1)=-2$
(c) $\lim _{\rightarrow 0}{ }^{-}$(l) does not exist because the limits in part (a) and part (b) are not equal.
(d) $\lim _{\rightarrow 2^{-}}(1)=2$
(e) $\lim _{\rightarrow 2^{+}}(1)=0$
(f) $\lim _{\rightarrow 2}{ }^{\text {(}}$ (I) does not exist because the limits in part (d) and part (e) are not equal.
$(\mathrm{g})^{-}(2)=1$
(h) $\lim _{\rightarrow 4}(l)=3$
8. (a) $\left.\lim _{1 \rightarrow-3}\right\urcorner(7)=\infty$
(b) $\left.\left.\lim _{\rightarrow 2}\right\urcorner(\urcorner\right)$ does not exist.
(c) $\left.\lim _{\rightarrow 2^{-}}\right\urcorner(7)=-\infty$
(d) $\lim _{1 \rightarrow 2^{+}} 7(7)=\infty$
(e) $\left.\left.\lim _{\mid \rightarrow-1}\right\urcorner(\urcorner\right)=-\infty$
(f) The equations of the vertical asymptotes are $\urcorner=-3,\urcorner=-1$ and $\urcorner=2$.
9.
(a) $\lim _{1 \rightarrow-7}$ (') $=-\infty$
(b) $\lim _{1 \rightarrow-3}(-)=\infty$
(d) $\lim _{1 \rightarrow 6^{-}}\left({ }^{-}\right)=-\infty$
(e) $\lim _{1 \rightarrow 6^{+}}\left({ }^{-}\right)=\infty$
(c) $\lim _{\rightarrow 0}(\mathbb{1})=\infty$
(f) The equations of the vertical asymptotes are $\neg=-7, \neg=-3, \neg=0$, and $\urcorner=6$.
10. $\lim _{\rightarrow 12^{-}}(1)=150 \mathrm{mg}$ and $\underset{\rightarrow 12^{+}}{\lim }(1)=300 \mathrm{mg}$. These limits show that there is an abrupt change in the amount of drug in the patient's bloodstream at ${ }^{-}=12 \mathrm{~h}$. The left-hand limit represents the amount of the drug just before the fourth injection. The right-hand limit represents the amount of the drug just after the fourth injection.
11. From the graph of

$$
()=\begin{array}{ll}
F^{1+} & \text { if }-1 \\
\Gamma^{-} & \text {if }-1 \leq \leq^{-} \\
2- & \text { if } \quad \geq 1
\end{array}
$$

we see that $\lim { }^{*}(\|)$ exists for all ${ }^{*}$ except ${ }^{-}=_1$. Notice that the right and left limits are different at $7=-1$.

12. From the graph of

$$
\text { (II) } \left.=\Gamma_{\Gamma^{1+\sin ^{-}} \text {if }^{--} 0}^{\cos ^{-}} \quad \begin{array}{l}
\text { if } 0 \leq \\
\sin ^{-}
\end{array} \quad \text { if }\right\rceil 7
$$

we see that $\lim ^{*}$ (($\|$) exists for all ${ }^{*}$ except ${ }^{-}={ }^{`}$. Notice that the right and left limits are different at $\urcorner=7$.

72 © CHAPTER 2 LIMITS AND DERIVATIVES
13. (a) $\lim _{1 \rightarrow 0^{-}}{ }^{-}$) $=1$
(b) $\lim _{1 \rightarrow 0^{+}}(\mathbb{I})=0$
(c) $\lim _{\rightarrow 0}(\mathbb{I})$ does not exist because the limits in part (a) and part (b) are not equal.
14. (a) $\left.\lim _{1 \rightarrow 0^{-}}{ }^{-}\right)=-1$
(b) $\lim _{1 \rightarrow 0^{+}}(\mathbb{I})=1$
(c) $\lim _{\rightarrow 0}{ }^{-}$($\|$) does not exist because the limits in part (a) and part (b) are not equal.
15. $\lim _{\rightarrow 0^{-}}{ }^{-}()=-1, \quad \lim _{1 \rightarrow 0^{+}}(\|)=2, \quad{ }^{\circ}(0)=1$

17. $\lim _{1 \rightarrow 3^{+}}()=4, \quad \lim _{\rightarrow 3^{-}}()=2, \lim _{1 \rightarrow-2}(\|)=2$,
$(3)=3, \quad(-2)=1$

16. $\lim _{\rightarrow 0}(\Pi)=1, \lim _{\rightarrow 3^{-}}(-)=-2, \lim _{\rightarrow 3^{+}}\left({ }^{-}\right)=2$,

$$
\neg(0)=-1, \neg(3)=1 y_{y}
$$

18. $\lim _{1 \rightarrow 0^{-}}()=2,. \lim _{1 \rightarrow 0^{+}}()=0, \lim _{1 \rightarrow 4^{-}}(\mathbb{I})=3$,
$\lim _{1 \rightarrow 4^{+}}\left(C^{-}\right)=0, \quad(0)=2, \quad(4)=1$

It appears that $\lim _{\rightarrow 3} \frac{7^{2}-37}{7^{2}-9}=\frac{1}{2}$.

NOT FOR SALE INSTRUCTOR USE ONLY

20. For $(I)=\frac{7^{2}-37}{7^{2}-9}$:

	()	1	()
-25	-5	-35	7
-29	-29	-31	31
-295	-59	-305	61
-299	-299	-301	301
-2 999	-2999	-3.001	3001
-2 9999	-29,999	-30001	30,001

21. For $(1)=\frac{-1}{-}$:

	()
05	22364988
01	6487213
001	5127110
0001	5012521
00001	5001250

	()
-05	1835830
-01	3934693
-001	4877058
-0001	4987521
-00001	4998750

It appears that $\lim _{\rightarrow 0} \frac{-51}{}=5$.

It appears that $\lim _{1 \rightarrow-3^{+}}\left({ }^{-}\right)=-\infty$ and that $\left.\lim ()^{-}\right)=\infty$, so $\lim \quad \beth_{2}^{2}-3$ does not exist.
$\rightarrow-3^{-} \quad \rightarrow-3 \quad-9$

\qquad

z	()
-05	48812500
-01	72390100
-001	79203990
-0001	79920040
-00001	79992000

It appears that $\lim _{\rightarrow 0} \frac{(2+7)^{5}-32}{}=80$.
23. For $(\mathbb{I})=\underline{\ln ^{-}-\ln 4}$:

$$
7-4
$$

	(II)
39	0253178
399	0250313
3999	0250031
39999	0250003

	$(~)$
41	0246926
401	0249688
4001	0249969
40001	0249997

It appears that $\lim _{\rightarrow 4}{ }^{*}(\Pi)=025$. The graph confirms that result.
24. For $\quad(1)=\frac{1+7^{9}}{1+-15}$:

-	()
-11	0427397
-101	
-1001	0582008
-10001	0598200

	()
-09	0771405
-099	0617992
-0999	0601800
-09999	0600180

It appears that $\lim _{\rightarrow-1}()=06$. The graph confirms that result.

NOT FOR SALE INSTRUCTOR USE ONLY

25. For ${ }^{-}()=\frac{\sin 31}{\tan 2^{-}}$:

1	()
± 01	1457847
± 001	1499575
± 0001	1499996
± 00001	1500000

It appears that $\lim _{\rightarrow 0} \frac{\sin 37}{\tan 27}=15$.
The graph confirms that result.

26. For $(1)=\frac{5^{1}-1}{-}$:

1	()
01	1746189
001	1622459
0001	1610734
00001	1609567

	()
-01	1486601
-001	1596556
-0001	1608143
-00001	1609308

It appears that $\lim _{\rightarrow 0}(1) \approx 16094$. The graph confirms that result.
27. For $(1)=$:

1	()
01	0794328
001	0954993
0001	0993116
00001	0999079

It appears that $\lim _{\rightarrow 0^{+}}(\mathbb{I})=1$.

The graph confirms that result.

28. For $1(i)=-{ }^{2} \ln$:

1	()
01	-0023026
001	-0000461
0001	-0000007
00001	-0000000

$$
\text { It appears that } \lim _{\rightarrow 0^{+}}(\mathbb{\|})=0
$$

The graph confirms that result.
29. (a) From the graphs, it seems that $\lim _{\rightarrow 0} \frac{\cos 2^{-}-\cos ^{-}}{-2}=-15$.

(b)

"	(1)
± 01	-1493759
± 001	-1499938
± 0.001	-1499999
± 0.0001	-1500000

NOT FOR SALE INSTRUCTORUSE ONLY

30. (a) From the graphs, it seems that $\lim _{\rightarrow 0} \frac{\sin ^{-}}{\sin 77}=032$.

(b)

$:$	()
± 01	0323068
± 001	0318357
± 0001	0318310
waidbe	ables 48 shnpw

the exact value is ${ }^{1}$.
31. $\lim \frac{{ }_{-}^{+}+1}{}=\infty$ since the numerator is positive and the denominator approaches 0 from the positive side as ${ }^{-} \rightarrow 5^{+}$. $\rightarrow 5^{+} \quad-5$
32. $\lim \frac{{ }^{-}+1}{}=-\infty$ since the numerator is positive and the denominator approaches 0 from the negative side as ${ }^{-} \rightarrow 5^{-}$. $\rightarrow 5^{-}-5$
33. $\lim _{\rightarrow 1(\urcorner-1)^{2}} \frac{2-\urcorner}{\infty}$ since the numerator is positive and the denominator approaches 0 through positive values as $\urcorner \rightarrow 1$. $\rightarrow 1(7-1)^{2}$
34. $\lim _{\rightarrow 3^{-}} \frac{\sqrt{ }\urcorner}{(\urcorner-3)^{5}}=-\infty$ since the numerator is positive and the denominator approaches 0 from the negative side as $\urcorner \rightarrow 3-$
35. Let $=^{-}-2$. Thenas ${ }^{-} \rightarrow 3^{+},^{-} \rightarrow 0^{+}$, and $\lim _{\rightarrow 3^{+}} \ln \left({ }^{-2}-9\right)=\lim _{\rightarrow 0^{+}} \ln =-\infty$ by (5).
36. $\lim _{\rightarrow 0^{+}} \ln (\sin 7)=-\infty$ since $\sin ^{-} \rightarrow 0^{+}$as $\rightarrow 0^{+}$.
37. $\lim _{1 \rightarrow(1 \mid 2)^{+}} \frac{1}{-} \sec ^{-}=-\infty$ since $^{\frac{1}{1}}$ is positive and sec ${ }^{-} \rightarrow-\infty$ as ${ }^{-} \rightarrow()^{+}$.
38. $\lim \cot \urcorner=\lim \quad \underline{\cos \urcorner}=-\infty$ since the numerator is negative and the denominator approaches 0 through positive values $\rightarrow-\quad \rightarrow-\sin$
as $\urcorner \rightarrow 7$-.
39. $\left.\left.\lim _{\rightarrow 2-}\right\urcorner \csc \right\urcorner=\lim _{\rightarrow-\sin ^{-}} \frac{-}{-}=-\infty$ since the numerator is positive and the denominator approaches 0 through negative values as $\urcorner \rightarrow 2^{-}$.
40. $\lim _{\rightarrow 2^{-}} \frac{-2^{-2}-2^{-}}{}=\lim _{\rightarrow 2^{-}} \frac{(772)}{(7-2)^{2}}=\lim _{\rightarrow 2^{-}} \frac{\urcorner}{\urcorner-2}=-\infty$ since the numerator is positive and the denominator
approaches 0 through negative values as $\urcorner \rightarrow 2^{-}$.
41. $\lim _{\rightarrow 2^{+}} \frac{\frac{\left.\urcorner^{2}-2\right\urcorner-8}{2} 5^{-}+6}{L^{-}}=\lim _{\rightarrow 2^{+}(-3)(-2)(-2)(-2)} \frac{(--4 n c e ~ t h e ~ n u m e r a t o r ~ i s ~ n e g a t i v e ~ a n d ~ t h e ~ d e n o m i n a t o r ~ a p p r o a c h e s ~}{0} 0$ through negative values as $\urcorner \rightarrow 2^{+}$.
42. $\left.\left.\lim _{1 \rightarrow 0^{+}}\right\urcorner \underline{1}-\ln \right\urcorner=\infty$ since $\stackrel{1}{\rightarrow} \rightarrow$ and $\left.\ln \right\urcorner \rightarrow-\infty$ as $\urcorner \rightarrow 0^{+}$.

NOT FOR SALE INSTRUCTOR USE ONLY

44. (a) The denominator of $\urcorner=\frac{-2+1}{3 \neg-2 R}=\frac{7^{2}+1}{-(3-2)}$ is equal to zero when

$$
=0 \text { and }={ }_{2}^{3} \text { (and the numerator is not), so }=0 \text { and }=15 \mathbf{x}
$$

vertical asymptotes of the function.
(b)

45. (a) $(\mathbb{I})=\frac{1}{7^{3}-1}$.

From these calculations, it seems that
$\lim _{1 \rightarrow 1^{-}}\left({ }^{-}\right)=-\infty$ and $\underset{\rightarrow 1^{+}}{\lim }\left({ }^{-}\right)=\infty$.

	()
05	-1114
09	-3169
099	-3317
0999	-33317
09999	-333317
099999	-33,333 7

	()
15	042
11	302
1.01	330
1001	3330
10001	33330
100001	33,333 3

(b) If ${ }^{-}$is slightly smaller than 1 , then ${ }^{-3}-1$ will be a negative number close to 0 , and the reciprocal of ${ }^{-3}-1$, that is, ($)$, will be a negative number with large absolute value. So $\lim _{\rightarrow 1^{-}}(\|)=-\infty$.

If ${ }^{-}$is slightly larger than 1 , then ${ }^{-3}-1$ will be a small positive number, and its reciprocal, (Π), will be a large positive number. So $\lim _{\rightarrow 1^{+}}(\cap)=\infty$.
(c) It appears from the graph of \urcorner that
$\left.\lim _{1 \rightarrow 1^{-}}()^{-}\right)=-\infty$ and $\underset{\rightarrow 1^{+}}{\lim }()=\infty$.

(b)
46. (a) From the graphs, it seems that $\lim ^{\tan 4^{-}}=4$.

$$
\|_{1 \rightarrow 0}
$$

47. (a) Let $7(7)=(1+7)^{1}$

	()
± 01	4227932
± 001	4002135
± 0001	4000021
± 00001	4000000

	$7(7)$
-0001	271964
-0.0001	271842
-0.00001	271830
-0000001	271828
0.000001	2171828
0.00001	271827

It appears that $\lim _{\rightarrow 0}\left(1+^{-}\right)^{1} \approx 271828$, which is approximately

INSTRUCTOR USE ONLY

48. (a)

100

No, because the calculator-produced graph of (i) $=1+\ln |-4|$ looks like an exponential function, but the graph of has an infinite discontinuity at $7=4$. A second graph, obtained by increasing the numpoints option in Maple, begins to reveal the discontinuity at $7=4$.
(b) There isn't a single graph that shows all the features of \neg. Several graphs are needed since \urcorner looks like $\ln \mid\urcorner-4 \mid$ for large negative values of \urcorner and like \urcorner^{\prime} for $\urcorner \neg 5$, but yet has the infinite discontiuity at $\urcorner=4$.

A hand-drawn graph, though distorted, might be better at revealing the main features of this function.
49. For ${ }^{-1}$ (ll) $=^{-2}-\left(2^{-1000}\right)$:
(a)

	(II)
1	0998000
08	0638259
0.6	0358484
04	0158680
02	0038851
01	0008928
005	0001465

It appears that $\lim _{\rightarrow 0}(\|)=0$.
50. For $^{-}\left(^{-}\right)=\frac{\tan ^{-} \stackrel{\rightarrow 0}{--} \text { : }}{}$
(a)

=	(-)
110	0.55740773
05	0)370419 92
011	$0 \lcm{33467209}$
0.05	$0 \lcm{33366700 ~}$
001	$0 \lcm{33334667 ~}$
0005	$0 \lcm{33333667 ~}$

(b) It seems that $\left.\lim _{\rightarrow 0}\right\urcorner(7)={ }_{3}^{1}$.
(b)

$=$	()
004	0000572
002	-0000614
001	-0000907
0005	-0000978
0003	-0.000993
0001	-0.001000

It appears that $\lim _{\rightarrow 0}(\|)=-0001$.

INSTRUCTOR USE ONLY

(c)

| \begin{tabular}{\|c|c|}
\hline
\end{tabular}	$7(7)$
00001	033333350
00005	033333344
00001	033333000
000005	033333600
000001	033300000
00000001	000000000

Here the values will vary from one
calculator to another. Every calculator will eventually give false values.
(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

51. No matter how many times we zoom in toward the origin, the graphs of ${ }^{(}\left(^{\circ}\right)=\sin \left(^{(}\right)$appear to consist of almost-vertical lines. This indicates more and more frequent oscillations as $\urcorner \rightarrow 0$.

52. (a) For any positive integer 7 , if ${ }^{-}=\frac{1}{।}$, then ${ }^{-}(\Pi)=\tan _{-}^{1}=\tan \left({ }^{-}\right)=0$. (Remember that the tangent function has period 7.$)$
(b) For any nonnegative number \urcorner, if $\urcorner=\frac{4}{(4\rceil+1)\rceil}$, then

$$
\text { (})=\tan ^{\frac{1}{2}}=\tan \frac{(47+1)}{4}=\tan \frac{4}{4}+\operatorname{lan}_{4}^{-}=\tan \quad+\tan _{4}^{-}=1
$$

(c) From part (a), ($\left.{ }^{\circ}\right)=0$ infinitely often as ${ }^{-} \rightarrow 0$. From part (b), ${ }^{\circ}(\eta)=1$ infinitely often as $\quad \rightarrow 0$. Thus, $\lim \tan \underline{1}$ does not exist since ${ }^{-}(\Pi)$ does not get close to a fixed number as ${ }^{-} \rightarrow 0$.
53.

There appear to be vertical asymptotes of the curve $=\tan \left(2 \sin ^{-}\right)$at $\approx \pm 90$ and $\approx \pm 2$ 24. To find the exact equations of these asymptotes, we note that the graph of the tangent function has vertical asymptotes at $7=\frac{\overline{2}_{2}}{+^{-}}$. Thus, we must have $\left.2 \sin 7=\frac{1}{2}+7\right\urcorner$, or equivalently, $\sin \neg=\frac{1}{4}+\frac{11}{2} 7$. Since $-1 \leq \sin \urcorner \leq 1$, we must have $\sin \urcorner= \pm 4$ and so $\urcorner= \pm \sin ^{-1} \frac{1}{4}$ (corresponding to ${ }^{-} \approx \pm 090$). Just as 150° is the reference angle for $30^{\circ},^{-}-\sin ^{-1} \frac{1}{4}^{4}$ is the
 vertical asymptotes (corresponding to ${ }^{-} \approx \pm 224$).
54. $\lim _{\rightarrow-} \Gamma=\lim _{\rightarrow-} \frac{{ }^{-} 0}{2}$. As

$$
{ }^{-3} _4-
$$

7
55. (a) Let $=\sqrt{ } \bar{\top}-1$.

From the table and the graph, we guess that the limit of \urcorner as \urcorner approaches 1 is 6

(b) We ${ }^{-3^{3}-1}$| 1000 | |
| :--- | :--- | :--- | :--- |
| 10001 | 600075 |

(b) We need to have $\left.557 \frac{V^{-}-1}{V^{-}-1}\right\urcorner$ 6l5. From the graph we obtain the approximate points of intersection $7\left(\begin{array}{llllll}0 & 9314 & 5\end{array}\right)$
and $7(1064965)$. Now $1-09314=00686$ and $10649-1=00649$, so by requiring that be within 00649 of1, we ensure that ${ }^{-}$is within 05 of 6 .

2.3 Calculating Limits Using the Limit Laws

1. (a) $\lim _{\rightarrow 2}\left[()+5^{\prime}()\right]=\lim _{\rightarrow \rightarrow 2}(\mathbb{I})+\lim _{\rightarrow \rightarrow 2}\left[5^{\circ}()\right] \quad$ [Limit Law 1]

$$
=\lim _{\rightarrow 2}(\mathbb{I})+5 \lim _{\rightarrow 2}(\mathbb{1})
$$

[Limit Law 3]

$$
=4+5(-2)=-6
$$

$$
\text { (b) } \lim _{\substack{ \\\rightarrow 2}}[(C)]^{3}=\lim _{1 \rightarrow 2}(\mathbb{C})^{3} \quad[\text { Limit Law } 6]
$$

NOT FOR SALE INSTRUCTOR USE ONLY

(c) $\lim ^{「}(\mathrm{I})=$ tim (门) [Limit Law 11]

$$
\begin{aligned}
\rightarrow 2 & \sqrt{ } \rightarrow 2 \\
= & 4=2
\end{aligned}
$$

(d) $\lim \frac{3^{-}()}{\lim ^{2}\left[3^{-}()\right]}$
[Limit Law 5]

$$
\begin{aligned}
& \rightarrow 2(\cap) \\
&=\frac{3 \lim _{\rightarrow 2}()}{\lim _{\rightarrow 2}(\mathbb{1})} \quad \text { [Limit Law 3] } \\
&=\frac{3(4)}{-2}=6
\end{aligned}
$$

(e) Because the limit of the denominator is 0 , we can’t use Limit Law 5. The given limit, $\left.\lim _{\rightarrow 2} \xrightarrow[(\rceil)\right]{(\sqcap)}$, does not exist because the denominator approaches 0 while the numerator approaches a nonzero number.
(f) $\lim _{\rightarrow 2} \frac{() \cap()}{(\mathbb{C})}=\frac{\lim _{\rightarrow 2}[(0)(\mathbb{)}]}{\lim _{\rightarrow 2}(\Pi)} \quad$ [Limit Law 5]

$$
\begin{aligned}
& =\frac{\lim _{\rightarrow 2}(\mathbb{1}) \cdot \lim ^{-(1)}}{\lim _{\rightarrow 2}(\mathbb{C})^{2}} \quad \text { [Limit Law 4] } \\
& =\frac{-2 \cdot 0}{4}=0
\end{aligned}
$$

2. (a) $\lim _{\rightarrow 2}\left[()+^{-}()\right]=\lim _{\rightarrow 2}(\|)+\lim _{\rightarrow 2}$ ($) \quad[$ Limit Law 1]

$$
\begin{aligned}
& =-1+2 \\
& =1
\end{aligned}
$$

(b) $\lim _{\rightarrow 0}$ ($^{-}$) exists, but $\lim _{\rightarrow 0}{ }^{-}\left({ }^{-}\right)$does not exist, so we cannot apply Limit Law 2 to $\left.\left.\lim \left[{ }^{-}()^{-}\right)-^{-}()^{-}\right)\right]$.

The limit does not exist.
(c) $\left.\lim _{\rightarrow-1}[()](\square)\right]=\min _{\rightarrow-1}\left(C^{\prime}\right) \cdot \lim _{\rightarrow-1}$ () [Limit Law 4]

$$
=1 \cdot 2
$$

$$
=2
$$

(d) $\lim _{1 \rightarrow 3}(\Pi)=1$, but $\lim _{1 \rightarrow 3}(\Pi)=0$, so we cannot apply Limit Law 5 to $\lim _{1 \rightarrow 3^{\circ}} \frac{(0)}{(0)}$ The limit does not exist.

Therefore, the limit does not exist, even as an infinite limit.
(e) $\lim _{1 \rightarrow 2} 7^{2-}\left({ }^{-}\right)=\lim _{1 \rightarrow 2}^{-2} \cdot \lim _{1 \rightarrow 2}(\Pi) \quad[$ Limit Law 4]

$$
=2^{2} \cdot(-1)
$$

$$
=-4
$$

(f) * $(-1)+\lim _{-1}{ }^{-}(\Pi)$ is undefined since ${ }^{-}(-1)$ is not defined.
3. $\lim _{\rightarrow 3}\left(5^{-3}-3^{-2}+^{-}-6\right)=\lim _{\rightarrow 3}\left(5^{-3}\right)-\underset{\rightarrow 3}{\lim \left(3^{-2}\right)+\lim _{1 \rightarrow 3}^{-}-\underset{\rightarrow 3}{\lim } 6}$

$$
=5 \lim _{\rightarrow 3} 7^{3}-3 \lim _{1 \rightarrow 3} 7^{2}+\lim _{1 \rightarrow 3} 7-\lim _{\rightarrow 3} 6
$$

$$
=5\left(3^{3}\right)-3\left(3^{2}\right)+3-6
$$

$$
=105
$$

NOT FOR SALE INSTRUCTOR USE ONLY

4. $\left.\left.\left.\lim _{\rightarrow-1}\left(\bigcap^{4}-37\right)\left({ }^{-2}+5\right\rceil+3\right)=\lim _{\rightarrow-1}\left(\bigcap^{4}-3\right\rceil\right) \lim _{\rightarrow-1}\left(\bigcap^{2}+5\right\rceil+3\right)$

$$
\begin{aligned}
& \left.=\lim _{\rightarrow-1} 7^{4}-\lim _{\rightarrow-1} 3^{\rightarrow-1} \lim _{\rightarrow-1} 7^{2}+\lim _{1 \rightarrow-1} 5 \not\right\urcorner+\lim _{1 \rightarrow-1} 37 \\
& \left.=\lim _{\rightarrow-1}{ }^{7}<-3 \lim _{\rightarrow-1}\right\urcorner \lim _{\rightarrow-1}{ }^{7}+5 \lim _{\rightarrow-1} 7+\lim _{\rightarrow-1} 3 \\
& =(1+3)(1-5+3) \\
& =4(-1)=-4
\end{aligned}
$$

[9, 8, and7]
5. $\lim _{\rightarrow-2} \frac{-^{4}-2}{2^{2}-3+2}=\frac{\lim _{\mid 1 \rightarrow-2}\left(4^{4}-2\right)}{\lim _{\rightarrow-2}\left(2^{2}-3+2\right)}$

[Limit Law 5]

$$
=\frac{\lim { }^{4}-\lim 2}{2 \lim { }^{\rightarrow-2} 3 \lim ^{\rightarrow^{-2}} \lim 2}
$$

[1, 2, and 3]

$$
\begin{aligned}
& \quad{ }_{\rightarrow-2}^{2-\rightarrow_{\rightarrow-2}}+\frac{16-2}{2(4)-3(-2)+2} \\
& =\frac{14}{16}={ }^{7} \\
& 8
\end{aligned}
$$

$$
\sqrt{ }
$$

6. $\lim _{\rightarrow-2}$

$$
\begin{align*}
4+3+6 & \left.\left.=\Gamma \prod_{\rightarrow-2}(\rceil^{4}+3\right\rceil+6\right) \tag{11}\\
& =\left\ulcorner\prod_{\left.\left.\lim _{\rightarrow-2}\right\rceil^{4}+3 \lim _{1 \rightarrow-2}\right\rceil+\lim _{1 \rightarrow-2} 6}\right. \\
& =(-2)^{4}+3(-2)+6 \\
& =\sqrt{ } \frac{\sqrt{ } \frac{(16-6+6}{16-6}=4}{}
\end{align*}
$$

[1, 2, and 3]
$[9,8$, and 7$]$
7. $\lim _{\rightarrow 8}(1+\sqrt[3]{ }-)\left(2-6^{-2}+{ }^{3}\right)=\lim _{\rightarrow 8}(1+\sqrt{\sqrt{2}}-) \cdot \lim _{\rightarrow 8}\left(2-6^{2}+{ }^{-3}\right)$
[Limit Law 4]

$$
\begin{aligned}
& =\lim _{1 \rightarrow 8} 1+\lim _{1 \rightarrow 8} 3^{-8} \cdot \lim _{1 \rightarrow 8} 2-6 \lim _{1 \rightarrow 8}-2+\lim _{1 \rightarrow 8} 3 \\
& =1+{ }^{\sqrt{-}} 8 \cdot 2-6 \cdot 8^{2}+8^{3} \\
& =(3)(130)=390
\end{aligned}
$$

[9, 7, and 8]
[1, 2, and 3]
$[7,10,9]$
8. $\lim _{\rightarrow 2} \frac{2-2}{3-3+5}=\lim _{\rightarrow 2} \frac{2-2}{3-3+5}$
[Limit Law 6]

$$
\begin{equation*}
=\Gamma \xrightarrow{\Gamma} \lim _{\rightarrow 2}\left(2^{2}-2\right)^{\Pi 2} \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& \Gamma \lim _{\rightarrow 2}(3 \quad 3+5)- \\
= & \Gamma \frac{\lim _{\rightarrow 2}{ }^{2}-\lim _{\rightarrow 2} 2}{\lim _{\rightarrow 2} 3-3 \lim _{\lim _{2}}+\lim _{\rightarrow 2} 5} \\
= & \frac{74}{8-2} \frac{4}{3(2)+5}
\end{aligned}
$$

[1, 2, and 3]

82 CHAPTER 2 LIMITS AND DERIVATIVES
9.
$\lim \frac{\overline{27^{2}+1}}{7}=\overline{\lim \frac{2\urcorner^{2}+1}{-}}$
[Limit Law 11]
$1 \rightarrow 2 \quad 3-2$

$$
\begin{equation*}
=F \xlongequal[\substack{\left.\rightarrow 2 \\ \lim _{\rightarrow 2}(3\rceil-2\right)}]{\overline{\left.\lim (2\rceil^{2}+1\right)}} \tag{5}
\end{equation*}
$$

$$
=F \frac{2 \lim _{\rightarrow 2} 7^{2}+\lim _{\rightarrow 2} 1}{3 \lim 7-\lim 2}
$$

$$
[1,2, \text { and } 3]
$$

$$
=\stackrel{\left\ulcorner(2)^{2}+1\right.}{\stackrel{\rightarrow 2}{>}}=\stackrel{\overline{9}}{=}=3
$$

10. (a) The left-hand side of the equation is not defined for $\urcorner=2$, but the right-hand side is.
(b) Since the equation holds for all $\urcorner 6=2$, it follows that both sides of the equation approach the same limit as $\urcorner \rightarrow 2$, just a in Example 3. Remember that in finding $\lim _{\rightarrow}(\Pi)$, we never consider ${ }^{-}={ }^{\prime}$.
11. $\lim _{1 \rightarrow 5} \frac{-2-6^{-}+5}{7-5}=\lim _{1 \rightarrow 5} \frac{(7-5)(7-1)}{7-5}=\lim _{\rightarrow 5}(\Gamma-1)=5-1=4$
12. $\lim \frac{{ }^{-2}+3}{-}=\lim \frac{-(+3)}{7}=\lim \frac{-7}{-\quad \frac{-3}{-}}=\underline{3}$

$$
\begin{array}{ccccccc}
\rightarrow-3 & 2-2 & \rightarrow-3(-4)(+3 & \rightarrow-3 & -4 & -3-4 & 7 \\
-{ }^{2}-5 & +6 & 2 &
\end{array}
$$

13. $\lim _{\rightarrow 5} \longrightarrow 7-5$ does not exist since $\urcorner-5 \rightarrow 0$, but ${ }^{-}-5^{-}+6 \rightarrow 6$ as $\urcorner \rightarrow 5$.

$$
\rightarrow 4^{+} \quad-4
$$

15. $\lim \frac{r^{2}-9}{}=\lim (+3)(-3)=\lim -3=-3-3={ }^{-6}=6$
$\rightarrow-32^{2}+7+3 \quad \rightarrow-3 \overline{(2+1)(+3)} \rightarrow-3 \overline{2+1} \quad 2(-3)+1 \quad-5 \quad 5$
7
16. $\lim 2^{2}+3+1=\lim \underline{(27+1)(7+1)}=\lim \underline{27+1} \underline{2(-1)+1}$

17. $\lim _{1 \rightarrow 0} \frac{(-5+7)^{2}-25}{}=\lim _{1 \rightarrow 0} \frac{\left.(25-10\urcorner+7^{2}\right)-2}{}=\lim _{1 \rightarrow 0} \frac{-10+\Gamma^{2}}{}=\lim _{1 \rightarrow 0} \frac{-\left(-10+^{-}\right)}{}=\lim _{\rightarrow 0}(10+\quad)=10$ ᄀ

$$
=\lim _{\rightarrow 0} 12+67+7^{2}=12+0+0=12
$$

19. By the formula for the sum of cubes, we have
20. We use the difference of squares in the numerator and the difference of cubes in the denominator.

$$
\lim _{1 \rightarrow 0}^{\overline{7 \overline{9+7}+3}} \lim _{\overline{\overline{9+7}}} \quad \overline{9+3} \quad 3+3
$$

$$
\begin{array}{cccc}
\rightarrow 2 & 4 & 4 & 2 \\
& 47+1+3 & 9+3 & 3
\end{array}
$$

$1-1 \quad \begin{aligned} & 1 \\ & \\ & \\ & \\ & -\quad \text { 그 }\end{aligned}$

24. $\lim \frac{(3+7)^{-1}-3^{-1}}{7}=\lim \frac{\frac{1}{3+7}-\frac{1}{3}}{7}=\lim \frac{3-(3+7)}{7}=\lim$
25. lim
26. $\lim _{\rightarrow 0} \frac{1}{-2}-\frac{1}{2+}=\lim _{\rightarrow 0} \frac{1}{7}-\frac{1}{(+1)}=\lim _{\rightarrow 0} \frac{-+1-1}{(+1)}=\lim _{\rightarrow 0} \frac{1}{1}=\frac{1}{1}=10+1$

$$
\begin{aligned}
& \operatorname{im} \longrightarrow=\lim \\
& \lim \\
& \sqrt{1+}+\sqrt{1-} \\
& =\lim
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{-\sqrt{1}}{ }_{1}=2=1
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{11 \rightarrow 0}{ }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow 0 \quad 3(3+7) \quad \lim _{\rightarrow 0}[3(3+7)] \quad 3(3+0) \quad 9
\end{aligned}
$$

27. $\lim _{\| \mid 16167-{ }^{2}}=\lim _{\rightarrow 16} \frac{\sqrt{ }}{\left(167-^{--^{2}}\right)\left(4+^{-}\right)}=\lim _{\rightarrow 167(16-7)\left(4+^{-}\right)}$

$$
=\lim _{\rightarrow 16} \frac{1 \sqrt{ }}{7(4+\quad)}=\frac{-{ }^{1} \sqrt{ }-7}{164+16}=\frac{1}{16(8)} 128
$$

28. $\lim _{\rightarrow 2^{-}} \frac{-{ }^{-}-4^{-}+4}{4-3^{-} 2-4}=\lim _{\rightarrow 2} \frac{(7-2)^{2}}{\left(7^{2}-4\right)\left(7^{2}+1\right)}=\lim _{\rightarrow 2} \frac{(7-2)^{2}}{(7+2)(7-2)\left(7^{2}+1\right)}$

$$
=\lim _{\rightarrow 2} \frac{7-2}{(-2)\left(-^{-2}+1\right)}=\frac{0}{4 \cdot 5}
$$

INSTRUCTOR USE ONLY

84 CHAPTER 2 LIMITS AND DERIVATIVES

$$
=\lim _{1 \rightarrow-4} \frac{\sqrt{ }=\frac{\lim _{2}^{2}-16}{\left.7 \frac{(7+4)(7-4)}{1 \sqrt{2}}+4\right)}+9 \rightarrow-4(+4) \quad 2+9+5}{(\overline{2})}
$$

$$
=\lim _{\rightarrow-4} \frac{\sqrt{ } \frac{7}{7}{ }^{2}+9+5}{16+9+5}=\sqrt{ } \quad \begin{aligned}
& -4-4 \\
&
\end{aligned}=\frac{-8}{5}=-4
$$

31. $\lim _{1 \rightarrow 0}\left(+^{-}\right)^{3}-^{-3}=\lim _{1 \rightarrow 0}\left({ }^{3}+3^{-2^{-}}+3^{--^{2}+{ }^{-}}{ }^{3}\right)-73=\lim _{1 \rightarrow 0} \frac{37^{2} 7+377^{2}+3}{}$

$$
\left.\left.=\lim _{1 \rightarrow 0} \frac{\left(3^{-2}+3^{--}+{ }^{-2}\right)}{-}=\lim _{\rightarrow 0}(3\urcorner^{2}+3\right\urcorner 7+7\right)=37^{2}
$$

$$
-1 \quad 1 \quad{ }^{-2}-\left(+^{-}\right)^{2}
$$

$$
=\lim _{11 \rightarrow 0} \frac{-(2\urcorner+7)}{-^{2}(7+7)^{2}}=\frac{-2\urcorner}{7^{2} \cdot 7^{2}}=-\frac{2}{7^{3}}
$$

33. (a)

$$
\begin{array}{cc}
\lim _{\rightarrow 0} \frac{\sqrt{ }}{1+3\urcorner-1} & \approx \frac{2}{3} \\
- & \sqrt{ }
\end{array}
$$

(b)

	()
-0 001	0.6661663
-0 0001	066666167
-0 00001	$0 \cdot 6666617$
-0 000001	0.6666662
0000001	066666672
000001	016666717
00001	0.6667167
0001	066671663
	- ${ }^{\text {d }}$

The limit appears to be $\frac{2}{3}$
$=\lim$
[Limit Law 3]
[1 and 11]
[1, 3, and 7]

$$
\begin{aligned}
& =\frac{1}{3} 7^{\sqrt{ }} 1+3 \cdot 0+17 \\
& ={ }_{3}^{1}(1+1)=\begin{array}{l}
3 \\
3
\end{array}
\end{aligned}
$$

INSTRUCTOR USE ONLY

34. (a)

(c) \lim

$1 \quad 3++\sqrt{3}$
(b)

$=$	()
-0001	02886992
-00001	02886775
$-0,00001$	02886754
$-0,000001$	02886752
0,000001	02886751
0,00001	02886749
0,0001	02886727
0001	0288651

The limit appeas to be approximately 02887.

[Limit Laws 5 and 1]
[7 and 11]
[1, 7, and 8]

$$
\begin{aligned}
& =\frac{1}{2+0+}_{2}^{3}
\end{aligned}
$$

35. Let ${ }^{\circ}()=-^{-2},()={ }^{-2} \cos 20^{-}$and ()$={ }^{-}{ }^{2}$. Then
$-1 \leq \cos 20^{-} \leq 1 \Rightarrow-{ }^{2} \leq{ }^{-2} \cos 20^{-} \leq{ }^{-2} \Rightarrow \quad$ () $\leq{ }^{-}(1) \leq{ }^{\circ}($). So since $\lim _{\rightarrow 0}\left\lceil()=\lim _{\rightarrow 0}(\quad)=0\right.$, by the Squeeze Theorem we have $\lim _{\rightarrow 0}(\mathbb{(1)}=0$

 we have $\lim _{\rightarrow 0}$ ($\left.^{(}\right)=0$

$\rightarrow 0$ 1
36. We have $\lim _{1 \rightarrow 4}\left(4^{-}-9\right)=4(4)-9=7$ and $\lim _{1 \rightarrow 4}^{1}-2-4^{-}+7=4^{2}-4(4)+7=7$. Since $\left.4^{-}-9 \leq 0^{-}\right)^{-2}-4^{-}+7$ for $\geq 0, \lim _{\rightarrow 4}()=7$ by the Squeeze Theorem.
37. We have $\lim _{\rightarrow 1}\left(2^{-}\right)=2(1)=2$ and $\lim _{\rightarrow 1}\left(-^{4}--^{2}+2\right)=1^{4}-1^{2}+2=2$. Since $2^{-}(\Pi) \leq^{-4}-{ }^{-2}+2$ for all , $\lim _{\rightarrow 1}(\|)=2$ by the Squeeze Theorem.

NOT FOR SALE INSTRUCTOR USE ONLY

 $\lim _{1 \rightarrow 0^{+}}\left({ }^{\sqrt{ }}{ }^{-}\right)=0$, we have $\lim _{\mid \rightarrow 0^{+}} \sqrt{-}^{-} \sin ()=$,0 by the Squeeze Theorem.
41. $|7-3|=$

$$
\begin{aligned}
& \begin{array}{l}
7 \\
-3
\end{array} \text { if }-3 \geq 0=\begin{array}{l}
7 \\
\hline
\end{array} \quad \text { if } \geq 3 \\
& -(7-3) \text { if }
\end{aligned}
$$

Thus, $\left.\left.\left.\left.\lim _{1 \rightarrow 3^{+}}(2\rceil+\mid\right\urcorner-3 \mid\right)=\lim _{1 \rightarrow 3^{+}}(2\rceil+\neg-3\right)=\lim _{\rightarrow 3^{+}}(3\urcorner-3\right)=3(3)-3=6$ and
$\left.\left.\left.\left.\lim _{\rightarrow 3^{-}}(2\rceil+\mid\right\urcorner-3 \mid\right)=\lim _{\rightarrow 3^{-}}(2\rceil+3-7\right)=\lim _{\rightarrow 3^{-}}(\urcorner+3\right)=3+3=6$. Since the left and right limits are equal, $\left.\left.\lim _{\rightarrow 3}(2\rceil+\right\urcorner-\left.\right|^{3}\right)=6$.
42. $|7+6|=$

$$
\begin{array}{ccc}
\\
+6 & \text { if }\urcorner+6 \geq 0 \\
-(+6) & \text { if }+6^{-} & \text {if } \\
-(+6) & \text { if } & \begin{array}{c}
7 \\
\\
-(+6)
\end{array}
\end{array}
$$

We'll look at the one-sided limits.
$\lim _{1 \rightarrow-6^{+}} \frac{2\rceil+12}{\mid\rceil+6 \mid}=\lim _{1 \rightarrow-6^{+}} \frac{2(7+6)}{\urcorner+6}=2$ and $\lim _{1 \rightarrow-6^{-}} \frac{2\rceil+12}{\mid\rceil+6 \mid}=\lim _{\rightarrow-6^{-}-(\Gamma+6)} \frac{2(7+6)}{}=-2$
The left and right limits are different, so $\lim \frac{2^{-}+12}{}$ does not exist.

$$
\rightarrow-6 \mid \overline{7+6 \mid}
$$

43. $2^{-3}-{ }^{2}={ }^{2}(2-1)=2 \cdot|2-1|=-2|2-1|$

So $2^{-3}-{ }^{-2}={ }^{-2}\left[-\left(2^{-}-1\right)\right]$ for ${ }^{-} 0 \backslash 5$.
Thus, $\lim _{1 \rightarrow 05^{-}} \frac{2]-1}{\left|2^{-3}-2\right|}=\lim _{1 \rightarrow 05^{-}} \frac{2]-1}{{ }^{2}[-(2-1]}=\lim _{1 \rightarrow 05^{--2}} \frac{-1}{(05)^{2}}=\frac{-1}{0}=\frac{-1}{25}-4$.
 denominator approaches 0 and the numerator does not.

47. (a)

(b) (i) Since $\operatorname{sgn}{ }^{-}=1$ for $^{-} \quad 0, \lim _{\rightarrow 0^{+}} \operatorname{sgn} 7=\lim _{1 \rightarrow 0^{+}} 1=1$.
(ii) Since $\operatorname{sgn}^{-}=-1$ for $\left.^{-} 0, \lim ^{-} \operatorname{sgn}\right\urcorner=\lim _{\mathrm{I}_{\rightarrow 0^{-}}}-1=-1$.

NOT FOR SALE
 (iv) Since $|\operatorname{sgn} 7|=1$ for $\urcorner 6=0, \lim _{\rightarrow 0}|\operatorname{sgn} 7|=\lim _{\rightarrow 0} 1=1$.
 INSTRUCTOR USE ONLY

48. (a) ${ }^{-}()=\operatorname{sgn}\left(\sin ^{-}\right)=\begin{aligned} & -1 \text { if } \sin ^{-} 0 \\ & 0 \quad \text { if } \sin \urcorner=0\end{aligned}$

「 1 if $\sin ^{-} 0$
(i) $\lim _{\rightarrow 0^{+}}(\eta)=\lim _{\mid \rightarrow 0^{+}} \operatorname{sgn}\left(\sin ^{-}\right)=1$ since $\sin ^{-}$is positive for small positive values of 7 .
(ii) $\lim _{\rightarrow 0^{-}}\left(^{-}\right)=\lim _{1 \rightarrow 0^{-}} \operatorname{sgn}(\sin 7)=-1$ since $\sin 7$ is negative for small negative values of 7 .
(iii) $\lim { }^{-}$(() does not exist since $\lim \quad$ () $6=$ () .
$\rightarrow 0 \quad \rightarrow 0^{+} \quad \rightarrow 0^{-}$
(iv) $\lim _{1 \rightarrow 1^{+}}()=\lim _{1 \rightarrow 1^{+}} \operatorname{sgn}(\sin 7)=-1$ since $\sin 7$ is negative for values of \urcorner slightly greater than 7 .
(v) $\lim _{1 \rightarrow 1^{-}}(\square)=\lim _{1 \rightarrow 1^{-}} \operatorname{sgn}(\sin 7)=1$ since $\sin 7$ is positive for values of 7 slightly less than 7 .
(vi) $\lim _{\rightarrow}{ }^{-}$($)$does not exist since, $\lim _{\rightarrow+}{ }^{\circ}$ () , $\lim _{\rightarrow-}{ }^{\circ}(\|)$.
(b) The sine function changes sign at every integer multiple of 7 , so the signum function equals 1 on one side and -1 on the other side of 77 , 7 an integer. Thus, $\lim ^{*}$ ($)^{\prime}$ does not exist for ${ }^{*}={ }^{-}{ }^{-}$, an integr
(c)

49. (a) (i) $\lim _{\rightarrow 2^{+}}$($)=\lim _{1 \rightarrow 2^{+}} \frac{7^{2}+7-6}{|7-2|}=\lim _{1 \rightarrow 2^{+}} \frac{(7+3)(7-2)}{|7-2|}$

$$
\begin{aligned}
& \left.\left.=\lim _{1 \rightarrow 2^{+}} \frac{(7+3)(7-2)}{7-2} \quad[\text { since }\urcorner-2^{-} 0 \text { if }\right\urcorner \rightarrow 2^{+}\right] \\
& =\lim _{\rightarrow 2^{+}}(\Gamma+3)=5
\end{aligned}
$$

(ii) The solution is similar to the solution in part (i), but now $\mid\urcorner-2 \mid=2-7$ since $\urcorner-2 \neg 0$ if $\urcorner \rightarrow 2^{-}$.

Thus, $\lim _{\rightarrow 2^{-}}()=\lim _{1 \rightarrow 2^{-}}-(7+3)=-5$.
(b) Since the right-hand and left-hand limits of \urcorner at $\urcorner=2$ are not equal, $\lim _{\rightarrow 2}$ () does not exist.
(c)

50. (a) $(\sqcap)={ }^{-2+1} \quad$ if $^{-} 1$

$$
\begin{aligned}
& \left.(7-2)^{2} \quad \text { if }\right\urcorner \geq 1 \\
& \lim _{\rightarrow 1^{-}}()=\lim _{\rightarrow 1^{-}}(2+1)=1^{2}+1=2, \quad \lim _{\rightarrow 1^{+}}(\square)=\lim _{\rightarrow 1+}(-2)^{2}=(-1)^{2}=1
\end{aligned}
$$

(b) Since the right-hand and left-hand limits of \urcorner at $\urcorner=1$

NOT FOR SALE INSTRUCTOR USE ONLY

51. For the $\lim _{\rightarrow 2^{-}}(0)$ to exist, the one-sided limits at $=2$ must be equal. $\lim _{\rightarrow 2^{-}}^{-}()=\lim _{\rightarrow 2^{-}} 4-\frac{1}{2}_{\frac{1}{2}}^{1}=4-1=3$ and $\begin{aligned} & \lim _{\rightarrow 2^{+}}(0)= \\ & \lim _{\rightarrow 2^{+}} \sqrt{ }+1\end{aligned}=\sqrt{ } \overline{2+1} . \quad$ Now $3=\sqrt{ } \overline{2+1} \Rightarrow 9=2+^{1} \Leftrightarrow \quad 1=7$.
52. (a) (i) $\left.\lim _{\rightarrow 1^{-}}{ }^{-}\right)=\lim _{1 \rightarrow 1^{-}} 7=1$
(ii) $\lim _{\rightarrow 1^{+}}()=\lim _{1 \rightarrow 1^{+}}\left(2--^{-2}\right)=2-1^{2}=1$. Since $\min _{\rightarrow 1^{-}}\left({ }^{-}\right)=1$ and $\underset{\rightarrow 1^{+}}{\operatorname{lm}}\left(C^{-}\right)=1$, we have $\underset{\rightarrow 1}{\lim }\left({ }^{-}\right)=1$.

Note that the fact ${ }^{-}(1)=3$ does not affect the value of the limit.
(iii) When ${ }^{-}=1,{ }^{-}(\Pi)=3$, so ${ }^{-}(1)=3$.
(iv) $\lim _{1 \rightarrow 2^{-}}\left({ }^{-}\right)=\lim _{\rightarrow 2^{-}}\left(2-{ }^{-2}\right)=2-2^{2}=2-4=-2$
(v) $\lim _{1 \rightarrow 2^{+}}(\Pi)=\lim _{\rightarrow 2^{+}}(-3)=2 __{-} 3=-1$
(vi) $\lim _{\rightarrow 2}(\mathbb{1})$ does not exist since $\lim _{\rightarrow 2^{-}}\left(\prod\right) \lim _{\rightarrow 2^{+}}\left(^{-}\right)$.
(b)

$$
(\square)=\begin{array}{ll}
& \text { if }{ }^{-} 1 \\
3 & \text { if }=1 \\
2-\neg^{2} & \text { if } 1 \neg^{-} \leq 2 \\
& \\
& \text { if }{ }^{-}-2
\end{array}
$$

(ii) $[[7]]=-3$ for $-3 \leq 77-2$, so $\lim [[7]]=\lim (-3)=-3$.

The right and left limits are different, so $\lim [[7]]$ does not exist.
(iii) $\llbracket \llbracket]=-3$ for $-3 \leq^{-} z$, so $\lim _{\mathbf{1} \rightarrow-214}[[7]]=\lim _{1 \rightarrow-24}(-3)=-3$.
(b) (i) $\left[\mathbb{]}=^{-}-1\right.$ for ${ }^{-}-1 \leq^{-}-{ }^{-}$, so $\lim \llbracket \rrbracket=\lim \left({ }_{-}^{-}-1\right)=^{-}-1$.
(ii) $[[\urcorner]]]=\urcorner$ for $\urcorner \leq \neg\urcorner\left\ulcorner+1\right.$, so $\left.\lim _{\mid \rightarrow+}^{[[\urcorner]]]}=\lim _{\| \rightarrow+}\right\urcorner=7$.
(c) $\lim \llbracket\rceil]$ exists $\Leftrightarrow 7$ is not an integer.
54. (a) See the graph of $\neg=\cos 7$.

Since $-1 \leq \cos ^{-} 0$ on $\left[\square^{\cdots}-^{-\cdots}\right.$), we have $=()=\left[\cos ^{-}\right]=-1$ on $[-\neg 7-\neg 72)$.

Since $0 \leq \cos ^{-{ }^{-}} 1$ on $\left[-^{-\cdots} 2 \mid 0\right) \cup\left(0^{*} \|^{-} 2\right]$, we have (\quad ($)=0$
on $\left[-^{-}{ }^{-} 2 \mid 0\right) \cup\left(0^{*} \|^{-} 2\right]$.
Since $-1 \leq \cos ^{-}{ }^{-} 0$ on $\left({ }^{-} 2 \mathbf{l}^{-}\right]$, we have ($(\square)=-1$ on $\left(^{-} 2\right]$
Note that $7(0)=1$.

NOT FOR SALE INSTRUCTOR USE ONLY

(b) (i) $\lim _{\rightarrow 0^{-}}{ }^{-}()=0$ and $\underset{1 \rightarrow 0^{+}}{\lim }{ }^{-}()=0$, so $\underset{\rightarrow 0}{\lim }(\Pi)=0$.
(ii) As ${ }^{-} \rightarrow\left({ }^{-} 2^{-},{ }^{-}(\|) \rightarrow 0\right.$, so $\left.\lim _{\rightarrow()^{-}}{ }^{-}{ }^{-}\right)=0$.
(iii) $\mathrm{As}^{-} \rightarrow\left({ }^{-} 2\right)^{+},\left(\mathbb{}{ }^{-}\left(\mathbb{)} \rightarrow-1\right.\right.$, so $\lim _{1 \rightarrow(1,2)^{+}}\left(^{-}\right)=-1$.
(iv) Since the answers in parts (ii) and (iii) are not equal, $\lim _{\rightarrow}$ () does not exist.

55. The graph of ${ }^{-}(\|)=\left[\rrbracket+\llbracket \square^{-}\right]$is the same as the graph of ${ }^{-}\left({ }^{-}\right)=-1$ with holes at each integer, since ${ }^{-1}(1)=0$ for any integer $^{-}$. Thus, $\lim _{\rightarrow 2^{-}}\left({ }^{-}\right)=-1$ and $\lim _{\rightarrow 2^{+}}()=-1$, so $\lim _{\rightarrow 2}()=-1$. However,

$$
(2)=[2]+\left[_2 \rrbracket=2+\left(_2\right)=0, \text { so } \lim _{\rightarrow 2}(\Pi)=^{-}(2)\right.
$$

$$
\begin{aligned}
& \Gamma \overline{\overline{-}^{2}} \\
& \\
& \\
& \jmath^{2}
\end{aligned} 7_{0} \sqrt{ } \overline{1-1}=0 . \text { As the velocity approaches the speed of light, the length approaches } 0 .
$$

56. $\lim _{\rightarrow-}{ }_{0} \overline{1-\frac{\overline{-}^{2}}{\rceil^{2}}}=7_{0} \sqrt{ } \overline{1-1}=0$. As the velocity approaches the speed of light, the length approaches 0 .

A left-hand limit is necessary since \urcorner is not defined for $\urcorner ᄀ\urcorner$.
57. Since $^{-}()$is a polynomial, ${ }^{-}()={ }^{-}{ }_{0}+^{-} 1^{-}+^{-} 2^{-}{ }^{2}+\cdots+^{-}$. Thus, by the Limit Laws,

$$
\begin{aligned}
& \left.\left.=\neg_{0}+\neg_{1}\right\urcorner+\neg_{2}\right\urcorner^{2}+\cdots+-_{1}-11=\square
\end{aligned}
$$

Thus, for any polynomial $\left.{ }^{-}, \lim _{\rightarrow}^{-}()^{-}\right)=^{-}\left({ }^{-}\right.$.
58. Let 1()$=\frac{(\cap)}{1(\cap)}$ where (\cap) and $\rceil(\cap)$ are any polynomials, and suppose that $1(\mathbb{I})=0$. Then
$\left.\lim _{\|\rightarrow\|} 1()^{-}\right)=\lim _{1 \rightarrow} \frac{(\cap)}{\nmid()}=\frac{\lim _{\rightarrow}^{-}()}{\left.\lim _{\rightarrow}\right\urcorner\left(^{-}\right)} \quad\left[\right.$ Limit Law 5] $=\frac{(\|)}{1(1)} \quad[$ Exercise 57] $=1(\Gamma)$.

$$
\begin{array}{llllll}
\rightarrow 1 & \rightarrow 1 & \urcorner-1 & \rightarrow 1 & \text { ᄀ-1 } & \rightarrow 1
\end{array}
$$

Thus, $\lim _{\rightarrow 1}\left(\right.$ Co $\left.^{\prime}\right)=\lim _{1 \rightarrow 1}\{[(\|)-8]+8\}=\lim _{\rightarrow 1}[(\|)-8]+\lim _{\rightarrow 1} 8=0+8=8$.
Note: The value of $\lim \xrightarrow{-(\square)-\underline{8}}$ does not affect the answer since it's multiplied by 0 . What's important is that

$$
\rightarrow 1\urcorner-1
$$

$\lim \xrightarrow{(\|)-\underline{8}}$ exists.
$\rightarrow 1 \neg-1$
60. (a) $\lim _{1 \rightarrow 0}(\Pi)=\lim _{1 \rightarrow 0} \frac{(\square)}{-2} \cdot-2=\lim _{1 \rightarrow 0} \frac{(\square)}{-2} \cdot \lim _{1 \rightarrow 0}{ }^{-2}=5 \cdot 0=0$
(b) $\lim _{1 \rightarrow 0} \frac{(\square)}{-}=\lim _{1 \rightarrow 0} \frac{(0)}{-2}=\lim _{1 \rightarrow 0} \frac{(\square)}{-2} \cdot \lim _{1 \rightarrow 0}=5 \cdot 0=0$
61. Observe that $0 \leq \leq^{\prime}(\Pi) \leq{ }^{-2}$ for all , and $\lim _{\rightarrow 0} 0=0=\lim _{\rightarrow 0}{ }^{-2}$. So, by the Squeeze Theorem, $\lim _{\rightarrow 0}^{-}(\Pi)=0$.

NOT FOR SALE INSTRUCTOR USE ONLY

but $\lim _{\rightarrow 3}\left[\rrbracket^{-}(\square)+{ }^{-}\left(^{-}\right)\right]=\underset{\rightarrow 3}{\lim }\left(\mathbb{C}^{-} \rrbracket-\mathbb{I}^{-} \rrbracket\right)=\underset{\rightarrow 3}{\lim 0}=0$.
63. Let ${ }^{\dagger}()=7()$ and $^{-}()=1-7()$, where \urcorner is the Heaviside function defined in Exercise 1.3.59.

Thus, either or ${ }^{-}$is 0 for any value of. Then $\lim _{\rightarrow 0}()$ and $\lim _{\rightarrow 0}^{-}()$do not exist, but $\lim _{\rightarrow 0}[()()]=\lim 0=0$.
 $=\lim \underline{6} \underline{3}^{2}+1 \quad=\lim \quad 6-7-4 \frac{\underline{3}+1}{\underline{-7}}$

$$
=\lim _{2-}(2-)^{1 \sqrt{ }} 6-+2=\lim ^{2} \sqrt{ } 6-\cdot+2={ }_{2}
$$

7
65. Since the denominator approaches 0 as $\quad \rightarrow-2$, the limit will exist only if the numerator also approaches 0 as $\urcorner \rightarrow-2$. In order for this to happen, we need $\left.\left.\lim _{\rightarrow-2} 73 \neg^{2}+\neg\right\urcorner+7+3\right\urcorner=0 \Leftrightarrow$
$\left.3(-2)^{2}+^{-}(-2)+\right\urcorner+3=0 \Leftrightarrow 12-2^{-}+7+3=0 \Leftrightarrow \neg=15$. With $\urcorner=15$, the limit becomes $\lim _{\rightarrow-2} \frac{37^{2}+157+18}{7+7-2}=\lim _{1 \rightarrow-2} \frac{3(7+2)(7+3)}{(7-1)(7+2}=\lim _{1 \rightarrow-2} \frac{3(7+3)}{7-1}=\frac{3(-2+3)}{-2-1}=\frac{3}{-3}=-1$.
66. Solution 1: First, we find the coordinates of \neg and \urcorner as functions of \urcorner. Then we can find the equation of the line determined by these two points, and thus find the ${ }^{-}$-intercept (the point ${ }^{-}$), and take the limit as $l \rightarrow 0$. The coordinates of \rceil are $(0\lceil$) The point \urcorner is the point of intersection of the two circles $7^{2}+\neg^{2}=\neg^{2}$ and $\left.(\urcorner-1\right)^{2}+\neg^{2}=1$. Eliminating \urcorner from these equations, we get $\left.\left.\nabla^{2}-\nabla^{2}=1-(\urcorner-1\right)^{2} \Leftrightarrow \quad \nabla^{2}=1+2\right\urcorner-1 \Leftrightarrow \neg=1 \frac{-2}{2}$. Substituting back into the equation of the

 $\left.-^{-}=\frac{1 \overline{\left.1-\frac{1}{4}\right\rceil^{2}}-1}{\overline{2} \neg^{2}-0}(\urcorner-0\right)$. We set $\urcorner=0$ in order to find the \neg-intercept, and get

$$
\begin{aligned}
& \frac{\frac{1}{2}^{-2}}{\frac{1}{1-4^{-2}-1}} \\
& =\frac{-{ }^{1-2} 1-{ }^{1-2}+1}{4} \\
& \neg=-\neg^{\prime} \Gamma \frac{1}{1-4^{-2}-1} \\
& \begin{array}{ccc}
- & 4 & \\
2 & 4- & 4 \\
& 1-- & -2-1
\end{array}=
\end{aligned}
$$

Now we take the limit as ${ }^{-} \rightarrow 0^{+}: \lim _{\rightarrow 0^{+}}{ }^{-}=\lim 2 \quad 1-0^{1-}{ }_{4}+1 \quad=\lim 2$
© Cengage Learning. All Rights ${ }^{0+}$ Reserved.
So the limiting position of is the point (40).

INSTRUCTORUSE ONLY

Solution 2: We add a few lines to the diagram, as shown. Note that
$\angle^{--}=90^{\circ}$ (subtended by diameter ${ }^{--}$). So $\angle^{--7}=90^{\circ}=\angle$ (subtended by diameter $\urcorner\urcorner$). It follows that $\angle\urcorner\urcorner\ulcorner=\angle\urcorner\urcorner\urcorner$. Also
 \urcorner, implying that $\urcorner\urcorner=\urcorner\urcorner$. As the circle 7_{2} shrinks, the point \urcorner plainly approaches the origin, so the point 7 must approach a point twice

as far from the origin as , that is, the point (40), as above.

2.4 The Precise Definition of a Limit

 $07^{--111, ~ s o ~ w e ~ c a n ~ c h o o s e ~}{ }^{l}=\min \{1-07 \mid 11-1\}=\min \{03101\}=01$ (or any smaller positive number).
2. If $\left.\left.\right|^{\prime}()-2 \mid\right\urcorner 015$, then -057° () $-27015 \Rightarrow 157^{\circ}$ () $) 215$. From the graph, we see that the last inequifstrue if $26^{-\cdots} 318$, so we can take ${ }^{l}=\min \{3-26 \mid 38-3\}=\min \{0408\}=04$ (or any smaller positive numbar).Note that $7=3$.
3. The leftmost question mark is the solution of ${ }^{\sqrt{ }}=16$ and the rightmost, ${ }^{\sqrt{ }}{ }^{-}=24$. So the values are $16^{2}=256$ and $24^{2}=576$. On the left side, we need $\left.\right|^{-}-4|7| 256-4 \mid=144$. On the right side, we need $\left.\right|^{-}-4|7| 5176-4 \mid=16 \mathrm{To}$ satisfy both conditions, we need the more restrictive condition to hold —namely, $\left.\left.\right|^{-}-4 \mid\right\urcorner 1 / 44$. Thus, we can choose $1=1 / 44$, or any smaller positive number.
4. The leftmost question mark is the positive solution of $7^{2}={ }_{2}$, that is, $7=\sqrt{2}_{2} \frac{1}{}$, and the rightmost question mark is the positive solution of ${ }^{-2}=\frac{2}{2}$, that is, $=\frac{-}{2}$. On the left side, we need $\left.\right|^{-}-1 \mid 7 \cdot-1 \approx 0292$ (rounding down to be safe). On the right side, we need $\left.\right|^{-}-1 \mid \cap \bar{\zeta}^{-}-1 \approx 0224$. The more restrictive of these two conditions must apply, so we choose $1=0224$ (or any smaller positive number).
5.

6.

From the graph, we find that ${ }^{-}=\tan ^{-}=0.8$ when ${ }^{-} \approx 0675$, so
${ }_{4}^{4}-l_{1} \approx 0675 \Rightarrow l_{1} \approx{ }_{4}^{4}-0675 \approx 01106$. Also, $=\tan =12$
when ≈ 0876, so $\frac{1}{4}+1_{2} \approx 0876 \Rightarrow 1_{2}=0876-\frac{1}{4} \approx 00906$.
Thus, we choose ${ }^{\}}=00906$ (or any smaller positive number) since this is the smaller of \neg_{1} and \urcorner_{2}.
From the graph, we find that $=2\left(2^{2}+4\right)=03$ when $^{-}=\frac{2}{3}$, so
$1-1_{1}=\frac{2}{3} \Rightarrow 1_{1}=\frac{1}{3}$. Also, $=2\left({ }^{2}+4\right)=05$ when $=2$, so
$1+{ }^{-}{ }_{2}=2 \Rightarrow{ }^{-}{ }_{2}=1$. Thus, we choose $7={ }^{1}$ (O any smaller positive number) since this is the smaller of 7_{1} and 7_{2}.
7.

From the graph with ${ }^{l}=02$, we find that $={ }^{3}-3+4=58$ when
≈ 19774, so $2-1_{1} \approx 19774 \Rightarrow 1_{1} \approx 00226$. Also,
$={ }^{-3}-3+4=62$ when ≈ 2022, so $2+12 \approx 20219 \Rightarrow$
$1_{2} \approx 00219$. Thus, we choose ${ }^{1}=00219$ (or any smaller positive number) since this is the smaller of \rceil_{1} and \rceil_{2}.

For ${ }^{l}=01$, we get ${ }^{l}{ }_{1} \approx 00112$ and ${ }^{l}{ }_{2} \approx 00110$, so we choose) $=0011$ (or any smaller positive number).

From the graph with ${ }^{l}=05$, we find that $=\left({ }^{2}-1\right)^{-}=15$ when

$$
\approx-0303 \text {, so } l_{1} \approx 0303 \text {. Also, }=\left(1^{2}-1\right)^{-}=25 \text { when }
$$

$$
\approx 0215 \text {, so } l_{2} \approx 0215 \text {. Thus, we choose } 1=0215 \text { (or any smaller }
$$

positive number) since this is the smaller of \urcorner_{1} and \neg_{2}.
For ${ }^{l}=01$, we get ${ }^{1} \approx 0052$ and $^{l}{ }_{2} \approx 0048$, so we choose $1=0048$ (or any smaller positive number).
9. (a)

The first graph of $\urcorner=\frac{-4}{\ln (\square-1)}$ shows a vertical asymptote at $\urcorner=2$. The second graph shows that ${ }^{2.02}=100$ when
≈ 201 (more accurately, 201005). Thus, we choose $1=001$ (or any smaller positive number).
(b) From part (a), we see that as \urcorner gets closer to 2 from the right, \urcorner increases without bound. In symbols,
$\lim _{\rightarrow 2^{+} \ln (\Gamma-1)} \frac{1}{\Gamma}$.
10. We graph $=\csc ^{2}$ and $=500$. The graphs intersect at ≈ 3186, o we choose $^{1}=3186-^{-} \approx 0044$. Thus, if $07|-\square| 0044$, tan $\mathrm{csc}^{2^{-}}$500. Similarly, for $\cap=1000$, we get ${ }^{1}=3173-\approx 00$ B1.

11. (a) ${ }^{-}=^{-2}$ and $\left.{ }^{-}=1000 \mathrm{~cm}^{2} \Rightarrow^{--2}=1000 \Rightarrow{ }^{-2}=\underline{1000} \quad, \quad \Rightarrow \quad\right\urcorner=\overline{\frac{1000}{1}} \quad$ (7 70$) \quad \approx 178412 \mathrm{~cm}$. (b) $\left.\right|^{-}-1000 \mid \leq 5 \Rightarrow-5 \leq^{--2}-1000 \leq 5 \Rightarrow 1000-5 \leq^{--2} \leq 1000+5 \Rightarrow$ $\left.\Gamma \overline{\frac{995}{1}} \leq\right\urcorner \leq \Gamma \overline{\frac{105}{1}} \Rightarrow 1777966 \leq 1 \leq 178858 . \overline{\frac{1000}{1}}-\Gamma \overline{\frac{995}{1}} \approx 004466$ and $\Gamma \overline{\frac{1005}{1}}-\Gamma \overline{\frac{1000}{1}} \approx 004455$. So if the machinist gets the radius within 00445 cm of 178412 , the area will be within $5 \mathrm{~cm}^{2}$ of 1000 .
(c) is the radius, () is the area, is the target radius given in part (a), " is the target area (1000), is the tolerance in te area (5), and 7 is the tolerance in the radius given in part (b).
12. (a) $=01^{-2}+2155^{-}+20$ and $^{\circ}=200 \Rightarrow$ $011^{-2}+2155^{-}+20=200 \Rightarrow \quad[$ by the quadratic formula σ from the graph] ${ }^{-} \approx 330$ watts $\left({ }^{-}-0\right)$
(b) From the graph, $199 \leq \leq 201 \Rightarrow 3289^{-} \cap 3311$.

(c) "is the input power, () is the temperature, " is the target input power given in part (a), ${ }^{-}$is the target temperature (200), l is the tolerance in the temperature (1), and l is the tolerance in the power input in watts indicated in part (b) (0.11 watts).
13. (a) $|4-8|=\left.4\right|^{-}-2|70 \| 1 \Leftrightarrow|^{-}-2 \left\lvert\, 7 \frac{0 \| 1}{4}\right.$, so $\left\lvert\,=\frac{01}{4}=0025\right.$.
(b) $\left.\left|4^{-}-8\right|=\left.4\right|^{-}-2 \mid\right\rceil 0|01 \Leftrightarrow|^{-}-2 \left\lvert\, 7 \frac{0 \mid 01}{4}\right.$, so $\rceil=\frac{001}{4}=00025$.
14. $\left.\left|\left(\begin{array}{ll}5-7\end{array}\right)-3\right|=\left|5^{-}-10\right|=|5(-2)|=\left.5\right|^{-}-2 \right\rvert\,$. We must have $\left.\left.\right|^{-}()^{-}\right)^{-} 1$, so $\left.\left.\left.5\right|^{-}-2 \mid\right\rceil\right\rceil \Leftrightarrow$

15. Given $\urcorner \neg 0$, we need $\urcorner \neg 0$ such that if $0^{-}|\sqcap-3| \neg \neg$, then $\left.\left(1+\frac{1}{3}^{-}\right)-2\right\rceil$ 1. But $\left.\left.\left(1+\frac{1}{3}\right)-2\right\rceil\right\rceil \Leftrightarrow \frac{1-1}{3}-1 \Leftrightarrow$ $\left.\left.\left.\rceil \overline{3}^{1}\right\rceil|\neg-3| \neg\right\urcorner \Leftrightarrow|\neg-3| \neg 3\right\urcorner$. So if we choose $\left.\rceil=3\right\urcorner$, then $\left.0\rceil|-3|\rceil\urcorner \Rightarrow\left(1+\frac{1}{3}\right)-2 \cap\right\rceil$. Thus, $\lim _{1 \rightarrow 3}\left(1+\frac{L^{-}}{3}\right)=2$ by
 the definition of a limit.
16. Given $\urcorner \neg 0$, we need $\urcorner \neg 0$ such that if $0^{-}|\neg-4| \neg \neg$, then $\mid(2\urcorner-5)-3 \mid \neg \neg$. But $\left.\mid(2\urcorner-5)-3\left|\neg^{-} \Leftrightarrow\right| 2\right\urcorner-8 \mid \neg \neg \Leftrightarrow$ $|2||\neg-4| \neg\urcorner \Leftrightarrow|\neg-4| \neg\urcorner\urcorner 2$. So if we choose $\urcorner=\neg\urcorner 2$, then $0 \neg|\ulcorner-4 \mid \neg\urcorner \Rightarrow|(2\urcorner-5)-3 \mid \neg \neg$. Thus, $\lim _{1}(2 \neg-5)=3$ by the definition of a limit.

17. Given $\urcorner \neg 0$, we need $\neg \neg 0$ such that if $0^{-}|\sqcap-(-3)| \neg \neg$, then
$\mid(1-4\rceil)-13 \mid$ ㄱ ․ But $|(1-47)-13| \neg\urcorner \Leftrightarrow$
$\left.\left|-4^{-}-12\right|^{--} \Leftrightarrow|-4| \mid\right\rceil+\left.3\right|^{--} \Leftrightarrow|\neg-(-3)|^{-}$- Sifive
choose $\urcorner=^{--} 4$, then $\left.0^{-} \mid\right\urcorner-\left.(-3)\right|^{-} \Rightarrow\left|\left(1-4^{-}\right)-13\right|^{--}$.
Thus, $\lim _{\rightarrow-3}\left(1-4^{-}\right)=13$ by the definition of a limit.

18. Given $\urcorner \neg 0$, we need $\urcorner \neg 0$ such that if $0 \neg|\Gamma-(-2)| \neg \neg$, then
$\left|\left(3^{-}+5\right)-(-1)\right|^{-}$. But $\left|\left(3^{-}+5\right)-(-1)\right|^{-} \Leftrightarrow$
$|37+6| \neg \neg \Leftrightarrow|3||\neg+2| \neg\urcorner \Leftrightarrow|7+2| \neg \neg 73$. So if we choose $\neg=\neg\urcorner 3$, then 0$\urcorner|\ulcorner+2 \mid \neg\urcorner \Rightarrow|(3\urcorner+5)-(-1) \mid \neg\urcorner$. Thus, $\lim _{\rightarrow-2}\left(3^{-}+5\right)=1 \underline{b} y$ the definition of a limit.

19. Given $\urcorner 0$, we need $\rceil\urcorner 0$ such that if 0$\rceil \mid\rceil-1 \mid 7\rceil$, then $\left.\frac{2+4}{3}-2 \cap\right\rceil$. But $\frac{2+4}{3}-2 \cdots$ $\left.\left.\left.\left.\left.\ni \frac{47-4}{3}\right\rceil \neg\right\urcorner \Leftrightarrow \left\lvert\, \frac{4}{3}\right.\right\rceil|\neg-1| \neg\right\urcorner \Leftrightarrow \mid\right\urcorner-\left.1\right|^{-3} \frac{4}{4}$. So if we choose $\rceil=3 \overline{4}$, then $0-|\Gamma-1| \top \Rightarrow$ $\left.\frac{2+47}{3}-27\right\urcorner$. Thus, $\lim _{1 \rightarrow 1} \frac{2+47}{3}=2$ by the definition of a limit.
 $\left.\left.\left.\left.8-\frac{4}{5}\right\rceil\right\rceil \left.\Leftrightarrow-\left.\frac{4}{5}\right|^{-}-10 \right\rvert\,\right\rceil\right\rceil \left.\Leftrightarrow|-10| 7 \frac{5}{4} \right\rvert\,$. So if we choose $\left.{ }^{1}=\frac{5}{4} \right\rvert\,$, then 0$\left.\urcorner \mid\right\rceil-\left.10\right|^{\text {T }} \Rightarrow$ $3-\frac{4}{5}-(-5) 7$. Thus, $\lim _{\rightarrow 10}\left(3-\frac{4}{5}\right)=-5$ by the definition of a limit
21. Given \rceil - 0 , we need $\rceil\urcorner 0$ such that if 0$\urcorner \mid\rceil-4 \mid\rceil\rceil$, then $\left.\left.\frac{\left.\neg^{2}-2\right\urcorner-8}{-4}-6\right\rceil\right\rceil \Leftrightarrow$

$$
\frac{72-8-6^{2}-\text { By the definition of a limit, } \lim _{\rightarrow 4} \frac{7^{2}-27-8}{7-4}=6.4-4}{}
$$

22. Given \rceil, we need $\rceil\urcorner 0$ such that if 0$\rceil|7+15|\rceil 1$, then $\left.\frac{7-47^{2}}{3+2}-6 \cdot\right\rceil \Leftrightarrow$

By the definition of a limit, $\lim _{1 \rightarrow-15} \overline{3+2^{-}}=6$.
23. Given $\urcorner \neg 0$, we need $\neg \neg 0$ such that if $0-\mid\left\ulcorner-{ }^{-} \mid \Gamma \neg\right.$, then $\left.\left|\neg-{ }^{-}\right| \Gamma\right\urcorner$. So $\neg=\neg$ will work.

INSTRUCTOR USE ONLY

$$
\begin{aligned}
& \left.\left.\left.\left.\left.\left.\left.\left.\frac{\left(3+2^{-}\right)\left(3-2^{-}\right)}{3+2^{-}}-6\right\rceil\right\rceil \Leftrightarrow\left|3-2^{-}-6\right|\right\rceil\right\rceil \quad[\quad-15] \Leftrightarrow\left|-2^{-}-3\right|\right\rceil\right\rceil\left.\Leftrightarrow|-2|\right|^{-}+15 \mid\right\rceil\right\rceil \Leftrightarrow \\
& \left.\left.\left.\left.\left.\left.\right|^{-}+15 \mid\right\rceil 1 \| 2 \text {. So choose }{ }^{\prime}={ }^{-} \text {2. Then } 07|+15|\right\rceil\right\rceil\left.\Rightarrow\right|^{-}+15\left|7 \gamma^{-} 2 \Rightarrow\right|-2| |^{-}+15 \mid\right\rceil\right\rceil \Rightarrow \\
& \left.\left.\left.\left.\mid-2\urcorner-\left.3\right|^{--} \Rightarrow \mid 3-2\right\urcorner-\left.6\right|^{-}\right\urcorner \Rightarrow \quad \frac{\left(3+2^{-}\right)\left(3-2^{-}\right)}{3+2^{-}}-6\right\rceil\right\rceil \quad[\quad-15] \quad \Rightarrow \quad \frac{7-4^{-2}}{3+2}-67 \cap 1 . \\
& 9-4^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\left.\left.\left.\left(\begin{array}{c}
-4)(+2) \\
7-4
\end{array}-6\right\rceil \upharpoonleft \quad \Leftrightarrow\right|^{-}+2-6 \right\rvert\,\right\rceil\right\rceil\left.\quad[6=4] \Leftrightarrow\right|^{-}-4 \mid 7\right\rceil \text {. So choose }\right]=1 \text {. Then } \\
& \left.\left.\left.\left.\left.0\rceil|\cap-4|\rceil\urcorner\left.\Rightarrow\right|^{-}-4 \mid\right\rceil\right\rceil\left.\Rightarrow\right|^{-}+2-6 \mid\right\rceil 7 \Rightarrow \frac{(-4)(+2)}{7-4}-6 \cdot\right\rceil\right\rceil \quad[6=4] \Rightarrow
\end{aligned}
$$

24. Given $\urcorner\urcorner 0$, we need $\urcorner\urcorner 0$ such that if $\left.\left.\left.0^{-} \mid\right\urcorner-{ }^{-} \mid\right\urcorner\right\urcorner$, then $\left.\left.\left.\right|^{-}-^{-} \mid\right\urcorner\right\urcorner$. But $\left.\right|^{-}-^{-} \mid=0$, so this will be true no ntwhat we pick.
 Then 0$\left.\left.\left.\left.\urcorner\left.\right|^{-}-0 \mid\right\rceil\right\urcorner \Rightarrow \quad \because^{2}-0\right\urcorner\right\urcorner$. Thus, $\lim _{\downharpoonleft \rightarrow 0}{ }^{-2}=0$ by the definition of a limit.
 Then 0$\left.\left.\left.\left.\urcorner\left.\right|^{-}-0 \mid\right\rceil\right\rceil \Rightarrow \because^{3}-0\right\urcorner 1^{3}=\right\rceil$. Thus, $\lim _{1 \rightarrow 0}{ }^{-3}=0$ by the definition of a limit.
25. Given $\urcorner \neg 0$, we need $\urcorner \neg 0$ such that if $0 \neg|\Gamma-0| \neg \neg$, then $|\neg|-0 \neg \neg$. But $\mid\urcorner|=|\neg|$. So this is true if we pick $=\urcorner$. Thus, $\lim _{\mathrm{I} \rightarrow 0} \mid$ ㄱ| $=0$ by the definition of a limit.
 $\left.\left.\sqrt{ } \overline{6+7}\rceil\rceil \Leftrightarrow 6+^{-}\right\rceil^{8} \Leftrightarrow--(-6)\right\rceil 1^{8}$. So if we choose $\rceil=1^{8}$, then $\left.\left.0^{-}-(-6)\right\rceil\right\rceil \Rightarrow$

 $\left.(\neg-2)^{2} \neg\right\urcorner$. So take $\urcorner=\sqrt{ } \neg^{-}$. Then $\left.\left.0^{-}\right|^{-}-2|\neg \neg \Leftrightarrow| \neg-2 \mid \neg^{\sqrt{ }} \neg^{-} \Leftrightarrow \quad(\neg-2)^{2}\right\urcorner \neg$. Thus, $\left.\left.\left.\left.\lim _{\mathrm{l} \rightarrow 2}\right\urcorner\right\urcorner^{2}-4\right\urcorner+5\right\urcorner=1$ by the definition of a limit.
26. Given $\urcorner\urcorner 0$, we need $\urcorner\urcorner 0$ such that if $0-\mid\left\ulcorner-2 \mid \neg \neg\right.$, then $\left.\left(\neg^{2}+2\right\urcorner-7\right)-1$ ᄀ \urcorner. But $\left.\left.(\urcorner^{2}+2\right\urcorner-7\right)-1--\Leftrightarrow$ $\left.\neg^{2}+2\right\urcorner-8 \neg^{-} \Leftrightarrow|\neg+4||\neg-2| \neg \neg$. Thus our goal is to make $\left.\mid\right\urcorner-2 \mid$ small enough so that its product with $\mid 7+4$ is less than ${ }^{-}$. Suppose we first require that $\left.\right|^{-}-\left.2\right|^{-} 1$. Then $-1^{--}-2^{-} 1 \Rightarrow 1^{-}-3 \Rightarrow 5^{-}+4^{-} 7 \Rightarrow$ $\left.\left.\right|^{-}+4 \mid\right\rceil 7$, and this gives us $\left.\left.\left.\left.7\right|^{-}-2 \mid\right\rceil\right\rceil\left.\Rightarrow\right|^{-}-2 \mid\right\rceil \gamma^{\circ} 7$. Choose $\}=\min \left\{1^{\cdots} 7\right\}$. Then if 0$\rceil|-2| \Gamma$,we have $\mid\urcorner-2 \mid \neg \neg\urcorner 7$ and $\mid\urcorner+4 \mid\urcorner 7$, so $\left.\left.\left.\left.\left.\left(\neg^{2}+2\right\urcorner-7\right)-1=|(\neg+4)(\neg-2)|=\mid\right\urcorner+4| |\right\urcorner-2 \mid \neg 7(\urcorner\right\urcorner 7\right)=7$, as desired. Thus, $\lim _{\rightarrow 2}\left(-^{2}+2^{-}-7\right)=1$ by the definition of a limit.
27. Given $\urcorner\urcorner 0$, we need $\urcorner\urcorner 0$ such that if $0 \neg \mid\ulcorner-(-2) \mid \neg\urcorner$, then $\left.\urcorner^{2}-1\right\urcorner-3 \neg \neg$ or upon simplifying we need $\neg^{2}-4 \neg \neg$ whenever $0 \neg \mid\ulcorner+2 \mid \neg \neg$. Notice that if $\mid\urcorner+2 \mid \neg 1$, then $\left.-1^{--}+2 \neg 1 \Rightarrow-5 \neg\right\urcorner-2 \neg-3 \Rightarrow$ $\left.\right|^{-}-2 \mid \cap 5$. So take $\}=\min \{51\}$. Then $\left.07\right|^{-}+\left.\left.2\right|^{-} 7 \Rightarrow \quad\right|^{-}-2 \mid 75$ and $\left.\right|^{-}+2 \mid 7115$, so ${ }^{1}-2-1-3=|(+2)(-2)|=\left.\right|^{-}+2| |^{-}-2 \mid 7\left(\|^{-} 5\right)(5)=1$. Thus, by the definition of a $\operatorname{limit}^{-} \lim _{1 \rightarrow-2}\left(\int^{2}-1\right) 3$
28. Given $ᄀ \neg 0$, we need $\urcorner \neg 0$ such that if $0-\mid\left\ulcorner-2 \mid \neg \neg\right.$, then $\neg^{3}-8 \neg \neg$. Now $\left.\left.\neg^{3}-8=(\urcorner-2\right) \neg^{2}+2\right\urcorner+4$. If $\mid\urcorner-2 \mid\urcorner 1$, that is, 1$\urcorner\urcorner 73$, then $\left.\urcorner^{2}+2\right\rceil+473^{2}+2(3)+4=19$ and so ${ }^{-3}-8=\left.\right|^{-}-\left.2\right|^{\top}-2+2+\left.4 \cap 19\right|^{-}-2 \mid$. So if we take $\urcorner=\min 1 \left\lvert\, \frac{19}{}\right.$, then $\left.\left.07|-2|\right\rceil\right\rceil \Rightarrow$ ${ }^{3}-8=\left.\right|^{-}-\left.2\right|^{\prime} 2+2+4^{19} 19=7$. Thus, by the definition of a limit, $\lim _{2} 7^{3}=8$.

96 व CHAPTER 2 LIMITS AND DERIVATIVES
33. Given $7^{\circ} 0$, we let ${ }^{l}=\min 2 \dot{8}$. If $0 \quad|-3|$, then $|-3| 2 \Rightarrow-2 \Rightarrow-32 \Rightarrow$
$4^{-}+\left.3 \cap 8 \Rightarrow \quad\right|^{-}+3 \mid 7$ 8. Also $\left.\right|^{-}-3 \mid 7 \overline{8}$, so ${ }^{-}{ }^{2}-9=\left.\right|^{-}+3| |^{-}-3 \mid \cap 8 \overline{8}=1$. Thus, $\lim _{\rightarrow 3}{ }^{-20}$.
34. From the figure, our choices for 7 are $\urcorner_{1}=3-\sqrt{ } \overline{9-7}$ and $\neg_{2}=9+7-3$. The largest possible choice for ${ }^{\sqrt{ }}$ is the minimum value of $\{11 \mid 2\}$; that is, $1=\min \{|1| 12\}=12=\sqrt{ } \overline{9+1}-3$.

35. (a) The points of intersection in the graph are $\left({ }_{1} \mid 26\right)$ and $\left({ }_{2}|3| 4\right)$ with ${ }_{1} \approx 0891$ and $2 \approx 1093$. Thus, we can take 1 to be te smaller of $1-{ }_{1}$ and ${ }_{2}-1$. So ${ }^{l}={ }_{2}-1 \approx 0093$.

(b) Solving $7^{3}+7+1=3+7$ gives us two nonreal complex roots and one real root, which is

$$
(\Gamma)=\frac{216+108^{-}+12^{\sqrt{ } \frac{-}{336+324^{-}+81^{-} 2^{-}}{ }^{3}-} \frac{7}{7} . \text { Thus, }}{} \quad \begin{aligned}
& \\
& 6216+108+12^{\sqrt{ }} 336+324+81^{2}
\end{aligned}
$$

(c) If ${ }^{\dagger}=04$, then ()≈ 1093272342 and ${ }^{\top}=()-1 \approx 0093$, which agrees with our answer in part (a).
36. 1. Guessing a valuefor ${ }^{\urcorner}$Let $\urcorner \neg 0$ be given. We have to find a number $\urcorner \neg 0$ such that $\left.\left.\urcorner-\frac{1}{7}\right\urcorner \frac{1}{2}\right\urcorner$ whener

 |27| $\mid\urcorner-2 \mid ᄀ 1 \Rightarrow 1 \neg \neg \neg 3$ so $\left.\left.1 \neg \frac{1}{7}\right\urcorner \frac{1}{3} \Rightarrow \frac{1}{6}-\frac{1}{2^{-}}-\frac{1}{2} \Rightarrow \frac{1}{\mid 2\urcorner \mid}\right\urcorner \frac{1}{2}$. So $\urcorner=\frac{1}{2}$ is suitable. Thus, we should choose ${ }^{\prime}=\min \left\{\begin{array}{ll}1 & 2\end{array}\right\}$.

NOT FOR SALE INSTRUCTOR USE ONLY

$\xrightarrow{+^{-}-{ }^{-}\left|\quad \underline{ }^{-}-^{-}\right|}$
$\sqrt{ } \neg+{ } \neg \neg \quad \neg \quad \neg$, and we take $\mid\urcorner-\neg \mid\ulcorner\neg\urcorner$. We can find this number by restricting \urcorner to lie in some interval

 $=\min {\frac{1^{--}}{}{ }^{-} \frac{\text { 그 }}{2^{1-}}+\underbrace{-} 7}$

 $V_{-} \quad \sqrt{l_{-}^{-}} \quad$. Therefore, $\sqrt{-}^{-} \quad \sqrt{ }$ by the definition of alimit. $\left.\right|^{-}-7 \mid=\sqrt{ } 7+\sqrt{ } 77 \cap \cdots 2+{ }_{\sqrt{ }} 7=^{-} \quad \lim \quad{ }^{-}=-$

 so $\left.^{-}-\frac{1}{2}\right\urcorner 0 \Rightarrow \neg \neg \frac{1}{2}$. This contradicts $\neg \neg \underset{\Sigma^{2}}{1}$. Therefore, $\left.\lim _{\rightarrow 0}\right\urcorner$ () does not exist.

 exist.

Now suppose $\lim ()^{-}=\lim ()$. Let $\rceil^{-} 0$ be given. Since $\lim { }^{-}()=.{ }^{-}$, there exists $\rceil 170$ so that $-\left.11^{-} \square \Rightarrow\right|^{-}()^{-} \mid 71$. Since $\lim _{\rightarrow+}(\square)=^{-}$, there exists $12 \cap 0$ so that [] [] $+12 \Rightarrow$

$$
\lim _{\rightarrow-3} \frac{1}{(7+3)^{4}}=\infty
$$

 suggests that we take $\urcorner=\rceil$. If $0^{--} 1$, then $\left.\ln ^{-} \ln \right\rceil=\cap$. By the definition of a $\operatorname{limit}, \lim _{1 \rightarrow 0^{+}} \ln ^{-}=-\infty$.
44. (a) Let \cap be given. Since $\lim _{1 \rightarrow}(\cap)=\infty$, there exists $l_{1} \cap 0$ such that 0$\rceil\left.\left.\right|^{-}\right|^{-} 1_{1} \Rightarrow \quad$ () 「「 $+1-1$ Since

 $\left.\lim \left[\left(^{-}\right)+^{-}()^{-}\right)\right]=\infty$.
(b) Let $\left\lceil\left\lceil 0\right.\right.$ be given. Since $\left.\lim _{1 \rightarrow}(\lceil)=\rceil\right\urcorner 0$, there exists $\left.1_{1}\right\urcorner 0$ such that $\left.0 \cap\right|^{-}-{ }^{-} \mid 71_{1} \Rightarrow$

2.5 Continuity

1. From Definition $1, \lim _{\rightarrow 4}(\square)={ }^{\prime}$ (4).
2. The graph of 7 has no hole, jump, or vertical asymptote.
3. (a) is discontinuous at -4 since $^{*}(-4)$ is not defined and at $-2,2$, and 4 since the limit does not exist (the left and right limits are not the same).
(b) is continuous from the left at -2 since $\lim _{1 \rightarrow-2^{-}}()^{-}(-2)$. is continuous from the right at 2 and 4 since $\lim _{1 \rightarrow 2^{+}}(\overparen{C})^{-}(2)$ and $\lim _{1 \rightarrow 4^{+}}(\square)=(4)$. It is continuous from neither side at -4 since (-4) is undefined.
4. From the graph of 7 , we see that ${ }^{\circ}$ is continuous on the intervals $\left[\begin{array}{ll}-3 & -2\end{array}\right),\left(\begin{array}{ll}-2 & -1\end{array}\right),(-10],\left(\begin{array}{ll}-1\end{array}\right)$, and $\left(\begin{array}{ll}1 & 3\end{array}\right]$.
5. The graph of $=$ () must have a discontinuity at $=2$ and must show that $\lim _{\rightarrow 2^{+}}{ }^{-}()^{*}$ (2).

6. The graph of ${ }^{-}$() must have discontinuities at $\urcorner=-1$ and $\urcorner=4$. It must show that

$$
\begin{equation*}
\lim _{\rightarrow-1^{-}}()=(-1) \text { and } \lim _{\rightarrow 4^{+}}()= \tag{4}
\end{equation*}
$$

NOT FOR SALE INSTRUCTOR USE ONLY

7. The graph of $=$ () must have a removable
discontinuity (a hole) at $7=3$ and a jump discontinuity at $ᄀ=5$.

8. The graph of $=$ () must have a discontinuity
at $=-2$ with $\lim _{1 \rightarrow-2^{-}}$() $6==^{-}(-2)$ and
$\lim _{1 \rightarrow-2^{+}}\left({ }^{-}\right) 6=(-2)$. It must also show that
$\lim _{1 \rightarrow 2^{-}}\left(\right.$) $=$(2) and $\lim _{\substack{2^{+}}}(0)$ (2).
9. (a) The toll is $\$ 7$ between 7:00 AM and 10:00 AM and between 4:00 PM and 7:00 PM.
(b) The function 7 has jump discontinuities at ${ }^{-}=7,10,16$, and 19 . Their significance to someone who uses the road is that, because of the sudden jumps in the toll, they may want to avoid the higher rates between ${ }^{-}=7$ and $^{-}=10$ and between ${ }^{-}=16$
 and ${ }^{-}=19$ if feasible.
10. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps from one temperature to another.
(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases, without any instantaneous jumps.
(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one height to another without going through all of the intermediate values - at a cliff, for example.
(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.
(e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value, without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.

$\rightarrow-1 \quad \rightarrow-1 \quad \rightarrow-1 \quad \rightarrow-1$
By the definition of continuity, \urcorner is continuous at $\urcorner=-1$.
11. $\lim _{\rightarrow 2}\left(()=\lim _{\rightarrow 2} \frac{i^{2}+5}{2+1}=\frac{\lim _{\rightarrow 2}\left(7^{2}+5\right)}{\lim _{\rightarrow 2}(2+1)}=\frac{\lim _{\rightarrow 2} 2^{2}+5 \lim _{\rightarrow 2}}{2 \lim _{\rightarrow 2}^{-}+\lim _{\rightarrow 2} 1}=\frac{2^{2}+5(2)}{2(2)+1}=\frac{14}{5}=7\right.$ (2).

By the definition of continuity, \urcorner is continuous at $\urcorner=2$.

NOT FOR SALE INSTRUCTOR USE ONLY

100 CHAPTER 2 LIMITS AND DERIVATIVES
13. $\lim (\Pi)=\lim 2^{\sqrt{ }} \overline{3^{2}+1}=2 \lim \sqrt{ } 3^{2}+1=2 \quad \lim \left(3^{2}+1\right)=2 \pi \frac{\cap}{\lim ^{2}+\lim 1}$

$$
\begin{aligned}
& =23(1)^{2}+1=2^{\sqrt{ }} 4=4=\quad \text { (1) }
\end{aligned}
$$

By the definition of continuity, \urcorner is continuous at $\urcorner=1$.

$$
\begin{equation*}
=3(2)^{4}-5(2)+\sqrt[3]{2^{2}+4}=48-10+2=40= \tag{2}
\end{equation*}
$$

By the definition of continuity, \neg is continuous at $\urcorner=2$.
15. For $ᄀ 74$, we have

So ${ }^{-}$is continuous at ${ }^{-}$for every ${ }^{-}$in (4∞). Also, $\left.\lim _{\rightarrow 4^{+}}{ }^{\circ}{ }^{-}{ }^{-}\right)=4=^{\circ}(4)$, so ${ }^{-}$is continuous from the right at 4.

Thus, is continuous on $[4 \infty)$.
16. For $\urcorner\urcorner-2$, we have

$$
\begin{align*}
& =\frac{\lim _{\vec{\rightarrow}} 7-\lim _{1 \rightarrow 1} 1}{3 \lim _{\rightarrow \rightarrow} 7+\lim _{1 \rightarrow} 6} \tag{array}\\
& =\frac{7-1}{37+6} \\
& \text { [8 and 7] }
\end{align*}
$$

Thus, ${ }^{-}$is continuous at ${ }^{-}{ }^{-}$for every ${ }^{-}$in $(-\infty-2)$; that is, "is continuous on $(-\infty-2)$.
17. ()$=\frac{1}{\urcorner+2}$ is discontinuous at ${ }^{-}=-2$ because $\left(_^{2}\right)$ is undefined.

18. $(\sim)=\Gamma \frac{1}{\Gamma}+2$ if $\urcorner 6=-2$

Here $(-2)=1$, but $\left.\lim _{1 \rightarrow-2^{-}}()^{-}\right)=-\infty$ and $\lim _{1 \rightarrow-2^{+}}(0)=\infty$,
so $\lim _{1 \rightarrow-2}$ () does not exist and is discontinuous at -2 .

NOT FOR SALE INSTRUCTOR USE ONLY

NOT FOR SALE

19. () $=\begin{array}{ll}7+3 & \text { if } \leq-1 \\ 2^{1} & \text { if } 7^{-}-1\end{array}$

$$
\begin{aligned}
\lim _{1 \rightarrow-1^{-}}(C) & =\lim _{\rightarrow-1^{-}}(+3)=-1+3=2 \text { and } \\
\lim _{1 \rightarrow-1^{+}}(C) & =\lim _{1 \rightarrow-1^{+}} 2=2^{-1}={ }^{1} \overline{2} \text { Since the left-hand and the }
\end{aligned}
$$

right-hand limits of \urcorner at 1 are not equal, $\lim _{\rightarrow-1}$ () does not exist, and
\urcorner is discontinuous at -1 .
20. ()$=\Gamma_{7^{2}-1}^{7^{2}-1}$ if $\urcorner 6=1$

$$
1 \quad \text { if }\urcorner=1
$$

$$
\lim _{\rightarrow 1}(\eta)=\lim _{\rightarrow 1} \frac{-2-7}{7^{2}-1}=\lim _{\rightarrow 1} \frac{7(7-1)}{(7+1)(7-1)}=\lim _{\rightarrow 1} \frac{7}{7+1}=\frac{1}{2},
$$

but ${ }^{-}(1)=1$, so ${ }^{-}$is discontinous at 1

21. ()$=\begin{array}{lll}\text { cos } & \text { if } & 0 \\ 0 & \text { if }^{-}=0\end{array}$

$$
\Gamma_{1-2} \text { if } \cdots
$$

$\lim _{\rightarrow 0}()=1$, but ${ }^{\circ}(0)=0=1$, so is discontinuous at 0 .
22. () $=$

「 $\frac{2^{2}-5-3}{7-3}$ if $\urcorner 6=3$

$$
6 \quad \text { if } 7=3
$$

but $\urcorner(3)=6$, so \urcorner is discontinuous at 3 .

23. ()$=\frac{7^{2}-7-2}{7-2}=\frac{(7-2)(\urcorner+1)}{7-2}=+1$ for $=2$. Since $\lim _{\rightarrow 2}(\bar{c})=2+1=3$, define $(2)=3$. Then is
continuous at 2 .
24. () $=\frac{7^{3}-8}{7^{2}-4}=\frac{\left.(\urcorner-2)(\urcorner^{2}+2\right\urcorner+4}{(7-2)(\urcorner+2)}=\frac{\left.7^{2}+2\right\urcorner+4}{7+2}$ for $=2$. Since $\lim _{\rightarrow 2}(\smile)=\frac{4+4+4}{2+2}=3$, define $\urcorner(2)=3$.

Then \urcorner is continuous at 2 .
25. $\urcorner()=\frac{\left.2\urcorner^{2}-\right\urcorner-1}{7^{2}+1}$ is a rational function, so it is continuous on its domain, $(-\infty)$, by Theorem $5(\mathrm{~b})$.
26. $\urcorner(\urcorner)=\frac{\urcorner^{2}+1}{\left.2\urcorner^{2}-\right\urcorner-1}=\frac{\urcorner^{2}+1}{(2\urcorner+1)(\urcorner-1)}$ is a rational function, so it is continuous on its domain, $-\infty-\frac{1}{2} \cup-{ }_{2}^{1} 1 \cup(1 \infty)$, by Theorem $5(b)$

continuous everywhere by Theorem 5(a) and -2 is continuous everywhere by Theorems 5(a), 7, and 9. Thus, is continuous on its domain by part 5 of Theorem 4.
28. The domain of ${ }^{-}()=\frac{1 \sin }{2+\cos 11}$ is $(-\infty \infty)$ since the denominator is never $0[\cos 11 \geq-1 \Rightarrow 2+\cos 11 \geq 1]$. By Theorems 7 and 9,$\urcorner^{\sin \|!}$ and $\left.\left.\cos \right\urcorner\right\urcorner$ are continuous on R. By part 1 of Theorem $4,2+\cos 77$ is continuous on R and by part5 of Theorem 4, 7 is continuous on R.
29. By Theorem 5(a), the polynomial $1+2$ is continuous on R. By Theorem 7, the inverse trigonometric function arcsin is continuous on its domain, $\left[\begin{array}{ll}-1 & 1\end{array}\right]$. By Theorem 9, ${ }^{-}()=\arcsin (1+2)$ is continuous on its domain, which is
$\{\mid-1 \leq 1+2 \leq 1\}=\{\mid-2 \leq 2 \leq 0\}=\{\mid-1 \leq \leq 0\}=[-1 \mid \Omega]$.
30. By Theorem 7, the trigonometric function $\tan \urcorner$ is continuous on its domain, $\left.\left.\urcorner \mid\urcorner 6={ }_{2} \downarrow+\right\urcorner\right\urcorner$. By Theorems 5(a), 7, and 9, the composite function ${ }^{\sqrt{ }} \overline{4-{ }^{2}}$ is continuous on its domain [-2|2]. By part 5 of Theorem 4, ${ }^{-}\left({ }^{-}\right)=\frac{\tan 7}{\sqrt{4--2}}$ is continuous on its domain, $\left(-2-{ }^{-} 2\right) \cup\left(-\cdots 2{ }^{-} 2\right) \cup\left({ }^{-} 2 \mid 2\right)$.
31. ${ }^{-}$($)=\overline{1+\frac{1}{2}=}{ }^{-}+\overline{1}$ is defined when ${ }^{-\quad+1} \geq 0 \Rightarrow^{-}+1 \geq 0$ and $^{-}{ }^{-} 0$ or $^{-}+1 \leq 0$ and $^{-} 0 \Rightarrow{ }^{-} 0$
or ≤-1, so \lceil has domain $(-\infty-1] \cup(0 \infty)$. Γ is the composite of a root function and a rational function, so its continuous at every number in its domain by Theorems 7 and 9 .
32. By Theorems 7 and 9 , the composite function 7^{-1} is continuous on R. By part 1 of Theorem $4,1+7^{-11}$ is continuous on RBy Theorem 7, the inverse trigonometric function $\tan ^{-1}$ is continuous on its domain, R. By Theorem 9, the composite function $7(1)=\tan ^{-1}-1+1^{-2}$ is continuous on its domain, R.
33. The function $\urcorner=\frac{1}{1+^{-} 1_{1 /}}$ is discontinuous at $\urcorner=0$ because the left- and right-hand limits at $\urcorner=0$ are different.

34. The function $\left.\urcorner=\tan ^{2}\right\urcorner$ is discontinuous at $\left.\urcorner=\frac{1}{2}+7\right\urcorner$, where \urcorner is any integer. The function $\left.\urcorner=\ln \tan ^{2}\right\urcorner$ is also discontinuous where $\left.\tan ^{2}\right\urcorner$ is 0 , that is, at $\left.\urcorner=\neg\right\urcorner$. So $\left.\urcorner=\ln \tan ^{2}\right\urcorner$ is discontinuous at $\left.\urcorner=\frac{1}{2}\right\urcorner$, 7 any integer.

NOT FOR SALE INSTRUCTOR USE ONLY

35. Because \urcorner is continuous on R and $\sqrt{ } \overline{20-~}^{2}$ is continuous on its domain, $-{ }$ 20 $\leq 7 \leq \sqrt{ }$ 20, the product

$$
\begin{aligned}
& ()=\sqrt{ } \frac{{ }^{2}}{20-{ }^{2}} \text { is continuous on }-\sqrt{ } \overline{20} \leq{ }^{\sqrt{ }} \text { 20. The number } 2 \text { is in that domain, so is continuous at } 2 \text {, and } \\
& \lim _{\rightarrow 2}()=(2)=2 \quad 16=8 .
\end{aligned}
$$

36. Because \urcorner is continuous on R, $\sin \urcorner$ is continuous on R, and $\urcorner+\sin \urcorner$ is continuous on R, the composite function ()$=\sin \left(+\sin ^{-}\right)$is continuous on R, so $\lim { }^{-}()={ }^{-}\left({ }^{\prime}\right)=\sin \left({ }^{-}+\sin ^{-}\right)=\sin ^{-}=0$.
37. The function $\quad()=\ln \frac{5^{-2}}{1+7}$ is continuous throughout its domain because it is the composite of a logarithm function and a rational function. For the domain of \urcorner, we must have $\left.\frac{5-7^{2}}{1+^{-}}\right\urcorner 0$, so the numerator and denominator must have the same sign, that is, the domain is $(-\infty-1$
$\lim _{\rightarrow 1}(C)=(1)=\ln \frac{5-1}{1+1}=\ln 2$.
38. The function ($)=3^{2-2-4}$ is continuous throughout its domain because it is the composite of an exponential function, a root function, and a polynomial. Its domain is

$$
\begin{aligned}
& ={ }^{-}-1 \mid \geq{ }^{\sqrt{ }}{ }^{-}=\left(-\infty 1-{ }^{\sqrt{ }} 5\right] \cup\left[1+{ }^{\sqrt{ }}{ }^{5} \infty\right)
\end{aligned}
$$

The number 4 is in that domain, so is continuous at 4, and $\lim ()=(4)=3^{\sqrt{ } 16-8-4}=3^{2}=9$.

$$
\rightarrow 4
$$

39. () $=1-7^{2}$ if $\urcorner \leq 1$

$$
\ln \urcorner \quad \text { if }\urcorner\urcorner 1
$$

By Theorem 5, since (() equals the polynomial $1-{ }^{-2}$ on $\left.(-\infty) 1\right]$, is continuous on $(-\infty 11$.
By Theorem 7, since () equals the logarithm function $\ln ^{\circ}$ on (1 ∞), is continuous on (1∞)
At $\urcorner=1, \lim _{\rightarrow 1^{-}}(\mathbb{\|})=\lim _{\rightarrow 1^{-}}\left(1--^{2}\right)=1-1^{2}=0$ and $\underset{\rightarrow 1^{+}}{\operatorname{mi}}\left(^{-}\right)=\underset{1 \rightarrow 1^{+}}{\operatorname{li}} \ln =\ln 1=0$. Thus, $\lim _{\rightarrow 1}{ }^{-}()$exists and equals 0 . Also, ${ }^{-}(1)=1-1^{2}=0$. Thus, ${ }^{\circ}$ is continuous at ${ }^{*}=1$. We conclude that ${ }^{\circ}$ is continuous on $(-\infty)$.
40. () $=\begin{aligned} & \sin \quad \text { if } \ldots 4 \\ & \cos \urcorner \\ & \text { if }\urcorner \geq 774\end{aligned}$

By Theorem 7, the trigonometric functions are continuous. Since ($(\|)=\sin { }^{*}$ on $\left(-\infty \cdot \|^{\prime} 4\right)$ and (()$=\cos { }^{\circ}$ on
 function is continuous at ${ }^{\cdots} 4 \mid$ Similarly, $\left.\lim _{1 \rightarrow(1 \mid 4)^{+}}()=\lim _{1 \rightarrow(1 \mid 4)^{+}} \cos \right\urcorner=17^{\sqrt{ }} 2$ by continuity of the cosine function at $\urcorner 74$. Thus, $\lim _{\rightarrow()_{4}}$ () exists and equals $1 \quad 2$, which agrees with the value (4). Therefore, is continuous at 4, © Cengage Learning. All Rights Reserved.

INSTRUCTOR USE ONLY

Γ^{-2} if ${ }^{-}-1$
41.
() $={ }_{\square}$
if $-1 \leq-1$
is continuous on $(-\infty-1),(-11)$, and (1∞), where it is a polynomial, a polynomial, and a rational function, respectively.
Now \lim
${ }^{\prime}($ C $)=\lim 2^{2}=1$ and \lim
()$=\lim _{1 \rightarrow-1^{+}} 7=-1$,

so is discontinuous at $_$. Since $(-1)=_1, \quad$ is continuous from the right at \perp. Also, $\lim _{\rightarrow 1^{-}}\left({ }^{\circ}\right)=\lim _{1 \rightarrow 1^{-}} 7=1$ and $\left.\lim _{\rightarrow 1^{+}}()^{-1}\right)=\lim _{\rightarrow 1^{+}}{ }^{--}=1=(1)$, so is continuous at 1 .
42. () $=\begin{array}{ll}F^{2} & \text { if } \leq 1 \\ 7 \sqrt{ }- & \text { if } \Upsilon^{-} \leq 4 \\ 7 & \text { if }\urcorner^{-} 4\end{array}$
is continuous on $(-\infty 1),(14)$, and (4∞), where it is an exponential, a
 polynomial, and a root function, respectively.

Now $\lim _{\rightarrow 1^{-}}(\Pi)=\lim _{\rightarrow 1^{-}} 2=2$ and $\lim _{\rightarrow 1^{+}}(\Pi)=\lim _{\rightarrow 1^{+}}\left(3^{-}\right)=2$. Since ${ }^{-}(1)=2$ we have continuity at 1 . Also,
 from the left at 4.
43. ()$=\begin{array}{ll}\left\ulcorner 7^{+2}\right. & \text { if } 0 \\ \Gamma & \text { if } 0 \leq\urcorner \leq 1 \\ 2-\urcorner & \text { if }\urcorner^{-} 1\end{array}$
is continuous on $(-\infty)$ and (1∞) since on each of these intervals it
is a polynomial; it is continuous on (ll 1) since it is an exponential.

Now $\lim _{1 \rightarrow 0^{-}}(\mathbb{I})=\lim _{\rightarrow 0^{-}}(+2)=2$ and $\underset{\mathbf{l}^{-} \rightarrow 0^{+}}{ }(\Upsilon)=\lim _{\rightarrow 0^{+}} 7^{\prime}=1$, so \urcorner is discontinuous at 0 . Since $\urcorner(0)=1$, 7 is continuous from the right at 0 . Also $\lim _{\rightarrow 1^{-}}(\mathbb{C})=\lim _{1 \rightarrow 1^{-}}{ }^{-}=^{-}$and $\lim _{1 \rightarrow 1^{+^{+}}}\left({ }^{-}\right)=\lim _{\rightarrow 1^{+}}(2-)=1$, so is discontinuous at 1 . Since $\urcorner(1)=\urcorner$, \urcorner is continuous from the left at 1 .
44. By Theorem 5, each piece of 7 is continuous on its domain. We need to check for continuity at $7=7$.
 lim

\qquad

\urcorner is continuous at \urcorner. Therefore, \urcorner is a continuous function of 7 .
45. $\left(\boldsymbol{\prime}=\begin{array}{ll}\urcorner\urcorner 2+2\urcorner & \text { if }\urcorner\urcorner 2 \\ 7^{3} \square^{-} & \text {if }\urcorner \geq 2\end{array}\right.$
is continuous on $(-\infty 2)$ and (2∞). Now $\left.\left.\left.\left.\lim _{\rightarrow 2^{-}}()=\lim _{1 \rightarrow 2^{-}}\right\urcorner\right\urcorner 7^{2}+2\right\urcorner\right\urcorner=47+4$ and

NOT FOR SALE INSTRUCTOR USE ONLY

to be continuous on $(-\infty \infty), 1=\frac{2}{3}$.

$$
\left.\Gamma \frac{-2-4}{7-2} \quad \text { if }\right\urcorner \neg 2
$$

46. ($)=$
$-^{-2}-{ }^{-}+3 \quad$ if $2 \leq-$ ᄀ 3
$2\urcorner-\neg+^{-} \quad$ if $\urcorner \geq 3$
At $\urcorner=2: \quad\urcorner^{2}-4$
$\left.\lim _{\rightarrow 2^{-}}(\urcorner^{-}\right)=$
$\lim _{1 \rightarrow 2^{-}} \frac{7-2}{}=\lim _{1 \rightarrow 2^{-}} \frac{(7+2)(7-2)}{7-2}=\lim _{\rightarrow 2^{-}}(7+2)=2+2=4$

We must have $4^{-}-2^{-}+3=4$, or $4^{-}-27=1$ (1).
At $\urcorner=3: \lim _{1 \rightarrow 3^{-}}\left({ }^{-}\right)=\lim _{\rightarrow 3^{-}}\left({ }^{-2}-\cdots+3\right)=9^{-}-3^{l}+3$
$\lim _{1 \rightarrow 3^{+}}()^{-}=\lim _{\rightarrow 3^{+}}\left(2^{-}+{ }^{-}\right)=6{ }^{1}$

We must have 9$\urcorner-3\urcorner+3=6-7+7$, or 10$\urcorner-4\urcorner=3$ (2).
Now solve the system of equations by adding -2 times equation (1) to equation (2).

$$
\begin{aligned}
& -8^{-}+4^{-}=-2 \\
& \frac{10^{-}}{2^{-}}-\frac{4^{-}=3}{=}
\end{aligned}
$$

 $={ }^{-}=\frac{1}{2}$.
47. If " and "are continuous and (2) $=6$, then $\left.\lim _{\rightarrow 2}[3()+7)()\right]=36 \Rightarrow$

(b) The domain of ${ }^{-} \circ^{\circ}$ is the set of numbers ${ }^{\circ}$ in the domain of (all nonzero reals) such that () is in the domain of (doall nonzero reals). Thus, the domain is $\quad=06$ and $\frac{1}{=}{ }_{2} \quad=\{\mid=0\}$ or $(-\infty, 0) \cup(0, \infty)$. Since \circ° is 7 the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except $\quad 7=0$.
49. (a) ()$\left.\left.=\frac{7^{4}-1}{7-1}=\frac{\left(7^{2}+1\right)\left(7^{2}-1\right)}{7-1}=\frac{\left.\left.\left(7^{2}+1\right)(\urcorner+1\right)(\urcorner-1\right)}{7-1}=(\urcorner^{2}+1\right)(\urcorner+1\right)\left[\right.$ or $\left.7^{3}+7^{-2}+7+1\right]$
for ${ }^{-}=1$. The discontinuity is removable and (${ }^{(C)}=^{-3}+^{-2}+{ }^{-}+1$ agrees with for $6=1$ and is continuous on R
 is removable and ()$={ }^{2}+$ agrees with for $=2$ and is continuous on R.
 exist. The discontinuity at $\urcorner=\urcorner$ is a jump discontinuity.

NOT FOR SALE INSTRUCTOR USE ONLY

50.

 Intermediate Value Theorem.

7 does satisfy the conclusion of the Intermediate Value Theorem.
51. ($)={ }^{-}{ }^{2}+10 \sin ^{-}$is continuous on the interval [31 32], $\quad(31) \approx 957$, and ${ }^{-}(32) \approx 1030$. Since $95771000 \cap 1030$, there is a number C in (3132) such that ${ }^{-}()=1000$ by the Intermediate Value Theorem. Note: There is also a number C in $(-32-31)$ such that ()$=1000$
52. Suppose that (3) 6. By the Intermediate Value Theorem applied to the continuous function on the closed interval [23], the fact that (2) $=8^{7} 6$ and (3) 7 implies that there is a number 1 in (2 3) such that () $=6$. This contradicts the fithat the only solutions of the equation ()$=6$ are $=1$ and $=4$. Hence, our supposition that (3) 6 was incorrect. Ifollows that (3) ≥ 6. But (3) $6=6$ because the only solutions of () $=6$ are $=1$ and $=4$. Therefore, (3) 6 .
 (1) 2) such that $\quad()=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation ${ }^{-4}+{ }^{-}-3=0$ in the interval (1-2)
54. The equation $\ln =-\sqrt{ }-$ is equivalent to the equation $\ln -{ }^{-}+{ }^{-}=0 . \quad$ () $)=\ln -{ }^{\sqrt{ }}-$ is continuous on the interval [2 3], ' 2) $=\ln 2-2+{ }^{\sqrt{ }} \overline{2} \approx 0107$, and ${ }^{\prime}(3)=\ln 3-3+{ }^{\sqrt{ }} \overline{3} \approx-0169$. Since (2) $\cap 07{ }^{\circ}$ (3), there sa number ${ }^{l}$ in $\left(\begin{array}{ll}2 & 3\end{array}\right)$ such that $\quad()=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation $\ln -+{ }^{\sqrt{ }}=0$, or $\ln =-{ }^{-}$, in the interval (23).
55. The equation $\rceil=3-2^{-}$is equivalent to the equation $1+2-3=0$. ($)=1+2^{-}-3$ is continuous on the iteva [0
 Intermediate Value Theorem. Thus, there is a root of the equation $1+2-3=0$, or $1=3-2^{-}$, in the interval (01).
56. The equation $\sin { }^{-}=^{-2}-^{-}$is equivalent to the equation $\sin ^{-}--^{-2}+{ }^{-}=0 .\left(^{-}\right)=\sin ^{-}--^{-2}+{ }^{-}$is continuous ohe interval [1 2] ${ }^{\circ}(1)=\sin 1 \approx 084$, and ${ }^{*}(2)=\sin 2-2 \approx-109$. Since $\sin 1707 \sin 2-2$, there is a number ${ }^{1}$ in (1 2) such that ${ }^{*}(\mathbb{I})=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation $\sin ^{-}--^{-2}+{ }^{-}=0$, or \sin $={ }^{-}{ }^{2}-{ }^{-}$, in the interval (12).
57. (a) $(\mathbb{C})=\cos ^{-}-{ }^{3}$ is continuous on the interval $[01], \quad(0)=170$, and ${ }^{\prime}(1)=\cos 1-1 \approx-04670$. Since $1 \cap 0 \cap-046$, there is a number ${ }^{l}$ in $\left(\begin{array}{ll}0 & 1\end{array}\right)$ such that ()$=0$ by the Intermediate Value Theorem. Thus, there is a the equation $\cos ^{-}-^{-3}=0$, or $\cos ^{-}=^{-3}$, in the interval (011).

NOT FOR SALE INSTRUCTORUSE ONLY

(b) ${ }^{-}(086) \approx 001670$ and $(087) \approx-0014 \cap 0$, so there is a root between 086 and 087 , that is, in the interval $\left(\begin{array}{llll}0 & 86 & 0 & 87\end{array}\right)$.
58. (a) ()$=\ln ^{-}-3+2$ is continuous on the interval $[12], \quad(1)=-170$, and $(2)=\ln 2+1 \approx 1770$. Since $-1 \cap 0 \cap 117$, there is a number \mid in (12) such that $^{\circ}()=0$ by the Intermediate Value Theorem. Thus, there is a root \varnothing the equation $\ln ^{-}-3+2^{-}=0$, or $\ln ^{-}=3-2^{-}$, in the interval (12).
(b) ${ }^{-}(1 \mid 34) \approx-003 \cap 0$ and $^{*}(135) \approx 00001 \cap 0$, so there is a root between 134 and 135 that is, ints interval $\left(\begin{array}{lllll}1 & 34 & 1 & 35\end{array}\right)$.
59. (a) Let ${ }^{-}()=1001-100-001^{-2}{ }^{\text {I }}$ Then $^{-}(0)=100 \cap 0$ and $(100)=100\rceil^{-1}-100 \approx-63270$. So by the Intermediate Value Theorem, there is a number ${ }^{1}$ in (0100) such that $^{-} \quad()=0$ This implies that 100$)^{-100}=0011^{2}$.
(b) Using the intersect feature of the graphing device, we find that the root of the equation is ${ }^{-}=701347$, correct to three decimal places.

60. (a) Let ${ }^{-}()=\arctan ^{-}+^{-}-1$. Then ${ }^{-}(0)=-1 \cap 0$ and
$\neg(1)=-_{4}^{-} 0$. So by the Intermediate Value Theorem, there isa number ${ }^{1}$ in $\left(\begin{array}{ll}0 & 1\end{array}\right)$ such that $\quad()=0$. This implies that $\arctan 7=1-7$.
(b) Using the intersect feature of the graphing device, we find that the root of the equation is $=0520$, correct to three decimal places.

61. Let ${ }^{-}()=\sin ^{-3}$. Then ${ }^{-}$is continuous on $\left[\begin{array}{ll}1 & 2\end{array}\right]$ since ${ }^{-}$is the composite of the sine function and the cubing function, both of which are continuous on R. The zeros of the sine are at $\neg\urcorner$, so we note that $\left.0 \neg 1--\neg \frac{3}{2}\right\rceil \neg 2\lceil\neg 8 \neg 3 \Gamma$, and that le
 $\sqrt{2}$ are zeros of .]
Now $\left.{ }^{*}(1)=\sin 1 \cap 0,^{\prime}()^{-}\right)=\sin \frac{3^{*}}{2}=-1 \cap 0$, and ${ }^{*}(2)=\sin 8 \eta^{0}$. Applying the Intermediate Value Theorem on
 wleast two -intercepts in (1).
62. Let ${ }^{*}()=-2-3+1^{-}$. Then ${ }^{-}$is continuous on $\left(\begin{array}{ll}0 & 2\end{array}\right]$ since ${ }^{-}$is a rational function whose domain is $\left.(0) \infty\right)$. By
 $\frac{1}{4} \| 1$ and then on $\left[\begin{array}{ll}1 & 2\end{array}\right]$, we see there are numbers ${ }^{1}$ and in $^{-1} \begin{aligned} & \frac{1}{1}\end{aligned} 1_{4}$ and $\left(\begin{array}{ll}1 & 2\end{array}\right)$ such that $\quad()=()=0$. Thus, Heast two -intercepts in (0 2).

NOT FOR SALE INSTRUCTOR USE ONLY

63. (\Rightarrow) If $^{-}$is continuous at ${ }^{-}$, then by Theorem 8 with ()$=^{-}+^{-}$, we have

$$
\lim _{1 \rightarrow 0}\left(\|+^{-}\right)=\lim _{1 \rightarrow 0}\left(+^{-}\right)=(-)
$$

$$
\begin{aligned}
& \lim ^{-}\left({ }^{(}\right)={ }^{\dagger} \text { and so is continuous at }{ }^{\circ} \text {. }
\end{aligned}
$$

$$
=\underset{1 \rightarrow 0}{\lim \sin \urcorner} \underset{1 \rightarrow 0}{\lim \cos 7}+\lim _{1 \rightarrow 0} \cos 7 \underset{1 \rightarrow 0}{\lim \sin 7}=\left(\sin ^{-}\right)(1)+\left(\cos ^{-}\right)(0)=\sin 7
$$

65. As in the previous exercise, we must show that $\left.\left.\left.\lim _{\rightarrow 0} \cos (\urcorner+\right\rceil\right)=\cos \right\urcorner$ to prove that the cosine function is continuous.

$$
\begin{aligned}
& \underset{\rightarrow 0}{\lim \cos \left({ }^{-}+^{-}\right)}=\underset{\rightarrow 0}{\left.\lim \left(\cos \neg \cos \neg-\sin \neg \sin ^{-}\right)=\lim _{\rightarrow 0}\left(\cos \neg \cos ^{-}\right)-\lim _{\rightarrow 0}\left(\sin \neg \sin ^{-}\right)\right)}
\end{aligned}
$$

66. (a) Since is continuous at ${ }^{-}, \lim _{\rightarrow}{ }^{-}()=$() Thus, using the Constant Multiple Law of Limits, we have

$$
\left.\lim _{1 \rightarrow}(11)()=\lim _{1 \rightarrow} 11()=1 \lim _{\rightarrow}(1)=11()=(11)()^{-}\right) . \text {Therefore, } 11 \text { is continuous at }{ }^{-} .
$$

 7
67. ()$=\begin{aligned} & 0 \text { if }^{-} \text {is rational } \\ & 1 \text { if } 7 \text { is irrational }\end{aligned}$ is continuous nowhere. For, given any number ${ }^{-}$and any ${ }^{-}>0$, the interval $\left({ }^{-}-\cdots+1\right)$ contains both infinitely many rational and infinitely many irrational numbers. Since ${ }^{-}(\Pi)=0$ or 1 , there are infinitely many

68. ($)=\begin{aligned} & 0 \text { if }^{\sim} \text { is rational } \\ & \neg \text { if } \neg \text { is irrational }\end{aligned}$ is continuous at 0 . To see why, note that $-|\cdot| \leq{ }^{\circ}() \leq\left.\right|^{\circ} \mid$, so by the Squeeze Theorem
 ${ }_{\rightarrow 0}$
infinitely many rational and infinitely many irrational numbers. Since * $(\|)=0$ or * there are infinitely many numbers * with

69. If there is such a number, it satisfies the equation ${ }^{-3}+1=7 \Leftrightarrow{ }^{-3}-7+1=0$. Let the left-hand side of this equation \mathfrak{e} called * () Now $\left.{ }^{*}(-2)=-5\right\rceil 0$, and $\left.(-1)=1\right\rceil 0$. Note also that () is a polynomial, and thus continuous. So byle Intermediate Value Theorem, there is a number ${ }^{1}$ between -2 and -1 such that ()$=0$, so that ${ }^{1}=1^{3}+1$.
70.

equation. Since ${ }^{-}$is continuous on $\left[\begin{array}{ll}-1 & 1\end{array}\right],{ }^{-}(-1)=-4^{--} 0$, and $\left.{ }^{*}(1)=2\right\rceil 70$, there exists al in (-11) such that

NOT FOR SALE INSTRUCTOR USE ONLY

() $=0$ by the Intermediate Value Theorem. Note that the only root of either denominator that is in (-11) is $\left(-1+{ }^{\sqrt{ }} 5\right)^{-2}=1$, but ${ }^{-}(\Gamma)=\left(3^{\sqrt{ }} 5-9\right)^{\cdots} 26=0$. Thus, 1 is not a root of either denominator, so ${ }^{-}()=0 \Rightarrow$
$\urcorner=।$ is a root of the given equation.
71. () $=^{-4} \sin \left(1^{-\cdots}\right)$ is continuous on $(-\infty \quad 0) \cup(0 \infty)$ since it is the product of a polynomial and a composite of a trigonometric function and a rational function. Now since $-1 \leq \sin \left(\begin{array}{ll}1 & \mid 7)\end{array}\right) \leq 1$, we have $-7^{4} \leq 7^{4} \sin (1 \quad \mid 7) \leq 7^{4}$. Becase $\lim _{\rightarrow 0}\left(-^{-4}\right)=0$ and $\lim _{\rightarrow 0}^{-4}=0$, the Squeeze Theorem gives us $\lim _{\rightarrow 0}\left({ }^{-4} \sin \left(1^{--}\right)\right)=0$, which equals $\neg(0)$. Thus, \neg is continuous at 0 and, hence, on $(-\infty \infty)$.
72. (a) $\left.\left.\lim _{\rightarrow 0^{+}}\right\urcorner(\urcorner\right)=0$ and $\left.\left.\lim _{\rightarrow 0^{-}}\right\urcorner(\urcorner\right)=0$, so $\left.\lim _{\rightarrow 0}\right\urcorner(\neg)=0$, which is $\neg(0)$, and hence \quad is continuous at $\urcorner=\mid$ if $\quad \mid=0$. For
 $\neg=7$; that is, continuous everywhere.
(b) Assume that ${ }^{*}$ is continuous on the intervall. Then for ${ }^{-} \in 1,\left.\lim _{1 \rightarrow}\right|^{-}()\left|=\lim _{1 \rightarrow}^{*}()^{*}=\left.\right|^{-}(1)\right|$ by Theorem 8 . (If ${ }^{*}$ is an endpoint of 7 , use the appropriate one-sided limit.) So \mid ㄱ is continuous on .
(c) No, the converse is false. For example, the function ($\left.{ }^{-(}\right)=\begin{array}{llll}\| & \text { if }^{-} \geq 0 \\ & & \text { is not continuous at } & =0 \text {, but }\lceil\text { () } \mid=1 \text { is }\end{array}$ -1 if \quad ᄀ 0
continuous on R.
73. Define () to be the monk's distance from the monastery, as a function of time (in hours), on the first day, and define () to be his distance from the monastery, as a function of time, on the second day. Let be the distance from the monastery to the top of the mountain. From the given information we know that $\urcorner(0)=0, \neg(12)=\neg, \cap(0)=\mid$ and $\urcorner(12)=0$. Now consider the function ${\neg-{ }^{-}}^{-}$, which is clearly continuous. We calculate that $(\quad-7)(0)=\exists$ and $\left.(\quad-7)(12)=\right\rceil$

So by the Intermediate Value Theorem, there must be some time o between 0 and 12 such that $(-)(0)=0 \Leftrightarrow$ $\left(l_{0}\right)=^{*}\left(l_{0}\right)$. So at time 0 after 7:00 AM, the monk will be at the same place on both days.

2.6 Limits at Infinity; Horizontal Asymptotes

1. (a) As * becomes large, the values of () approach 5.
(b) As ${ }^{-}$becomes large negative, the values of " () approach 3.
2. (a) The graph of a function can intersect a vertical asymptote in the sense that it can meet but not cross it.

The graph of a function can intersect a horizontal asymptote.
It can even intersect its horizontal asymptote an infinite number of times.

© Cengage Learning. All Rights Reserved.

NOT FOR SALE INSTRUCTOR USE ONLY

(b) The graph of a function can have 0,1 , or 2 horizontal asymptotes. Representative examples are shown.

No horizontal asymptote

One horizontal asymptote

Two horizontal asymptotes
3. (a) $\lim _{\rightarrow \infty}()=-2$
(d) $\lim _{\rightarrow 3}\left(C^{-}\right)=-\infty$
4. (a) $\lim _{\rightarrow \infty}(\mathbb{1})=2$
(d) $\lim _{1 \rightarrow 2^{-}}\left({ }^{-}\right)=-\infty$
5. $\lim ^{-}(\square)=-\infty$,

$$
\lim _{1 \rightarrow-\infty}^{\rightarrow 0}()=5
$$

$\lim _{\rightarrow \infty}(\Pi)=-5$

(b) $\lim _{\rightarrow-\infty}{ }^{-}$() $=-1$
(e) $\lim _{\rightarrow 2^{+}}()=\infty$
6. $\lim ^{-}()=\infty, \quad \lim _{+}()=\infty$,
$\lim _{1 \rightarrow-2^{-}}^{\rightarrow 2}\left({ }^{-}\right)=-\infty, \quad \lim _{1 \rightarrow-\infty}(\Pi)=0$,
$\lim _{\rightarrow \infty}()=0$,
$(0)=0$

(c) $\lim _{\rightarrow 0}\left({ }^{-}\right)=-\infty$
(f) Vertical: ${ }^{-}=0,{ }^{-}=2$; horizontal: $\neg=-1,7=2$
7. $\lim ^{-}()=-\infty, \quad \lim \quad()=\infty$,
$\lim _{1 \rightarrow-\infty}^{\rightarrow 2}()^{-\infty}=0, \quad \lim _{1 \rightarrow 0^{+}}\left({ }^{-}\right)=\infty$,
$\lim _{1 \rightarrow 0^{-}}\left({ }^{-}\right)=-\infty$

8. $\lim _{\rightarrow \infty}()=3$,
$\lim _{1 \rightarrow 2^{-}}()=\infty$,
$\lim { }^{-}$($)=-\infty$,
$1 \rightarrow 2^{+}$
7 is odd

(c) $\lim _{\rightarrow 1}\left(^{-}\right)=\infty$
(e) Vertical: $=1,=3$; horizontal: $=_2,=2$

NOT FOR SALE INSTRUCTOR USE ONLY

$(6)=05625,^{*}(7)=03828125,^{*}(8)=025,^{*}(9)=0158203125,{ }^{*}(10)=009765625,{ }^{*}(20) \approx 000038147$,
$(50) \approx 22204 \times 10^{-12}, \quad(100) \approx 78886 \times 10^{-27}$. It appears that $\lim _{1 \rightarrow \infty}^{1}{ }_{2}{ }_{2}^{1}=0$.
12. (a) From a graph of ${ }^{-}()=\left(\begin{array}{ll}1 & 2^{-}\end{array}\right)$in a window of $\left[\begin{array}{ll}0 & 10,000\end{array}\right]$ by $\left[\begin{array}{lll}0 & 0 & 2\end{array}\right]$, we estimate that $\underset{\rightarrow \infty}{\lim ^{-}()=0} 14$ (to two decimal places.)
(b)

From the table, we estimate that $\lim _{\rightarrow \infty}\left({ }^{-}\right)=01353$ (to four decimal places.)

-	$(~)$
10,000	0135308
100,000	0135333
$1,000,000$	01135335

13. $\lim _{\rightarrow \infty} \frac{2^{-2}-7}{5^{-}{ }^{2}+^{-}-3}=\lim _{\rightarrow \infty} \frac{\left.\left.(2\urcorner^{2}-7\right)\right\rceil 7^{2}}{\left(5^{-2}+^{-}-3\right)^{--2}}$

$\lim 2-\lim \left(777^{2}\right)$
$=\frac{\left.\lim _{\rightarrow \infty} 5+\lim _{\substack{ \\\lim ^{\infty}}}\left(1^{\top}\right)^{\infty}-\lim \left(3^{\top}\right\rceil^{2}\right)}{\rightarrow \infty}$
$\left.2-7 \lim _{\rightarrow \infty}(1\rceil 7^{2}\right)$
$=\frac{-\infty}{\left.5+\lim _{\rightarrow \infty}(177)-3 \lim _{1 \rightarrow \infty}(1\rceil 7^{2}\right)}$
$=\frac{2-7(0)}{5+0+3(0)}$
$=\frac{2}{5}$
Γ \qquad
$7 \frac{\overline{9\rceil^{3}+87-4}}{3-5^{-}+{ }^{-3}}=\Gamma \quad \overline{\frac{7}{\lim ^{3}+\overline{8}-4}} \begin{gathered}3-5+3\end{gathered}$
$=\lim _{| | \rightarrow \infty} \frac{9+8^{--2}-4^{-3}}{\left.\mid 7_{3}-5\right\urcorner_{2+1}}$
$=F \frac{\left.\left.\lim _{\rightarrow \infty}(9+8\rceil 7^{2}-4\right\rceil 7^{3}\right)}{\left.\left.\lim _{\rightarrow \infty}(3\rceil 7^{3}-5\right\rceil 7^{2}+1\right)}$
$\Gamma \lim 9+\lim \left(82^{2}\right)-\lim \left(4^{3}\right)$
$\left.\left.\lim (3\urcorner 7^{3}\right)-\lim (5\urcorner 7^{2}\right)+\lim 1$

$$
=\frac{9+8(0)-4(0)}{3(0)-5(0)+1}
$$

$$
=\stackrel{\Gamma}{\underline{9}}=\sqrt{ } \underline{9}=3
$$

© Cengage Learning. All Rights Reserved.

NOT FOR SALE INSTRUCTOR USE ONLY

112 CHAPTER 2 LIMITS AND DERIVATIVES

16. $\lim _{\rightarrow \infty} \frac{1-\left.\right|^{2}}{3-^{-}+1}=\lim _{\rightarrow \infty} \frac{\left(1--277^{3}\right.}{\left(^{-3}-^{-}+1\right)^{-3}}=\lim _{\rightarrow \infty} \frac{1 \mid 7^{3}-1 \text { । । }}{1-17^{2}+17^{3}}$

18. $\lim _{\rightarrow-\infty} \frac{47^{3}+67^{2}-2}{2^{-3}-4^{-}+5}=\lim _{\sqrt{ }} \frac{\left(4^{-3}+6^{-2}-2\right)^{--3}}{\left.\left(2^{3}-4\right\rceil+5\right)^{-3}}=\lim _{\rightarrow-\infty} \frac{4+6^{--}-2^{-3}}{2-4^{--2}+5^{-3}}=\frac{4+0-0}{2-0+0}=2$

$$
\sqrt{ }+2^{\sqrt{ }} \quad\left(-+{ }^{2}\right) 11^{2} \quad 111^{32}+1 \quad 0+1
$$

$$
=\lim _{\rightarrow \infty} \frac{\left.(2+1\urcorner 7^{2}\right)^{2}}{\left(1-2^{-}+1^{--}\right)^{2}(1+177)}=\frac{(2+0)^{2}}{(1-0+0)(1+0)}=4
$$

$$
=\lim _{\rightarrow \infty} \frac{1}{1+1\rceil\rceil_{4}}=\neq \frac{1}{1+0}=1
$$

$$
\begin{aligned}
& =\frac{\rightarrow \infty}{\left.\left.\lim _{\rightarrow \infty}(2\rceil\right\rceil^{3}\right)-\lim 1}=\longrightarrow 0-\infty \\
& =\frac{\sqrt{0+4}_{0+4}^{-1}}{-1}=\frac{2}{\rightarrow \infty} \\
& \sqrt{1+4-6} \quad \sqrt{ } \quad \underline{1+4-67^{-3}} \quad \lim -\underline{\left.\left.(1+4)^{6}\right)\right] 7^{6}}
\end{aligned}
$$

24. $\left.\lim _{1 \rightarrow-\infty} 2-\right\urcorner^{7}=\lim _{1 \rightarrow-\infty} \frac{}{\left(2-7^{3}\right) 7^{-3}}=\frac{\rightarrow-\infty}{\lim _{1 \rightarrow-\infty}\left(2^{--3}-1\right)} \quad\left[\right.$ since $3^{3}=-\quad{ }^{6}$ for $\left.\quad 0\right]$

$$
=\frac{\lim _{1 \rightarrow-\infty}-\overline{1^{--6}+4}}{2 \lim _{\rightarrow-\infty} \sqrt{\sqrt{-6}} \quad \text { C Cengage Learning. All }{ }^{3} \text { Rights Reserved. }}=\frac{-\lim _{1 \rightarrow-\infty}\left(1 r^{6}\right)+\lim _{1 \rightarrow-\infty} 4}{(1)}
$$

$$
=\frac{-0+4}{-1}=\frac{-2}{-1}=2
$$

INSTRUCTOR USE ONLY

$$
\ldots \quad \text { Г }
$$

$$
工
$$

26. $\lim _{\rightarrow \infty} \frac{1+3^{-2}}{41-1}=\lim _{1 \rightarrow \infty} \frac{\left(+3^{-}\right)\lceil 7}{(47-1)\rceil}=\lim _{\rightarrow \infty} \frac{1+3\urcorner}{4-1^{-}}$

$$
=\infty \text { since } 1+3 \mid \rightarrow \infty \text { and } 4-1 \text { । } \rightarrow 4 \text { as }\urcorner \rightarrow \infty \text {. }
$$

$$
=-\frac{V^{3}}{-2}=-\frac{\underline{3}}{4}
$$

$$
-\sqrt{ }
$$

29. $\left.\lim _{\infty} \quad 7^{2}+11-{ }^{-2}+{ }^{-}\right\rceil=\lim _{\infty}$

30. For ${ }^{--} 0,{ }^{\sqrt{ }}{ }_{2+1}-\sqrt{ }^{-}{ }_{2}={ }^{-}$. So as ${ }^{-} \rightarrow \infty$, we have ${ }^{\sqrt{ }}{ }_{2}+1 \rightarrow \infty$, that is, $\lim ^{\sqrt{ }{ }^{-}{ }^{2}+1=\infty}$.
$\frac{7 \text { 31. } \downarrow \mathrm{lim}}{7} \quad, \quad \stackrel{4}{\mathrm{C}} \mathrm{C}^{3}{ }^{2}{ }^{2}+{ }^{2}$ gage Learning. All Rights Reserved. $=\lim$
31. $\lim _{\rightarrow \infty}\left(1^{-}+2 \cos 3^{-}\right)$does not exist. $\lim _{\rightarrow \infty} 1^{-}=0$, but $\lim _{\rightarrow \infty}\left(2 \cos 3^{-}\right)$does not exist because the values of $2 \cos 3$ oscillate between the values of -2 and 2 infinitely often, so the given limit does not exist.

INSTRUCTOR USE ONLY

114 CHAPTER 2 LIMITS AND DERIVATIVES
33. $\left.\left.\left.\lim _{\mid \rightarrow-\infty}(\urcorner^{2}+2\right\urcorner^{7}\right)=\lim _{1 \rightarrow-\infty}\right\urcorner^{7} \frac{\urcorner_{1}}{-5}+\quad$ । [factor out the largest power of $]=-\infty$ because $\quad 7 \rightarrow-\infty$ and
$1 \mid 7^{5}+2 \rightarrow 2$ as $\urcorner \rightarrow-\infty$.
Or: $\left.\left.\lim _{1 \rightarrow-\infty}\right\urcorner^{2}+2\right\urcorner^{7}=\lim _{\rightarrow-\infty}{ }^{-2} 1+2$ - $_{-}=-\infty$.
 $\rightarrow-\infty{ }^{4}+1 \rightarrow-\infty(4+1) \quad 4$
of in the denominator
since the numerator increases without bound and the denominator approaches 1 as $\quad \mid \rightarrow-\infty$.
35. Let $=1$. As $\rightarrow \infty, \rightarrow \infty . \lim _{\rightarrow \infty} \arctan ()=\underset{\rightarrow \infty}{\lim _{\rightarrow \infty}} \arctan l=\frac{1}{2}$ by (3).
36. Divide numerator and denominator by $7: \lim _{\rightarrow \infty} \frac{-{ }^{-31}-{ }^{-3}}{3+-3}=\lim _{\rightarrow \infty} \frac{1-7^{-6}}{1+7}=\begin{aligned} & \underline{-6}-\underline{0} \\ & 1+0\end{aligned}=1$

38. Since $0 \leq \sin ^{2} \underset{\neg}{ } \leq 1$, we have $0 \leq \frac{\sin ^{2-}}{7+1} \leq \frac{1}{7+1}$. We know that $\lim 0=0$ and $\lim \frac{1}{-\infty}=0$, so by the Squeeze Theorem, $\lim _{\rightarrow \infty} \frac{\sin ^{2} 7}{\gamma^{2}+1}=0$.
39. Since $-1 \leq \cos \leq 1$ and \rceil^{-2} ? 0 , we have -$\left.\left.\urcorner^{-2} \leq\right\urcorner^{-2} \cos \leq\right\urcorner^{-2}$. We know that $\left.\lim _{1 \rightarrow \infty}(-\urcorner^{-2}\right)=0$ and $\lim _{\rightarrow \infty} 1_{1^{-2}}^{1}=0$, so by the Squeeze Theorem, $\lim _{\rightarrow \infty}\left(1^{-2} \cos ^{-}\right)=0$
40. Let ${ }^{-}=\ln ^{-} . \mathrm{As}^{-} \rightarrow 0^{+}, \rightarrow-\infty \cdot \underset{\rightarrow 0^{+}}{\lim } \tan ^{-1}(\ln \Gamma)=\lim _{\rightarrow-\infty} \tan ^{-1}=-\Sigma$ by (4).
41. $\underset{\rightarrow \infty}{\lim }\left[\ln \left(1+7^{2}\right)-\ln (1+7)\right]=\underset{\rightarrow \infty}{\lim h} \frac{1++^{-2}}{1+\text { । }}=\ln \underset{\rightarrow \infty}{\lim _{\rightarrow \infty} \frac{1++^{-2}}{1+-}}=\ln \underset{\rightarrow \infty}{\lim ^{\frac{1}{1}+1}} \xrightarrow{\frac{1}{1}+7}=\infty$, since the limit in
parentheses is ∞.

$$
\rightarrow \infty \underline{1}^{1}+1
$$

$$
\mathrm{m}[\ln (2+7)-\ln (1+7)]=\lim _{1} \ln 2+\quad=\lim _{1}^{7} \ln 2^{7}=\ln 1 /=\ln 1=0
$$

42. li \qquad $\lim _{\rightarrow \infty} \frac{7}{1+-}$

43. (a) (i) $\lim _{\rightarrow 0^{+}} \quad$ ($)=\lim _{\rightarrow 0^{+}} \ln ^{-}=0$ since ${ }^{-} \rightarrow 0^{+}$and $\ln ^{-} \rightarrow-\infty$ as ${ }^{-} \rightarrow 0^{+}$.
(ii) $\lim _{\rightarrow 1^{-}}\left(^{-}\right)=\lim _{\rightarrow 1^{-}} \ln _{-}^{-}=-\infty$ since $\quad \mid \rightarrow 1$ and $\left.\ln \right\urcorner \rightarrow 0^{-}$as $\quad \mid \rightarrow 1^{-}$.
(iii) $\lim _{1 \rightarrow 1^{+}}()=\lim _{\rightarrow 1^{+} \ln }=\infty$ since $\rightarrow 1$ and $\ln \rightarrow 0^{+}$as $\rightarrow 1^{+}$.
(b)

	()
10,000	$1085 \cdot 7$
100,000	$8685 \cdot 9$
$1,000,000$	$72,382 \cdot 4$

(c) INSTRUCTOR USE ONLY
44. (a) $\lim _{1 \rightarrow \infty}(\mathbb{C})=\lim _{1 \rightarrow \infty} \stackrel{2}{-}-\frac{1}{\ln ^{-}}=0$

(b) $\lim _{1 \rightarrow 0^{+}}(i)=\lim _{1 \rightarrow 0^{+}} \underline{2}-\frac{1}{\ln ^{-}}=\infty$
(e)

(c) $\lim _{1 \rightarrow 1^{-}}(\Pi)=\lim _{1 \rightarrow 1^{-}} \underline{\underline{2}}^{-}-\frac{1}{\ln ^{-}}=\infty$ since $\stackrel{2}{-} \rightarrow 2$ and $\frac{1}{\ln } \rightarrow$ as $\rightarrow 1^{-}$.
(d) $\lim _{1 \rightarrow 1^{+}}$
$(0)=\lim _{1 \rightarrow 1^{+}}$
$\underline{2}-\frac{1}{\ln }=-\infty$ since $\stackrel{2}{\rightarrow}$ and $^{1} \ln ^{\infty}$ as $^{-} \rightarrow 1^{+}$.
45. (a)

(b)

	$($)
$-10,000$	-04999625
$-100,000$	-04999962
$-1,000,000$	-04999996

From the table, we estimate the limit to be -05.
From the graph of $\left(^{-}\right)=\sqrt{\frac{}{2}+{ }^{-}+1}+{ }^{-}$, \mathbf{w} estimate the value of $\lim \quad$ () to be -05 .
$\rightarrow-\infty$

$=\lim _{\rightarrow-\infty} \frac{(+1)\left(1, \chi^{-}\right)}{\sqrt{2^{-}+1-\left(1^{-}\right)}}=\lim _{1 \rightarrow-\infty} \frac{1+(1)}{\left.1+(1\rceil\rceil)+(1\rceil\rceil^{2}\right)-1}$
$=\frac{\sqrt{ } \frac{1+0}{1+0+0}-1}{-\quad-\frac{1}{1}}$

Note that for $\mid\urcorner 0$, we have $\left.\left.\sqrt{ } \overline{\urcorner^{2}}=\mid\right\urcorner \mid=-\right\urcorner$, so when we divide the radical by \urcorner, with $\left.\urcorner\right\urcorner 0$, we get $\underline{1} \sqrt{ } \overline{{ }^{2}+7+1}=\frac{1}{=} \sqrt{-\frac{2}{2}} \overline{+7+1}=-\Gamma \overline{1+\left(1^{-}\right)+\left(1^{-}{ }^{-}\right)}$
46. (a)

From the graph of
\qquad $\sqrt{ }$
(b)

	()
10,000	144339
100,000	144338
$1,000,000$	1.44338

From the table, we estimate (to four decimal places) the limit to be 14434 .
() $=3^{2}+8+6-3^{2}+3+1$, we esimme
© Cengage Learning. All Rights Reserved.

(to one decimal place) the value of $\lim ^{-\infty}$ (() to be 14 .

INSTRUCTOR USE ONLY

a CHAPTER 2 LIMITS AND DERIVATIVES

47. $\lim _{1 \rightarrow \pm \infty} \frac{5+47}{-+3}=\lim _{\rightarrow \pm \infty} \frac{\left(5+4^{-}\right)^{--}}{(-+3)^{--}}=\lim _{\rightarrow \pm \infty} 5^{--}+4+3^{-}=\frac{4}{1+4} \frac{4}{1+0}$, so
$=4$ is a horizontal asymptote. $=\left(^{\prime}\right)=\frac{5+4}{-+3}$, so $\underset{\rightarrow-3^{+}}{\mathrm{m}} \quad\left({ }^{-}\right)=-\infty$
since $5+4^{-} \rightarrow-7$ and $^{-}+3 \rightarrow 0^{+}$as $^{-} \rightarrow-3^{+}$. Thus, ${ }^{-}=-3$ is a vertical asymptote. The graph confirms our work.

48. $\lim _{\rightarrow \pm \infty} \frac{2\urcorner^{2}+1}{\left.3\urcorner^{2}+2\right\urcorner-1}=\lim _{\rightarrow \pm \infty} \frac{\left.\left.\left.(2\urcorner^{2}+1\right)\right\urcorner\right\urcorner^{2}}{\left(3^{-}{ }^{2}+2^{-}-1\right)^{--2}}$

$$
=\lim _{\rightarrow \pm \infty} \frac{2+1^{--2}}{3+271-177^{2}}=\frac{2}{3}
$$

so $\urcorner=\frac{2}{3}$ is a horizontal asymptote. $=\quad(\square)=\frac{2\urcorner^{2}+1}{\left.3\urcorner^{2}+2\right\urcorner-1}=\frac{2\urcorner^{2}+1}{(3\urcorner-1)(\urcorner+1)}$.

The denominator is zero when $7={ }_{\frac{1}{3}}$ and -1 , but the numerator is nonzero, so $7={ }^{1} \frac{\text { and }}{3} 7=-1$ are vertical asymptotes. The graph confirms our work.

$$
\lim _{\rightarrow \pm \infty} 1+\lim _{\rightarrow \pm \infty} \quad-2 \lim \quad 1+0-2(0)
$$

$27^{2}+1_{-} 1 \quad \frac{\left(2^{-}-1\right)(+1)}{7}$, so $\quad \lim \quad(\Pi)=$,
$=()=\frac{}{-2+-2}=\left(\begin{array}{ll}7 \\ (1) & (-1) \quad \rightarrow-2^{-} \quad \infty\end{array}\right.$

$\lim _{+}()=-\infty, \operatorname{m} \quad()=-\infty$, and $\operatorname{lm} \quad()=\infty$. Thus, $=-2$
$\rightarrow-2 \quad \rightarrow 1^{-} \quad \rightarrow 1^{+}$
and $\quad 1=1$ are vertical asymptotes. The graph confirms our work.
© Cengage Learning. All Rights Reserved.

$$
\left.=\frac{0+1}{}=1, \underline{\text { so }}\right\urcorner=1 \text { is a horizontal asymptote. }
$$

INSTRUCTOR USE ONLY

NOT FOR SALE

zero when $7=0,-1$, and 1 , but the numerator is nonzero, so $7=0,7=-1$, and $\urcorner=1$ are vertical asymptotes. Notice that as $\urcorner \rightarrow 0$, the numerator and denominator are both positive, so $\lim _{\rightarrow 0}(\Pi)=\infty$. The graph confirms our work.

The graph of \urcorner is the same as the graph of 7 with the exception of a hole in the graph of at $=1$. By long division, (l) $=\frac{7^{2}+{ }^{-}}{7-5^{-}}=+6+\frac{30}{1-5}$.

As ${ }^{\top} \rightarrow \pm \infty,{ }^{-}(\|) \rightarrow \pm \infty$, so there is no horizontal asymptote. The denominator of 7 is zero when $\urcorner=5 . \lim _{\rightarrow 5^{-}}(\mathbb{\|})=-\infty$ and $\underset{\rightarrow 5^{+}}{\lim }(\|)=\infty$, so $=5$ is a

vertical asymptote. The graph confirms our work.
52. $\lim _{\rightarrow \infty} \frac{2 \downarrow}{7-5}=\lim _{\rightarrow \infty} \frac{2 \downarrow}{7-5} \cdot \frac{1-l^{-1}}{1^{--}}=\lim _{\rightarrow \infty} \frac{2}{1-\left(5^{--1}\right)}=\frac{2}{1-0}=2$, so $7=2$ is a horizontal asymptote.
$\lim _{{ }^{\prime \prime} \rightarrow-\infty} \overline{7^{\prime}-5}=\frac{}{0-5}=0$, so $=0$ is a horizontal asymptote. The denominator is zero (and the numerator isn't)
when $\left.\left.\urcorner^{\prime \prime}-5=0 \quad \Rightarrow \quad\right\urcorner^{\prime}=5 \quad \Rightarrow \quad\right\urcorner=\ln 5$.

$$
\lim _{\rightarrow(\ln 5)} \frac{27^{\prime}}{1-}=\infty \text { since the numerator approaches } 10 \text { and the denominator }
$$

approaches 0 through positive values as ${ }^{-} \rightarrow(\ln 5)^{+}$. Similarly,

$$
\lim _{\rightarrow(\ln 5)^{-}} \frac{2\urcorner^{\prime}}{1-}=-\infty . \text { Thus, }{ }_{5}^{-}=\ln 5 \text { is a vertical asymptote. The graph }
$$

confirms our work.
53. From the graph, it appears $7=1$ is a horizontal asymptote.

$$
\begin{aligned}
& \lim _{\rightarrow \pm \infty} \frac{3^{-3}+500^{-2}}{-3}+500^{-}{ }^{2}+100^{-}+2000 \quad \lim _{\| \rightarrow \pm \infty} \frac{\frac{3^{-3}+500^{-2}}{7^{3}}}{\frac{7^{3}+500^{-}{ }^{2}+100^{-}+2000}{7^{3}}} \\
& =\lim ^{\rightarrow \pm \infty} \frac{3+\left(500^{--}\right)}{1+\left(500 \quad 7^{--}\right)+\left(100^{-}{ }^{2}\right)+\left(2000^{-7}{ }^{3}\right)} \\
& =\frac{3+0}{1+0+0+0}=3 \text {, so } 7=3 \text { is a horizontal asymptote } \text {. }
\end{aligned}
$$

The discrepancy can be explained by the choice of the viewing window. Try

© Cengage Learning. All Rights Reserved.

R USE

ONLY
54. (a)

From the graph, it appears at first that there is only one horizontal asymptote, at ≈ 0 and a vertical asymptote at
≈ 17. However, if we graph the function with a wider and shorter viewing rectangle, we see that in fact there seem to be two horizontal asymptotes: one at $\quad \approx 05$ and one at ${ }^{-} \approx-05$. So we estimate that

\lim| $\sqrt{ } \frac{\Pi^{2}+1}{2} \quad$ and $\quad \lim \sqrt{2\rceil^{2}+1}$ |
| :--- |

$\frac{\sqrt{7}}{2\urcorner^{2}+1} \approx 047$.
(b) $(1000) \approx 04722$ and $^{-}(10,000) \approx 04715$, so we estimate that \lim

$$
\rightarrow \infty \quad 3 \quad-5 \quad \frac{\downarrow}{2^{-2}+1}
$$

$(-1000) \approx-04706$ and $^{-}(-10,000) \approx-04713$, so we estimate that $\lim _{-\infty} \frac{l^{7}-5}{} \approx-047$.

$$
\Gamma \overline{2+17^{-2}}
$$

$$
71 \quad \sqrt{ }^{2}
$$

 For $\mid\urcorner 0$, we have $\left.{ }_{2}=\mid\right\urcorner \mid=-\quad$, so when we divide the numerator by , with $\quad 0$, we

$$
\begin{aligned}
& \text { get } \frac{1}{2^{2}+1}=-\frac{1}{} \frac{\sqrt{ }}{2} \overline{2+1}=-\Gamma \overline{2+1^{2} \mid 7} . \text { Therefore, } \\
& \lim _{\rightarrow-\infty} \frac{v^{-2}+1}{3-5}=\lim _{1 \rightarrow-\infty} \frac{-\overline{2^{-2+1-2}}}{3-5}=-\frac{\sqrt{2}}{3} \approx-0471404 .
\end{aligned}
$$

55. Divide the numerator and the denominator by the highest power of \urcorner in $I(7)$.
(a) If deg ${ }^{-} \mathrm{deg}^{-}$, then the numerator $\rightarrow 0$ but the denominator doesn't. So $\left.\left.\lim \left[\square(\square)^{-}\right)^{-}\right)\right]=0$.
(b) If $\mathrm{deg}^{-} \mathrm{deg}^{-}$, then the numerator $\rightarrow \pm \infty$ but the denominator doesn't, so $\lim _{1 \rightarrow \infty}\left[\square()^{--}\left(^{-}\right)\right]= \pm \infty$ (depending on the ratio of the leading coefficients of I and \mid).
56.

(iii) $\mid ~ \neg 0$ (\urcorner even)
(iv) ${ }^{--} 0$ (| odd $)$
(v) $\left.{ }^{-}\right\urcorner 0(\urcorner$ even $)$

From these sketches we see that

$$
\begin{aligned}
& 1 \rightarrow \infty \longdiv { 3 7 - 5 } \\
& \mathfrak{I}_{\rightarrow-\infty} \overline{3 \text { ।-5 }} \approx-05
\end{aligned}
$$

$$
\underbrace{}_{1 \rightarrow 0^{+}} \mathrm{if}^{-} 0
$$

(c) $\lim ^{-1}=\Gamma^{1} \quad$ if $^{-}=0$ ${ }^{\rightarrow \infty} \quad\ulcorner 0$ if ᄀ । 0
(d) $\lim _{\rightarrow-\infty}=\begin{array}{r}\Gamma-\infty \text { if }-0,\rceil \text { odd } \\ \quad \infty \text { if } 1\urcorner 0,7 \text { ifen }\end{array}$
$\rightarrow-\infty \quad$ 「 $\quad \begin{aligned} & \infty \text { if } \mid\urcorner 0, \neg \text { even } \\ & 0 \text { if }^{-} 0\end{aligned}$
57. Let's look for a rational function.
(1) $\lim _{\rightarrow \pm \infty}(\square)=0 \Rightarrow$ degree of numerator \cap degree of denominator
(2) $\lim _{\rightarrow 0}\left({ }^{-}\right)=-\infty \Rightarrow \quad$ there is a factor of ${ }^{-2}$ in the denominator (not just ${ }^{-}$, since that would produce a sign change at $\neg=0$), and the function is negative near $\neg=0$.
(3) $\lim _{\rightarrow 3^{-}}\left({ }^{-}\right)=\infty$ and $\lim _{\rightarrow 3^{+}}(-)=-\infty \Rightarrow$ vertical asymptote at $=3$; there is a factor of (-3) in the denominator.
(4) $\quad \mathrm{I}(2)=0 \Rightarrow 2$ is an $^{-}$-intercept; there is at least one factor of (-2) in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us $\left({ }^{-}\right)=\frac{2-}{\square^{2}(-3)}$ as one possibility.
58. Since the function has vertical asymptotes $\urcorner=1$ and $\urcorner=3$, the denominator of the rational function we are looking for must have factors $(\urcorner-1)$ and $(\urcorner-3)$. Because the horizontal asymptote is $\quad I=1$, the degree of the numerator must equal the degree of the denominator, and the ratio of the leading coefficients must be 1 . One possibility is $\left(^{-}\right)=\frac{7^{2}}{(\rceil-1)(\urcorner-3)}$.
59. (a) We must first find the function 7 . Since \urcorner has a vertical asymptote $\quad \mid=4$ and 7 -intercept $\quad \mid=1$, $\neg-4$ is a factor of the denominator and $\quad I-1$ is a factor of the numerator. There is a removable discontinuity at $7=-1$, so $\quad \mid-(-1)=1+1$ is a factor of both the numerator and denominator. Thus, now looks like this: $(\Pi)=\frac{(\square-1)\left({ }^{\circ}+1\right)}{(\cap-4)(\rceil+1)}$, where ${ }^{-}$is still to be determined. Then $\lim _{\rightarrow-1}\left(\mathcal{C}^{-}\right)=\lim _{\lim _{\rightarrow-1}} \frac{7(7-1)(7+1)}{(7-4)(7+1)}=\operatorname{m}_{\rightarrow-1} \frac{-(-1)}{7-4}=\frac{-(-1-1)}{(-1-4)}=\frac{2}{5} \neg$, so $\frac{2}{5} \neg=2$, and

$$
\begin{aligned}
& =\text { 5. Thus }(1)=\frac{5(-1)(+1)}{(7-4)(7+1)} \text { is a ratio of quadratic functions satisfying all the given conditions and } \\
& \neg(0)=\frac{5(-1)(1)}{(-4)(1)}=\frac{5}{4}
\end{aligned}
$$

(b) $\lim (0)=5 \lim \frac{7^{2}-1}{-}=5 \lim \frac{\left(2^{--2}\right)-\left(1^{--q}\right.}{-0^{-}}=5 \frac{1}{-} \underline{0} \quad=5(1)=5$ $\rightarrow \infty \quad \rightarrow \infty \quad 2-3 \quad-4 \quad \rightarrow \infty\left(\begin{array}{llll}2 & 2\end{array}\right)-\left(\begin{array}{lll}3 & 2^{2}\end{array}\right)-\left(\begin{array}{ll}4 & 9\end{array} \quad 1-0-0\right.$
60. $={ }^{-}()=2^{3}-4={ }^{3}(2-)$. The -intercept is $(0)=0$. The \urcorner-intercepts are 0 and 2 . There are sign changes at 0 and 2 (odd exponents on 7 and $2-^{-}$). As ${ }^{-} \rightarrow \infty$, ($) \rightarrow-\infty$ because ${ }^{-3} \rightarrow \infty$ and $2-^{-} \rightarrow-\infty$. As $\rightarrow-\infty$, $(\Pi) \rightarrow-\infty$ because ${ }^{-3} \rightarrow-\infty$ and $2-^{-} \rightarrow \infty$. Note that the gaphof
 \urcorner near $\quad ।=0$ flattens out (looks like $\urcorner=\neg^{3}$).

NOT FOR SALE INSTRUCTOR USE ONLY

61. $=()=4-6={ }^{4}\left(1-{ }^{2}\right)=4(1+)(1-)$. The -intercept is $(0)=0$. The -intercepts are $0,-1$, and 1 [found by solving () $=0$ for]. Since $\left.{ }^{4}\right] 0$ for $\urcorner=0$, 7 doesn't change sign at $\urcorner=0$. The function does dange sign at ${ }^{-}=-1$ and $^{-}=1$. As $^{-} \rightarrow \pm \infty,^{-}\left(^{-}\right)={ }^{-4}\left(1-{ }^{-2}\right)$ approaches $-\infty$

because ${ }^{-4} \rightarrow \infty$ and $\left(1-{ }^{-2}\right) \rightarrow-\infty$.
62. $=()={ }^{3}(+2)^{2}(-1)$. The -intercept is $(0)=0$. The interepts are 0 , -2 , and 1 . There are sign changes at 0 and 1 (odd exponents on 7 and -1). There is no sign change at -2 . Also, (${ }^{-}$) $\rightarrow \infty$ as ${ }^{-} \rightarrow \infty$ because \mathbf{d} three factors are large. And ${ }^{-}(\Pi) \rightarrow \infty$ as ${ }^{-} \rightarrow-\infty$ because ${ }^{-3} \rightarrow-\infty$, $(\urcorner+2)^{2} \rightarrow \infty$, and $(\neg-1) \rightarrow-\infty$. Note that the graph of \urcorner at $\urcorner=0$ flattens at
 (looks like $\neg=-\neg^{3}$).
63. ${ }^{-}()=\left(3-^{-}\right)\left(1+^{-}\right)^{2}\left(1-^{-}\right)^{4}$. The -intercept is $(0)=3(1)^{2}(1)^{4}=3$

The ${ }^{-}$-intercepts are $3,-1$, and 1 . There is a sign change at 3 , but not at -1 and 1 . When \urcorner is large positive, $3-\neg$ is negative and the other factors are positive, so $\lim _{\rightarrow \infty}(\Pi)=-\infty$. When ${ }^{-}$is large negative, $3 _^{-}$is positive, so

$$
\lim _{1 \rightarrow-\infty}()=\infty
$$

64. $=()=^{2}(2-1)^{2}(+2)=^{2}(+1)^{2}(-1)^{2}(+2)$. The -intercept is ${ }^{-}(0)=0$. The -intercepts are $0,-1,1$ and -2 . There is a sign change at -2 , but not at $0,-1$, and 1 . When 7 is large positive, all the factors are positive, so $\left.\lim _{\rightarrow \infty}{ }^{\prime}\right)=\infty$. When ${ }^{*}$ is large negative, only ${ }^{*}+2$ is negative, so $\lim _{1 \rightarrow-\infty}(\mathbb{O})=-\infty$.

 Theorem, $(\sin 7)\urcorner\urcorner \rightarrow 0$. Thus, $\lim _{\rightarrow \infty} \frac{\text { ㄱ․ }}{\sin }=0$.
(b) From part (a), the horizontal asymptote is $7=0$. The function $\urcorner=(\sin 7)\urcorner\urcorner$ crosses the horizontal asymptote whenever $\sin \urcorner=0$ that is, at $\urcorner=\neg\urcorner$ for every integer \urcorner. Thus, the graph crosses the asymptote an infinite number of times.
66. (a) In both viewing rectangles,

$$
\begin{aligned}
& \left.\lim _{\rightarrow \infty}^{-}\left(\lceil)=\lim _{\rightarrow \infty}\right\urcorner(\urcorner\right)=\infty \text { and } \\
& \left.\left.\left.\lim _{\perp \rightarrow-\infty} \quad(\urcorner\right)=\lim _{1 \rightarrow-\infty}\right\urcorner(\urcorner\right)=-\infty .
\end{aligned}
$$

In the larger viewing rectangle, \urcorner and \urcorner become less distinguishable.

NOT FOR SALE INSTRUCTOR USE ONLY

(b) $\lim _{\rightarrow \infty} \frac{(\square)}{7(7)}=\lim _{1 \rightarrow \infty} \frac{3^{-5}-5^{-3}+2}{3^{5}}=\lim _{1 \rightarrow \infty} 1-\frac{5}{3} \cdot \frac{1}{2}+\frac{2}{3} \cdot \frac{1}{4}=1-\frac{5}{3}(0)+\frac{2}{3}(0)=1 \Rightarrow$
\urcorner and \urcorner have the same end behavior.

7^{7}
$0^{\prime}-21$

$\lim _{\rightarrow \infty} \quad 2 \quad 1_{1}=\lim _{\rightarrow \infty} \quad 2 \quad=\quad=5$ Since $\quad 27^{\prime} \quad 7 \cdot() 7 \overline{5}_{7-1}^{7}$,
we have $\underset{\rightarrow \infty}{\lim (})=5$ by the Squeeze Theorem.
68. (a) After minutes, 25 liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains $(5000+25)$ liters of water and $25 \cdot 30=750$ grams of salt. Therefore, the salt concentration at time will be

$$
{ }^{-}()=\frac{750}{5000+25}=\frac{30}{200+{ }^{-}} \frac{\mathrm{g}}{\mathrm{~L}} .
$$

(b) $\lim _{\rightarrow \infty}{ }^{-}()=\lim _{\rightarrow \infty} \frac{30}{200+}=\lim _{\rightarrow \infty} \frac{30}{20011+\pi}=\frac{30}{0+1}=30$. So the salt concentration approaches that of the brine being pumped into the tank.
69. (a) $\lim _{\rightarrow \infty}{ }^{\prime}(1)=\lim _{\rightarrow \infty}{ }^{*} 1-1-1^{*}=7^{*}(1-0)=i^{*}$
(b) We graph ${ }^{*}(\mathrm{I})=1-1^{-918!}$ and ${ }^{(}(\mathrm{I})=09^{\circ}{ }^{*}$, or in this case,
($)=099$. Using an intersect feature or zooming in on the point f intersection, we find that $\approx 047 \mathrm{~s}$.

70. (a) ${ }^{-} 1^{-10}$ and $^{-}=01$ intersect at ${ }^{-} \approx 2303$.

$$
\text { If } \left.^{-}{ }_{1} \text {, then }\right)^{-10} 10 \| 1
$$

(b) $)^{-10}$ า $011 \Rightarrow \quad-\cdots 10 \cap \ln 01 \Rightarrow$

$$
-10 \ln \underset{\underline{10}}{1}=-10 \ln 10^{-1}=10 \ln 10 \approx 2303
$$

71. Let ${ }^{(C)}=\frac{3\urcorner^{2}+1}{2\rceil^{2}+7+1}$ and $(\square)=\dot{\rho}^{\prime}()-15 \mid$. Note that $\underset{\rightarrow \infty}{\lim }{ }^{-}()=\frac{3}{2}$ and $\underset{\rightarrow \infty}{\lim }\left(^{(}\right)=0$. We are interested in finding the -value at which (©) 70105 . From the graph, we find that ${ }^{\circ} \approx 14804$, so we choose $\quad \mathrm{I}=15$ (or any larger number).

72. We want to find a value of \urcorner such that $\left.\urcorner\urcorner\urcorner \Rightarrow \frac{1-3\urcorner}{\sqrt{ }\urcorner^{2}+1}-(-3)\right\rceil$, orequivalently, $\left.-3-\rceil\urcorner \frac{\sqrt{ } \frac{-3\urcorner}{2+1}}{\square}-3+\right\rceil$. When $\rceil=01$, we graph $=\cdot(\cdot)=\sqrt{ } \frac{-3\urcorner}{7+1},=-311$, and $=-29$. From the graph,
© engage Learning. All Rights Reserved.
we find that ${ }^{\circ}()=-29$ at about $^{-}=11283$, so we choose $\cap=12$ (or any larger number). Similarly for ${ }^{l}=005$, we fd that ${ }^{-}()=-295$ at about $^{-}=21379$, so we choose $\cap=22$ (or any larger number).

73. We want a value of \cap such that $\cdots \frac{1-3}{\sqrt{-2+1}}-3 \cdot 71$, or equivalently, $\left.3-1\right\urcorner \frac{1-31}{\sqrt{-2}+1} 73+1$. When $\rceil=01$, we graph $=()=\frac{1}{T_{2}-3},=31$, and $=29$. From the graph, we find that ()$=31$ at about $=-8092$, so we
 choose ${ }^{-}=-19$ (or any lesser number).

74. We want to find a valưe of । such that $\left.\left.{ }^{--}\right\urcorner \Rightarrow^{0}\right\urcorner \ln \mid$ । 100 .
\qquad
We graph ${ }^{-}{ }^{-}()=\ln$ and $=100$. From the graph, we find that (') $=100$ at about ${ }^{-}=1382773$, so we choose $\cap=1383$ (bany larger number).

75. (a) 1 -2 $\cap 00001 \Leftrightarrow 20100001=10000 \Leftrightarrow$ - $\left.100 \quad C^{-} 0\right)$
(b) If $\urcorner\urcorner 0$ is given, then $1 \quad\urcorner^{2}\left\ulcorner\right.$ । $\left.\Leftrightarrow \square^{2} \square 1 \square । \Leftrightarrow \mid\right\urcorner 17^{\sqrt{ }}$ ।. Let $\urcorner=1 ।^{\sqrt{ }}$ ।.-

$$
\text { Then }-\square \Rightarrow-\frac{1}{\sqrt{V}} \Rightarrow \frac{1}{2}-0=\frac{1}{-2} \cap \cap \text {, so } \lim _{\| \rightarrow \infty-2} \frac{1}{2}=0
$$

$$
\text { Then }--\neg \Rightarrow \text { ㄱ } \quad \frac{1}{ᄀ^{2}} \Rightarrow \quad \frac{1}{v_{-}}-0=\frac{1}{v^{\prime}}-\neg \text {, so } \lim _{1 \rightarrow \infty} \frac{1}{v^{\prime}}=0 \text {. }
$$

77. For $\left.{ }^{--} 0,|1|\right\urcorner-0 \mid=-17$ ।. If 770 is given, then -1 ।। । । \Leftrightarrow । । -1 ।।.

 $=\stackrel{\downarrow}{ } \Rightarrow-3 \cap \Gamma$, so $\lim _{1 \rightarrow \infty}{ }^{-3}=\infty$.

NOT FOR SALE INSTRUCTOR USE ONLY

79. Given $\left.{ }^{-}\right\urcorner 0$, we need $\left.{ }^{-}\right\urcorner 0$ such that $\left.\left.\urcorner\right\urcorner\left|\Rightarrow \|^{\prime \prime}\right|\right\urcorner$. Now $\left.\left.\left.7^{\prime}\right\urcorner \mid \Leftrightarrow \neg\right\urcorner \ln \right\urcorner$, so take
 $\lim _{\rightarrow \infty}^{-}=\infty$.
80. Definition Let bea function defined on some interval $\left(\begin{array}{ll}-\infty & 7\end{array}\right)$. Then $\lim _{1 \rightarrow-\infty}()=-\infty$ means that for every negative
 prove that $\left.\left.\lim _{\rightarrow-\infty}\right\urcorner\right\urcorner^{3}=-\infty$. Given a negative number \urcorner, we need a negative number । such that $\left.\left.\urcorner\right\urcorner\right\urcorner \Rightarrow$
 $\rightarrow-\infty \quad 1+^{-3}=-\infty$.

 a corresponding $\rceil>0\left(\right.$ namely $\left.1^{--}\right)$such that $\left.\left.\right|^{-}(111)-\square \mid 0\right\rceil$ whenever $\left.0^{-}\right\rceil 1\lceil$. This proves that $\lim _{\rightarrow 0^{+}}{ }^{-}(111)=^{-}=\lim _{\rightarrow \infty}($).

Now suppose that $\lim _{\rightarrow-\infty}()={ }^{-}$. Then for every $\left.\rceil\right\rceil$there is a corresponding negative number \cap such that
 $\rceil\rceil 0$ there is a corresponding $\rceil 70$ (namely $\left.-1^{--}\right)$such that $\left.\right|^{*}(111)-\square \mid \square$ whenever $-7 \square 1 \square 0$. This provesta $\lim _{\rightarrow 0^{-}}{ }^{-}(1 \backslash 1)=^{-}=\lim _{1 \rightarrow-\infty}$ () .
(b) $\lim _{1 \rightarrow 0^{+}} \cdot \sin ^{1}=\lim _{\rightarrow 0^{+}} \sin \frac{1}{1} \quad[$ let $=]$

$$
\left.\left.=\lim _{\| \rightarrow \infty} \frac{1}{\urcorner} \sin \right\urcorner \quad[\operatorname{part}(\mathrm{a}) \text { with }\urcorner=1 \neg \neg\right]
$$

$$
\left.=\lim _{\rightarrow \infty} \frac{\sin \urcorner}{\square} \quad[\operatorname{let}\urcorner=7\right]
$$

$$
=0 \quad[\text { by Exercise } 65]
$$

2.7 Derivatives and Rates of Change

1. (a) This is just the slope of the line through two points:

$$
=\frac{\Delta^{-}}{\Delta^{-}}=\frac{\left.()^{-}\right)(3)}{7-3}
$$

(b) This is the limit of the slope of the secant line -
as \rceil approaches $\rceil: \Gamma=\lim _{\rightarrow 3} \frac{(7)-{ }^{-}(3)}{\neg-3}$.
2. The curve looks more like a line as the viewing rectangle gets smaller.

NOT FOR SALE INSTRUCTOR USE ONLY

3. (a) (i) Using Definition 1 with ($)=4-{ }^{-2}$ and 7 (1 3),

$$
\begin{aligned}
\Gamma & =\lim _{1 \rightarrow 1} \frac{()-()}{---}=\lim _{1 \rightarrow 1} \frac{\left(4-{ }^{2}\right)-3}{7-1}=\lim _{1 \rightarrow 1} \frac{-(-4+3}{7-1}=\lim _{1} \frac{-(7-1)(7-3)}{7-1} \\
& =\lim _{\rightarrow 1}(3-7)=3-1=2
\end{aligned}
$$

(ii) Using Equation 2 with ${ }^{-}$() $=4^{-}-{ }^{2}$ and 7 (13),

$$
\begin{aligned}
\Gamma & =\lim _{\rightarrow 0} \frac{\left(1+{ }^{-}\right)-0}{}=\lim _{1 \rightarrow 0} \underline{\left.\left(1+^{-}\right)-\right\urcorner(1)}=\lim _{1 \rightarrow 0} 4\left(1+{ }^{-}\right)-\left(1+{ }^{-}\right)^{2}-3 \\
& =\lim _{\rightarrow 0} \frac{4+4^{-}-1-2^{-}--^{-2}-3}{}=\lim _{1 \rightarrow 0} \frac{-2+7}{2}=\lim _{1 \rightarrow 0} \xrightarrow{-\left(^{-}+2\right.}=\lim _{\rightarrow 0}(-1+2)=2
\end{aligned}
$$

 $=2^{-}+1$.
(c)

The graph of $\quad I=2 ।+1$ is tangent to the graph of $\quad I=47-7^{2}$ at the point (13). Now zoom in toward the point (13) until the parabola and the tangent line are indistiguishable.
4. (a) (i) Using Definition 1 with () $=-{ }^{-3}$ and 7 (10),

$$
\begin{aligned}
& \Gamma=\lim ()-0=\lim _{{ }_{-}}{ }_{-}^{3}=\lim _{-}\left(1-_{-}^{2}=\lim _{1} \frac{7(1+7)(1-7)}{7}\right. \\
& \begin{array}{lllll}
\rightarrow 1 \\
1-1 & \quad 1 \rightarrow 1 \overline{1-1} \quad 1 \rightarrow 1 & 7-1 & \rightarrow 1 & -1
\end{array} \\
& =\lim _{\rightarrow 1}[\perp(1+7)]=1(2)=2-
\end{aligned}
$$

(ii) Using Equation 2 with (${ }^{*}$) $=-{ }^{-3}$ and $7(10)$,

$$
\begin{aligned}
& \left.\left.\Gamma=\lim _{\rightarrow 0} \frac{\left.\left(1+{ }^{-}\right)-{ }^{-}\right)}{(}=\lim _{1 \rightarrow 0} \xrightarrow{ }\left(1+^{-}\right)-\text {교 }\right)=\lim _{1 \rightarrow 0}\left(1+{ }^{-}\right)-\left(1+{ }^{-}\right)\right)^{3}-0 \\
& =\lim _{\rightarrow 0} \frac{1+7-\left(1+37+37^{2}+7 \xi\right.}{}=\lim _{1 \rightarrow 0} \frac{-1-31-7}{}=\lim _{1 \rightarrow 0} \frac{{ }^{-}\left(-^{-2}-3^{-}-3\right.}{-} \\
& =\lim _{1 \rightarrow 0}\left(-7^{2}-37-2\right)=-2
\end{aligned}
$$

(b) An equation of the tangent line is -()$={ }^{\circ}()\left(-{ }^{\circ}\right) \Rightarrow-(1)={ }^{0}(1)(-1) \Rightarrow-0=-2($ gor 7

$$
=-2^{-}+2
$$

(c)

The graph of $\quad 1=-2\urcorner+2$ is tangent to the graph of $\quad \mid=\neg-7^{3}$ at the point (10). Now zoom in toward the point $\binom{1}{0}$ until the cubic and the tangent line are indistinguishable.

INSTRUCTOR USE ONLY

5. Using (1) with () $=4^{-2}-3^{2}$ and $7(2-4)$ [we could also use (2)],

$$
\begin{aligned}
& \Gamma=\lim _{\| \rightarrow 1}()-()=\lim _{\| \rightarrow 2} \frac{4^{-}-3^{-2}-(-4)}{7}=\lim _{1 \rightarrow 2} \frac{\left.-3^{-2}+4\right\urcorner+4}{7} \\
& \left.=\lim _{\rightarrow 2} \frac{(-3\rceil-2)(7-2)}{7-2}=\lim _{\rightarrow 2}(-3\urcorner-2\right)=-3(2)-2=-8
\end{aligned}
$$

Tangent line: $\urcorner-(-4)=-8(।-2) \Leftrightarrow \quad|+4=-87+16 \Leftrightarrow \quad|=-8 \quad \mid+12$.
6. Using (2) with ($)={ }^{-3}-3+1$ and $7\left(\begin{array}{ll}2 & 3\end{array}\right)$,

$$
\begin{aligned}
\Gamma & =\lim _{\rightarrow 0}\left(\left(+{ }^{-}\right)-()=\lim _{1 \rightarrow 0} \longrightarrow\left(2+^{-}\right)-70=\lim _{1 \rightarrow 0}(2+7)^{3}-3(2+7)+1-3\right. \\
& =\lim _{\rightarrow 0} \frac{\left.8+12\urcorner+6\urcorner^{2}+7^{3}-6-3\right\urcorner-2}{}=\lim _{1 \rightarrow 0} \frac{9^{-}+6^{-2}+{ }^{-3}}{}=\lim _{1 \rightarrow 0} \frac{\left.7(9+6\urcorner++^{-}\right)}{\square} \\
& =\lim _{\rightarrow 0}\left(9+67+7^{2}\right)=9
\end{aligned}
$$

Tangent line: $7-3=9(1-2) \Leftrightarrow$ ।-3=9 ।-18 $\Leftrightarrow 7=9$ ㄱ-15

Tangent line: $\left.\urcorner-1=\frac{1}{2}(1-1) \Leftrightarrow \quad \neg=\frac{1}{2}\right\urcorner+\frac{1}{2}$
8. $\operatorname{Using}(1)$ with ()$=\frac{2+1}{7+2}$ and 7 (1)

Tangent line: $7-1=\frac{1}{3}(1-1) \quad \Leftrightarrow \quad\left|-1=\frac{1}{3}\right|-\frac{1}{3} \quad \Leftrightarrow \quad 7=\frac{1}{3}+\frac{2}{3}$
9. (a) Using (2) with $=()=3+4^{2}-2^{3}$,

$$
\Gamma=\lim _{\rightarrow 0}(1+)-()=\lim _{1 \rightarrow 0} \frac{3+4(7+7)^{2}-2(7+7)^{3}-\left(3+47^{2}-{ }^{2}-3\right.}{}
$$

$$
=\lim _{1 \rightarrow 0} \frac{3+4\left(\left(^{-2}+2^{--}+-^{-2}\right)-2\left(\left(^{3}+3^{-2^{-}}+3^{--^{2}}+{ }^{-3}\right)-3-4^{-2}+2^{-3}\right.\right.}{}
$$

$$
=\lim _{1 \rightarrow 0} \frac{3+4^{-2}+8^{--}+4^{-2}-2^{-3}-6^{-2^{-}}-6^{--2}-2^{-3}-3-4^{-2}+2^{-3}}{}
$$

$$
=\lim _{\rightarrow 0} \frac{8\left|1+47^{2}-67^{2}\right|-6 \mid 7^{2}-2^{3}}{\lim _{1 \rightarrow 0} \xrightarrow{ } 7\left(8 \Gamma+4 \mid-67^{2}-671-2\right\rceil}
$$

$$
=\lim _{1 \rightarrow 0^{-}}\left(8^{-}+47-6^{-2}-6^{--}-2^{-2}\right)=8^{-}-6^{2}
$$

line is
$-3=$
-8(-
2) \Leftrightarrow
$=-8+$
At (2 3): $\Gamma=8(2)-6(2)^{2}=-8$, so an equation of the tangent
© Cengage Learning. All Rights Reserved.

$$
\begin{aligned}
& =\lim \frac{1}{7}=\frac{1}{}=1 \\
& \rightarrow 1 \quad+2 \quad 1+2 \quad 3
\end{aligned}
$$

10. (a) Using (1), \qquad

$=\lim \sqrt{ } __{-} \sqrt{ }^{-1} \sqrt{ }-=-1^{1}-=-1$ or $-1_{-}^{-3}{ }^{2}\left[\begin{array}{ll}0 & 0\end{array}\right]$
$\sqrt{ }$

$$
\rightarrow \frac{17(7+7}{-2^{2}\left(2^{V}\right)} \quad 2^{-32} \quad 2
$$

(b) At (1 1): $\Gamma=-\frac{1}{2}$, so an equation of the tangent line
(c)
is $\quad\left|-1=-\overline{2}^{1}(\mid-1) \Leftrightarrow \quad\right|=-{ }^{1} \overline{2} \overline{7}+{ }^{3} \overline{2}$

At $\left.{ }^{\mid} 4 \frac{1}{2} \right\rvert\,: \quad=-\frac{1}{16}$, so an equation of the tangent line
is $\left.\left.\urcorner-{ }_{2}^{-1}=-\frac{1}{16}(-4) \Leftrightarrow\right\urcorner=-{ }^{-}\right\urcorner 6_{+}^{3} \cdot \overline{4}$
11. (a) The particle is moving to the right when ${ }^{l}$ is increasing; that is, on the intervals (01) and (4). The particle is moving to the left when ${ }^{l}$ is decreasing; that is, on the interval (2 3). The particle is standing still when ${ }^{l}$ is constant; that is, on the intervals (1) 2) and (3 4).
(b) The velocity of the particle is equal to the slope of the tangent line of the graph. Note that there is no slope at the corner points on the graph. On the interval $(0 \mid 1)$ the slope is $\underline{3-\underline{0}}=3$. On the interval (2 3), the slope is $1-0$
$\underline{1-\underline{3}}=-2$. On the interval (40), the slope is $\frac{3-1}{}=1$. 3-2 6-4

12. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant.

Runner B starts the race at a slower velocity than runner A, but finishes the race at a faster velocity.
(b) The distance between the runners is the greatest at the time when the largest vertical line segment fits between the two graphs-this appears to be somewhere between 9 and 10 seconds.
(c) The runners had the same velocity when the slopes of their respective position functions are equal-this also appears to be at about 95 s . Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity for runner B overtakes the velocity for runner A , the distance between the runners starts to decrease.
13. Let 1()$=40-16^{2}$.

$$
\begin{aligned}
7(2) & =\lim _{\rightarrow 2} \frac{10)-1(2)}{-2}=\lim _{\rightarrow 2} \frac{40^{-16^{2}-16}}{-2}=\lim _{\rightarrow 2} \frac{-16^{2}+40-16}{-2}=\lim _{\rightarrow 2} \frac{-82^{2}-5+2}{-2} \\
& =\lim _{\rightarrow 2} \frac{-8(-2)(2-1)}{-2}=-8 \lim _{\rightarrow 2}(2-1)=-8(3)=-24
\end{aligned}
$$

Thus, the instantaneous velocity when ${ }^{-}=2$ is -24 ft is.

NOT FOR SALE INSTRUCTOR USE ONLY

14. (a) Let 7()$=10-186^{2}$.

$$
\begin{aligned}
(1) & =\lim _{\rightarrow 0} \frac{1(1+7)-7(1)}{}=\lim _{1 \rightarrow 0} \frac{10\left(1++^{-}\right)-186(1+)^{-}-(10-186)}{} \\
& =\lim _{1 \rightarrow 0} \frac{10+10^{-}-186\left(1+2^{-}+{ }^{-2}\right)-10+186}{} \\
= & \lim _{1 \rightarrow 0} \frac{10+10^{-}-186-372^{-}-186^{-2}-10+186}{} \\
= & \lim _{1 \rightarrow 0} \frac{628^{-}-186^{-2}}{}=\lim \left(628-186^{\circ}\right)=6128 \\
& \quad \rightarrow 0
\end{aligned}
$$

The velocity of the rock after one second is $628 \mathrm{~m}^{*} \mathrm{~s}$.
(b)

$$
\begin{aligned}
(1)= & \lim _{\rightarrow 0} \frac{1(+7)-{ }^{-}()}{}=\lim _{1 \rightarrow 0} \frac{10\left(\left(^{-}+\right)-186\left(+^{-}\right)^{2}-\left(10^{-}-186^{-2}\right)\right.}{} \\
= & \lim _{1 \rightarrow 0} \frac{10^{-}+10^{-}-186\left(^{-2}+2^{-}+{ }^{-2}\right)-10^{-}+186^{-2}}{=} \\
= & \lim \frac{10^{-}+10^{-}-186^{-2}-372^{\cdots}-186^{-2}-10^{-}+16^{2}}{}=\lim _{1 \rightarrow 0} \frac{10^{-}-372^{\cdots}-186^{2}}{} \\
& 1 \rightarrow 0 \\
= & \lim \frac{\left(10-372^{-}-186^{-}\right)}{\rightarrow 0}=\lim \left(10-372^{-}-186^{\circ}\right)=10-372^{-}
\end{aligned}
$$

The velocity of the rock when $=^{*}$ is $\left(10-372^{\circ}\right) \mathrm{m}^{\circ} \mathrm{s}$
(c) The rock will hit the surface when $7=0 \Leftrightarrow 10-186^{2}=0 \quad \Leftrightarrow \quad\left(10-186^{\prime}\right)=0 \quad \Leftrightarrow \quad=0$ or $186=10$. The rock hits the surface when $=101186 \approx 54 \mathrm{~s}$.
(d) The velocity of the rock when it hits the surface is ${ }^{1} \frac{10}{1186}=10-372^{1} \frac{10}{1186}=10-20=-10 \mathrm{~ms}$
15.

($)=\lim _{\rightarrow 0} \frac{1\left(+^{-}\right)-10}{}=\lim _{1 \rightarrow 0}(\square+7)^{-} 7^{2}=\lim _{1 \rightarrow 0} \frac{\frac{\left.-2(-)^{-}\right)}{2}}{}=\lim _{1 \rightarrow 0} \frac{-^{2}-\left(-^{2}+2^{--}+-q\right.}{70^{2}(\square+7)^{2}}$

$$
=\lim \frac{-(27+7)}{-0-}=\lim \frac{-2(2+7)}{-\square \square} \frac{-(2 \mid+7)}{\square}=\lim \quad=\frac{-2}{-} \mathrm{m}
$$

$$
\rightarrow 0 \quad{ }^{2}\left(+f \quad \rightarrow 0{ }^{2}\left(+f^{\mathrm{s}} \quad \rightarrow 0{ }^{2}\left(+f \quad 2 \cdot{ }^{2}\right.\right.\right.
$$

ᄀ - $-\frac{-2}{1} \quad-2 \quad \underline{2}$
So

$$
(1)={ }_{1^{3}}=-2 \mathrm{~m} \quad \mathrm{~s}, \quad(2)=2_{2^{3}}=-{ }_{4} \mathrm{~m} \quad \mathrm{~s}, \text { and }^{-}(3)={ }_{3^{3}}=-{ }_{27} \mathrm{~m}^{-} \mathrm{s} .
$$

16. (a) The average velocity between times ${ }^{-}$and ${ }^{-}+7$ is
(i) $[48]:=4,=8-4=4$, so the average velocity is $4+{ }^{-}{ }_{2}(4)-6=0 \mathrm{ft}^{-} \mathrm{s}$.
(ii) $[68]:=6,=8-6=2$, so the average velocity is $6+{ }_{2}^{-}(2)-6=1 \mathrm{ft}^{-} \mathrm{s}$.
(iii) $\left[\begin{array}{ll}8 & 10\end{array}\right]:=8,=10-8=2$, so the average velocity is $8^{8}+{ }^{+}$Cengage Learning. All Rignts Reserved.
(iv) $\left[\begin{array}{ll}8 & 12\end{array}\right]:=8, \quad=12-8=4$, so the average velocity is $8+$

$$
\begin{aligned}
& \left({ }^{+}{ }^{-}\right)- \\
& =\underline{\underline{\frac{1}{2} \cdot 2}+11+\frac{1-2}{2}-6-6+23-\frac{1 \cdot 2}{2}+6-23} \\
& \left.=\frac{\left.\left.-++\frac{1}{2}\right\urcorner^{2}-6\right\urcorner}{}=\frac{\left.{ }^{-}-+\frac{1}{2}\right\urcorner-67}{}=-\frac{1}{2}\right\urcorner-6 \mathrm{ft}^{-\mathrm{s}}
\end{aligned}
$$

(b) $(1)=\lim _{1 \rightarrow 0} 1\left(+^{+}\right)-1(1)=\lim _{1 \rightarrow 0} 1+\frac{L^{-}}{-6}$

$$
=^{-}-6, \mathrm{so}^{-}(8)=2 \mathrm{ft}^{-} \mathrm{s}
$$

(c)

17. ${ }^{0}(0)$ is the only negative value. The slope at ${ }^{-}=4$ is smaller than the slope at ${ }^{-}=2$ and both are smaller than the slope at $=-2$. Thus, $7^{0}(0) \cap 0 \cap 7^{0}(4) \sqcap 7^{0}(2) \cap 7^{0}(-2)$.
18. (a) On $\left[\begin{array}{ll}20 & 60\end{array}\right]:-\frac{(60)-(20)}{60-20}=\frac{700-300}{40}=\frac{400}{40}=10$
(b) Pick any interval that has the same -value at its endpoints. [0 57] is such an interval since ${ }^{\circ}(0)=600$ and ${ }^{\circ}(57)=600$.
(c) On $[4060]:-\frac{(60)-(40)}{60-40}=\frac{700-200}{20}=\frac{500}{20}=25$

On [40 70]: $-\frac{(70)-(40)}{70-40}=\frac{900-200}{30}=\frac{700}{30}=23_{3}{ }^{1}$
Since $25 \cap 23 \frac{1}{3}$, the average rate of change on [40 60] is larger.
(d) 그 $\frac{(40)-\text { 그 }}{40-10} \frac{(10)}{30}=\frac{200-400}{30}=\frac{-200}{30}=\frac{-}{3} 6^{2}$

This value represents the slope of the line segment from $\left(10^{\cdots}(10)\right)$ to (40 " (40)).
19. (a) The tangent line at ${ }^{-}=50$ appears to pass through the points (43200) and (60640), so

$$
\begin{aligned}
& 0(50) \frac{640-}{\underline{200}}=\frac{440}{} \approx 26 \\
& 60-43
\end{aligned}
$$

(b) The tangent line at $\urcorner=10$ is steeper than the tangent line at $\urcorner=30$, so it is larger in magnitude, but less in numerical value, that is, $\left.{ }^{0}(10)\right\rceil{ }^{0}(30)$.
(c) The slope of the tangent line at ${ }^{-}=60,^{\circ}(60)$, is greater than the slope of the line through (40 (40)) and (80 (80)).

$$
\text { So yes, }{ }^{0}(60) \cap-\frac{(80)-(40)}{80-40}
$$

20. Since ${ }^{\top}(5)=-3$, the point $\left(5^{*}-3\right)$ is on the graph of ${ }^{-}$. Since ${ }^{\circ}(5)=4$, the slope of the tangent line at $=5$ is 4 Using the point-slope form of a line gives us $\urcorner-(-3)=4(\urcorner-5)$, or $\urcorner=4\urcorner-23$.
21. For the tangent line $\urcorner=4^{-}-5$: when $\urcorner=2, \neg=4(2)-5=3$ and its slope is 4 (the coefficient of ${ }^{-}$). At the point \oint tangency, these values are shared with the curve ${ }^{-}()$; that is, ${ }^{\circ}(2)=3$ and ${ }^{\circ}{ }^{0}(2)=4$.

22. We begin by drawing a curve through the origin with a slope of 3 to satisfy ${ }^{\circ}(0)=0$ and ${ }^{\circ}(0)=3$. Since ${ }^{0}(1)=0$, we will round off our figure so that there is a horizontal tangent directly over $\urcorner=1$. Last, we make sure that the curve has a slope of -1 as we pass

 over $\neg=2$. Two of the many possibilities are shown.
23. We begin by drawing a curve through the origin with a slope of 1 to satisfy $(0)=0$ and ${ }^{0}(0)=1$. We round off our figure at $=1$ to satisfy ${ }^{0}(1)=0$, and then pass through (20) with slope -1 to satisfy ${ }^{-}(2)=0$ and $^{-0}(2)=-1$.

We round the figure at ${ }^{-}=3$ to satisfy ${ }^{\circ}(3)=0$, and then pass through (40)
 with slope 1 to satisfy ${ }^{\circ}(4)=0$ and ${ }^{\circ}(4)=1$ Finally we extend the curve on both ends to satisfy $\lim _{\rightarrow \infty}\left(^{-}\right)=\infty$ and $\lim _{\rightarrow-\infty}\left(^{-}\right)=-\infty$.
25. We begin by drawing a curve through (01) with a slope of 1 to satisfy ${ }^{1}(0)=1$ and ${ }^{0}(0)=1$. We round off our figure at ${ }^{-}=-2$ to satisfy $^{-0}(-2)=0$. As $\neg \rightarrow-5^{+}, \quad \mid \rightarrow \infty$, so we draw a vertical asymptote at $\urcorner=-5$. As $\neg \rightarrow 5^{-}$, $\rightarrow 3$, so we draw a dot at (5) [the dot could be open or closed].

26. We begin by drawing an odd function (symmetric with respect to the origin) through the origin with slope -2 to satisfy ${ }^{\circ}(0)=-2$. Now draw a curve starting at $\urcorner=1$ and increasing without bound as $\mid \rightarrow 2^{-}$since $\lim _{\rightarrow 2^{-}}()=\infty$. Lastly,
reflect the last curve through the origin (rotate 180°) since । is an odd function.

27. Using (4) with ($)=3^{-2}-{ }^{-3}$ and ${ }^{-}=1$,

$$
\begin{aligned}
& { }^{-}{ }^{0}(1)=\lim _{11 \rightarrow 0}-\frac{\left(1+{ }^{-}\right)-\mathbb{1}}{\mid}=\lim _{11 \rightarrow 0} \frac{\left[3(1+7)^{2}-(1+7)^{3}\right]-2}{1} \\
& =\lim _{\rightarrow 0} \frac{\left(3+67+37^{2}\right)-\left(1+37+37^{2}+7^{3}\right)-2}{}=\lim _{1 \rightarrow 0} \frac{37-{ }^{-3}}{}=\lim _{1 \rightarrow 0} \frac{{ }^{-}\left(3-{ }^{-2}\right)}{-} \\
& =\lim _{\rightarrow 0}\left(3-\Gamma^{2}\right)=3-0=3
\end{aligned}
$$

Tangent line: $\neg-2=3(\neg-1) \Leftrightarrow \neg-2=3 \mid-3 \Leftrightarrow 7=3 \neg-1$

NOT FOR SALE INSTRUCTOR USE ONLY

28. Using (5) with ${ }^{-}()={ }^{-4}-2$ and ${ }^{-}=1$

$$
\begin{aligned}
{ }^{0}(1) & =\lim _{\rightarrow 1} \frac{()-1)}{7-1}=\lim _{1 \rightarrow 1} \frac{\left(7^{4}-2\right)-(-1)}{7-1}=\lim _{\rightarrow 1} \frac{7^{4}-1}{7-1}=\lim _{1 \rightarrow 1} \frac{\left(7^{2}+1\right)\left(7^{2}-1\right)}{7-1} \\
& =\lim _{\rightarrow 1} \frac{\left(7^{2}+1\right)(7+1)(7-1)}{7-1}=\lim _{\rightarrow 1}\left[\left(7^{2}+1\right)(7+1)\right]=2(2)=4
\end{aligned}
$$

Tangent line: $\urcorner-(-1)=4(।-1) \Leftrightarrow \quad$ । $1=4$ ᄀ-4 \Leftrightarrow ᄀ $=4$ ।-5
29. (a) Using (4) with ($)=5^{-}\left(1+{ }^{2}\right)$ and the point (2 2), we have
(b)

$$
\begin{aligned}
& 7^{0}(2)=\lim _{1 \rightarrow 0} \frac{7(2+7)-7 \theta}{}=\lim _{1 \rightarrow 0} \frac{\frac{5(2+7)}{1+(2+7)^{2}}-2}{} \\
& =\lim _{1 \rightarrow 0} \frac{\frac{5\urcorner+10}{\left.7^{2}+4\right\urcorner+5}-2}{}=\lim _{1 \rightarrow 0} \frac{\frac{\left.\left.5\urcorner+10-2(\urcorner^{2}+4\right\urcorner+5\right)}{\left.7^{2}+4\right\rceil+5}}{}
\end{aligned}
$$

So an equation of the tangent line at (2) is $-2=-{ }_{5}^{3}(-2)$ or $=-\frac{3}{5}+\frac{16}{5}$.
30. (a) Using (4) with $7(7)=47^{2}-7^{3}$, we have

$$
\begin{aligned}
& \left.\square^{0}()=\lim _{\rightarrow 0} \frac{\left.\eta(\eta)-^{-}\right\rceil}{}\right)=\lim _{1 \rightarrow 0} \frac{\left[4\left(+^{-}\right)^{2}-\left(+^{-}\right)^{3}\right]-\left(4^{-}{ }^{2}-{ }^{-} \beta\right.}{} \\
& =\lim _{\rightarrow 0} \frac{4^{-2}+8^{--}+4^{-2}-\left(-^{3}+3^{-} 2^{-}+3^{-{ }^{-}} 2+^{-} 3\right)-4^{-2}+3}{} \\
& =\lim _{\rightarrow 0} \frac{\left.\left.\left.8 \mid\urcorner+4\urcorner^{2}-3\right\urcorner^{2}\right\urcorner-3 \quad \mid\right\urcorner^{2}-3}{\lim _{1 \rightarrow 0} \frac{\left.-(8 \sqcap+4\urcorner-3\urcorner^{2}-3\right\urcorner ।-7}{}} \\
& =\lim _{1 \rightarrow 0}\left(8^{-}+4^{-}-3^{-2}-3^{-}-{ }^{-2}\right)=8^{-}-3^{2}
\end{aligned}
$$

At the point $(28), 7^{\circ}(2)=16-12=4$, and an equation of the tangent
(b)
line is ${ }^{*}-8=4(-2)$, or $=4$. At the point (3),
$7^{0}(3)=24-27=-3$, and an equation of the tangent line is
$-9=-3(-3)$, or $=-3+18$

31. Use (4) with ($)=3^{-2}-4+1$.

$$
\begin{aligned}
{ }^{0}(C) & =\lim _{\| \rightarrow 0} \frac{\left.(0+)^{-}\right)-0}{1}=\lim _{\| \rightarrow 0} \frac{\left.\left[3(7+7)^{2}-4(7+7)+1\right]-\left(3^{2}-47+1\right)\right]}{1} \\
& =\lim _{\rightarrow 0} \frac{3^{-2}+6^{-}+3^{-2}-4^{-}-4^{-}+1-3^{-2}+4^{-}+}{}=\lim _{1 \rightarrow 0} \frac{\left.6 \mid 1+37^{2}-4\right]}{\rightarrow 0} \\
& =\lim _{\| \rightarrow 0} \frac{(6 \square+3-4)}{\lim (67+37-4)=67-4}
\end{aligned}
$$

NOT FOR SALE INSTRUCTOR USE ONLY

NOT FOR SALE

32. Use (4) with ($)=2^{3}+$.
33. Use (4) with ()$=(2+1)^{-}(+3)$.
34. Use (4) with () $=^{-2}=1^{\sim 2}$.
35. Use (4) with \quad ($)=\sqrt{ } \frac{}{1-2}$.

$$
=\frac{\lim \frac{-2}{\Gamma} \frac{-2}{\rightarrow 0} \text { ¢ Cengage Learning. AHT Rights Reserved. }}{}
$$

$$
\begin{aligned}
& { }^{-0}\left({ }^{-}\right)=\lim _{1 \rightarrow 0} \frac{\left(+^{-}\right)-(1)}{}=\lim _{1} \frac{\cap \overline{\left.1-2()^{+}\right)}-\sqrt{ } \overline{1-2^{-}}}{\rightarrow 0}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \text { _ } 1 \\
& { }^{0}()=\lim _{\rightarrow 0}\left(1+{ }^{-}\right)-0=\lim _{1 \rightarrow 0}(7+7)^{2}-7^{2}=\lim _{1 \rightarrow 0} \\
& \frac{\frac{{ }^{2}-\left(+{ }^{-}\right)^{2}}{0^{2}(+)^{2}}}{{ }^{2}\left({ }^{-}\right.} \\
& \text {। } 1 \text { ㄱ } \\
& =\lim 7^{2}-\left(7^{2}+2+{ }^{2}\right) \quad-2-2 \quad\left(\begin{array}{ll}
-2-
\end{array}\right) \\
& \lim _{\rightarrow 0} \overline{\square^{2}(\square+)^{2}}=\lim _{\rightarrow 0} \frac{}{7 \square^{2}(\square+)^{2}}=\lim _{\rightarrow 0} \square^{2}\left(\square+^{-}\right)^{2} \\
& =\lim _{\rightarrow 0} \frac{-2^{-}--}{2^{2}(\square+7)^{2}}=\frac{-2\urcorner}{-2\left(\left(^{-2}\right)\right.}=\frac{-2}{7^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{0}()=\lim _{11 \rightarrow 0} \frac{\left(+^{-}\right)-(1)}{1}=\operatorname{m}_{11 \rightarrow 0} \frac{\frac{2(7+7)+1}{(7+7)+3}-\frac{2^{-}+1}{7+3}}{1} \\
& =\lim _{1 \rightarrow 0} \frac{(2\rceil+2\rceil+1)(7+3)-(2\rceil+1)\left(7+^{-}+3\right)}{7\left(7+^{-}+3\right)(7+3)} \\
& =\lim _{1 \rightarrow 0} \frac{\left(2^{-2}+6^{-}+2^{-}+6^{-}+7+3\right)-\left(2^{-2}+2^{-}+6^{-}+1+7 \text { B }\right)}{7\left(7+{ }^{-}+3\right)(7+3)}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{0}\left({ }^{\circ}\right)=\lim _{\| \rightarrow 0} \frac{\left(+^{-}\right)-0}{1}=\lim _{\| \rightarrow 0} \frac{\left[2(7+7)^{3}+(7+7)\right]-\left(27^{3}+7\right)}{1} \\
& =\lim _{\rightarrow 0} \frac{27^{3}+67^{2} 1+617^{2}+27^{3}+1+7-27^{3}+}{}=\lim _{1 \rightarrow 0} \xrightarrow{67^{2} 1+617^{2}+27^{3}+}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{ } _ـ^{2}-2 \quad-1 \\
& =1-2^{-}+\sqrt{1-2}={ }_{2} \sqrt{ }_{1-2^{-}}=V_{1-2}
\end{aligned}
$$

INSTRUCTOR USE ONLY

36. Use (4) with $\left.{ }^{-}\right)=\frac{\sqrt{4}^{1-}}{\sqrt{-}}$.

$$
=\overline{(1-7)\left(2^{\sqrt{1-7}} \overline{\sqrt{1-7}}\right.}=\overline{(1-7)^{1}(1-7)^{12}}=(1-)^{32}
$$

37. $\operatorname{By}(4), \lim { }^{9+-3}=0(9)$, where ()$=\sqrt{ } \quad$ and $=9$.
38. $\mathrm{By}(4), \lim _{1 \rightarrow 0} \frac{1^{-2+1}-1^{-2}}{}={ }^{-}(-2)$, where ()$=1 \quad$ and ${ }^{-}=-2$.
39. By Equation $5, \lim _{\rightarrow 2} \frac{7^{6}-64}{1-2}={ }^{0}(2)$, where ()$=6$ and $=2$.

1

41. $\operatorname{By}(4), \lim _{11 \rightarrow 0} \frac{\left.\cos ^{-}++^{-}\right)+1}{\mid}={ }^{\circ}()$, where ()$=\cos ^{-}$and ${ }^{-}$. Or: By (4), $\lim _{\rightarrow 0} \frac{\cos \left({ }^{-}+^{-}\right)+1}{-}={ }^{-} 0(0)$, where $\left(^{-}\right)=\cos \left(+^{-}\right)$and ${ }^{-}=0$.
42. By Equation 5, $\lim _{\|\rightarrow 1\| 16} \frac{\sin ^{-}-\frac{1}{2}}{-\frac{-}{6}}=-0 \quad \frac{-}{6}$, where $(1)=\sin ^{\prime}$ and $^{-}=\frac{-}{6}$.

(c) Cengage Learning. All Rights Reserved.

> NOT FOR SALE

$$
=\lim _{\downarrow \rightarrow 0} \frac{7(32-67)}{-}=\lim _{\rightarrow 0}(32-67)=32 \mathrm{~m} / \mathrm{s}
$$

The speed when ${ }^{-}=4$ is $|32|=32 \mathrm{~m} 7 \mathrm{~s}$.

INSTRUCTOR USE ONLY

$$
{ }^{-}\left(4+{ }^{-}\right)-(4)
$$

$=\mathrm{m}$

45. The sketch shows the graph fora room temperature of 72° and a refrigerator temperature of 38°. The initial rate of change is greater in magnitude than the rate of change after an hour.

46. The slope of the tangent (that is, the rate of change of temperature with respect to time) at $=1 \mathrm{~h}$ seems to be about $\frac{75-}{\underline{168}} \quad \approx-0.7^{\circ} \mathrm{F}^{*} \mathrm{~min}$.

$$
132-0
$$

47. (a) (i) $\left[\begin{array}{llll}1 & 0 & 2 & 0\end{array}\right]: \frac{{ }^{-}(2)-^{-}(1)}{2-1}=\frac{018-033}{1}=-015 \frac{\mathrm{mg} / \mathrm{mL}}{\mathrm{h}}$
(ii) $\left[\begin{array}{ll}1 & 5 \mid 2\end{array}\right]$:

$$
\frac{(2)-(15)}{2-15}=\frac{018-024}{05}=\frac{-006}{015}
$$ $=-012$ $\mathrm{mg} / \mathrm{mL}$

h
(iii) $\left[\begin{array}{lll}2 & 0 \mid 25\end{array}\right]:$

\qquad $\mathrm{mg} / \mathrm{mL}$
h
(iv) $\left[\begin{array}{lll}2 & 0 & 3\end{array} 0\right]: \frac{{ }^{-}(3)-{ }^{-}(2)}{3-2}=\frac{007-018}{1}=-011 \frac{\mathrm{mg} / \mathrm{mL}}{\mathrm{h}}$
 $\frac{-012+(-012)}{2}=-012 \frac{\mathrm{mg} / \mathrm{mL}}{\mathrm{h}}$. After 2 hours, the BAC is decreasing at a rate of $012(\mathrm{mg}-\mathrm{mL})^{\mathrm{h}} \mathrm{h}$.
48. (a) (i) $\left[2006\right.$ 2008]: $\frac{-(2008)-7(2006)}{2008-2006}=\frac{16,680-12,440}{2}=\frac{4240}{2}=2120$ locations year
(ii) $[2008 \mid 2010]:-\frac{\square(2010)-\rceil}{2010-2008}=\frac{(2008)}{2}=\frac{16,858-16,680}{2}=89$ locations̄ year.

The rate of growth decreased over the period from 2006 to 2010.
(b) [2010 2012]: $\frac{\square(2012)-П(2010)}{2012-2010}=\frac{18,066-16,858}{2}=\frac{1208}{2}=604$ locations year.

Using that value and the value from part (a)(ii), we have $\frac{89+604}{2}=\frac{693}{2}=3465$ locations year.

NOT FOR SALE INSTRUCTOR USE ONLY

(c) The tangent segment has endpoints (2008 16,250) and (2012 17,500).

An estimate of the instantaneous rate of growth in 2010 is
$\frac{17,500-16,250}{2012-2008}=\frac{1250}{4}=3125$ locations/year.

49. (a) $\left[1990\right.$ 2005]: $\frac{84,077-66,533}{2005-1990}=\frac{17,544}{15}=11696$ thousands of barrels per day per year. This means that oil consumption rose by an average of 11696 thousands of barrels per day each year from 1990 to 2005.
(b) $[1995-2000]$:

$$
\begin{aligned}
& \frac{76,784-70,099}{2000-1995}=\frac{6685}{5}=1337 \\
& \frac{84,077-76,784}{2005-2000}=\frac{7293}{5}=14586
\end{aligned}
$$

An estimate of the instantaneous rate of change in 2000 is $\frac{1}{2}(1337+14586)=13978$ thousands of barrels per day per year.
50. (a) (i) [4 11]: $\frac{(11)-(4)}{11-4}=\frac{94-53}{7}=\frac{-436}{7} \approx-623 \frac{\text { RNA copies } \mathrm{mL}}{\text { day }}$
(ii) $\left[8\right.$ 11]: $\frac{(11)-(8)}{11-8}=\frac{94-18}{3}=\frac{-86}{3} \approx-2.87 \frac{\text { RNA copies } \mathrm{mL}}{\text { day }}$
(iii) $\left[11\right.$ 15]: $\frac{(15)-(11)}{15-11}=\frac{52-94}{4}=\frac{-42}{4}=-105 \frac{\text { RNA copies } \mathrm{mL}}{\text { day }}$
(iv) $[11 \cdot 22]: \frac{(22)-(11)}{22-11}=\frac{36-94}{11}=\frac{-58}{11} \approx-0.53 \frac{\text { RNA copies } \mathrm{mL}}{\text { day }}$
(b) An estimate of ${ }^{0}(11)$ is the average of the answers from part (a)(ii) and (iii).

$$
{ }^{0}(11) \approx \frac{1}{2}[-287+(-105)]=-196 \frac{\text { RNA copies } \mathrm{mL}}{\text { day }} .
$$

${ }^{0}(11)$ measures the instantaneous rate of change of patient 303's viral load 11 days after ABT-538 treatment began.
51. (a) (i) $\frac{\Delta^{-}}{\Delta\rceil}=\frac{{ }^{-}(105)-^{-}(100)}{105-100}=\frac{660125-6500}{5}=\$ 20255^{-}$unit.
(ii) $\frac{\Delta^{-}}{\Delta^{\top}}=\frac{{ }^{-}(101)-^{-}(100)}{101-100}=\frac{652005-6500}{1}=\$ 2005^{\circ}$ unit.
(b) $\frac{7(100+7)-7(100)}{}=\underline{5000+10\left(100+^{`}\right)+005\left(100+{ }^{-}\right)^{2}-650}=\underline{20^{-}+005^{-2}}$

$$
=20+005,6=0
$$

So the instantaneous rate of change is $\lim _{\| \rightarrow 0} \frac{{ }^{-}\left(100+{ }^{-}\right)-^{-}(100)}{=} \lim _{\rightarrow 0}\left(20+005^{\circ}\right)=\$ 20$ unit.

INSTRUCTOR USE ONLY

52. $\Delta=\left(+^{-}\right)-()=100000 \quad 1-\frac{1}{60}^{7_{2}}-100,000 \quad 1-\frac{7_{2}}{60}$

	Flow rate (gal min)	Water remaining () (gal)
0	-33333	100000
10	-27777	694444
20	-22222	444444
30	-16666	25000
40	-11111	$11 \mid 1111$
50	-5555	$2777 \cdot \overline{7}$
60	0	0

The magnitude of the flow rate is greatest at the beginning and gradually decreases to 0 .
53. (a) ${ }^{\circ}$ () is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are dollars per ounce.
(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $\$ 17$ bunce. So the cost of producing the 800th (or 801 st) ounce is about $\$ 17$.
(c) In the short term, the values of ${ }^{-0}{ }^{\circ}$) will decrease because more efficient use is made of start-up costs as ${ }^{-}$increases. But eventually ${ }^{\circ}{ }^{\circ}\left({ }^{(}\right)$might increase due to large-scale operations.
54. (a) ${ }^{0}(5)$ is the rate of growth of the bacteria population when $=5$ hours. Its units are bacteria per hour.
(b) With unlimited space and nutrients, ${ }^{\circ} 0$ should increase as increases; so $\left.{ }^{0}(5)\right\urcorner^{{ }^{0}}{ }^{0}(10)$. If the supply of nutrients \$imited, the growth rate slows down at some point in time, and the opposite may be true.
55. (a) $7^{\circ}(58)$ is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is $58^{\circ} \mathrm{F}$. The units are dollars $1^{\circ} \mathrm{F}$.
(b) If the outside temperature increases, the building should require less heating, so we would expect $7^{\circ}(58)$ to be negative.
56. (a) ${ }^{0}(8)$ is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $\$ 8$ per pound. The units for ${ }^{0}(8)$ are pounds (dollars pound).
(b) ${ }^{0}(8)$ is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally less willing to buy a product when its price increases.
57. (a) $7{ }^{\circ}\left(\text {) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (} \mathrm{mg} \mathrm{L}^{\circ}\right)^{\circ} \mathrm{C}$.
(b) For $=16^{\circ} \mathrm{C}$, it appears that the tangent line to the curve goes through the points (014) and (32 6). So $7^{\circ}(16) \approx \frac{6-}{\underline{14}}=-\underline{8}=-025\left(\mathrm{mg} \mathrm{L}^{\circ} \mathrm{L}{ }^{\circ} \mathrm{C}\right.$. This means that as the temperature increases past $16^{\circ} \mathrm{C}$, the oxygen

$$
32-0 \quad 32
$$

NOT FOR SALE INSTRUCTOR USE ONLY

\propto
58. (a) $7^{\circ} \mathrm{C}$) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units are $(\mathrm{cm} \square \mathrm{s}) \square^{\circ} \mathrm{C}$.
(b) For $=15^{\circ} \mathrm{C}$, it appears the tangent line to the curve goes through the points $\left(\begin{array}{ll}10 & 25\end{array}\right)$ and (20 32). So $7^{0}(15) \approx \frac{32-25}{20-10}=07(\mathrm{~cm})^{\circ} \mathrm{C}$. This tells us that at $=15^{\circ} \mathrm{C}$, the maximum sustainable speed of Coho salmon is changing at a rate of $0.7\left(\mathrm{~cm}^{-} \mathrm{s}\right)^{-\circ} \mathrm{C}$. In a similar fashion for ${ }^{\circ}=25^{\circ} \mathrm{C}$, we can use the points (20 35) and (25 25) to obtain $7^{\circ}(25) \approx \underline{25}=\underline{35}=-2\left(\mathrm{~cm} \mathrm{~s}^{-}{ }^{\circ} \mathrm{C}\right.$. As it gets warmer than $20^{\circ} \mathrm{C}$, the maximum sustainable speed decreases rapidly. $\quad 25-20$
59. Since ()$={ }^{-} \sin \left(1^{--}\right)$when $=0$ and $^{-}(0)=0$, we have
${ }^{0}(0)=\lim -\frac{\left(0+^{-}\right)--^{-}(0)}{}=\lim \frac{\sin \left(1^{-}\right)-\underline{0}}{}=\lim \sin \left(1^{-}\right)$. This limit does not exist $\operatorname{since} \sin (1)$ takes the

| |
| :--- | :--- |
| |
| |$\rightarrow 0 \quad$ - $\quad \rightarrow 0 \quad \rightarrow 0$

values -1 and 1 on any interval containing 0. (Compare with Example 2.2.4.)
60. Since ($)={ }^{-2} \sin \left(1^{--}\right)$when $=0$ and $^{-}(0)=0$, we have
${ }^{\circ} 0(0)=\lim _{\rightarrow 0}$ ㄱ($\left.\left(0+^{-}\right)-\neg 0\right)=\lim _{1 \rightarrow 0} \frac{{ }^{-2} \sin \left(1^{--}\right)-0}{}=\lim _{\| \rightarrow 0} 7 \sin (177)$. Since $1^{1} \leq \sin ^{\underline{1}} \leq 1$, we have $\begin{array}{llllll} \\ 7 & 7 & 7 & 1 & \end{array}$
$-|ㄱ| \leq| |$ sin $\underset{7}{ } \leq|\quad| \Rightarrow-|\quad| \leq \sin \underset{\mid}{ } \leq|\quad|$. Because $\lim _{\mid \rightarrow 0}(-|ㄱ|)=0$ and $\lim _{\rightarrow 0} \mid$ ㄱ| $=0$, we know that
$\lim _{1 \rightarrow 0} \sin \frac{1}{=}=0$ by the Squeeze Theorem. Thus, ${ }^{-0}(0)=0$.
61. (a) The slope at the origin appears to be 1.

(b) The slope at the origin still appears to be 1.

(c) Yes, the slope at the origin now appears to be 0.

NOT FOR SALE INSTRUCTOR USE ONLY

2.8 The Derivative as a Function

1. It appears that ${ }^{-}$is an odd function, so ${ }^{-} 0$ will be an even function- that
is, ${ }^{0}(-)={ }^{\circ}()$.
(a) ${ }^{0}(-3) \approx-0.2$
(b) ${ }^{0}(-2) \approx 0$
(c) ${ }^{0}(-1) \approx 1$
(d) ${ }^{0}(0) \approx 2$
(e) ${ }^{\circ}(1) \approx 1$
(f) ${ }^{0}(2) \approx 0$
(g) ${ }^{0}(3) \approx-0$

2. Your answers may vary depending on your estimates.
(a) Note: By estimating the slopes of tangent lines on the graph of ${ }^{-}$, it appears that ${ }^{0}(0) \approx 6$.
(b) ${ }^{-0}(1) \approx 0$
(c) ${ }^{0}(2) \approx-1 / 5$
(d) ${ }^{0}(3) \approx-113$
(e) ${ }^{0}(4) \approx-08$
(f) $-{ }^{0}(5) \approx-0.3$
$(\mathrm{g}) \cdot{ }^{0}(6) \approx 0$
(h) ${ }^{0}(7) \approx 02$

3. (a) $)^{0}=$ II, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0 , then positive, then 0 , then negative again. The actual function values in graph II follow the same pattern.
(b) ${ }^{0}=\mathrm{IV}$, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.
(c) $)^{0}=I$, since the slopes of the tangents to graph (c) are negative for $\left.\urcorner\right\urcorner 0$ and positive for $\left.\urcorner\right\urcorner 0$, as are the function values $\boldsymbol{\sigma}$ graph I.
$(\mathrm{d})^{0}=$ III, since from left to right, the slopes of the tangents to graph (d) are positive, then 0 , then negative, then 0 , then positive, then 0 , then negative again, and the function values in graph III follow the same pattern.

Hints for Exercises 4-11: First plot -intercepts on the graph of 0 for any horizontal tangents on the graph of . Look for any corners on the graph of 7 - there will be a discontinuity on the graph of 0 . On any interval whēre has a tangent with positive (or negative) slope, the grāph of ${ }^{0}$ will mosositive (or negative). If the graph of the function is linear, the graph of 0 will be a horizontal line.
4.

5.

6.

9.

10.

7.

9.

11.

12. The slopes of the tangent lines on the graph of ${ }^{-}=1$ () are always positive, so the -values of $=1^{\circ}$ () are always positive. These values statout relatively small and keep increasing, reaching a maximum at about
$=6$. Then the -values of $=10()$ decrease and get close to zero. $\mathbb{T e}$ graph of 70 tells us that the yeast culture grows most rapidly after 6 hours
 and then the growth rate declines.
13. (a) ${ }^{-}{ }^{0}()$ is the instantaneous rate of change of percentage of full capacity with respect to elapsed time in hours.
(b) The graph of $\square^{\circ}()$ tells us that the rate of change of percentage of full capacity is decreasing and approaching 0 .

14. (a) $7^{\circ}()$ is the instantaneous rate of change of fuel economy with respect to speed.
(b) Graphs will vary depending on estimates of 70 , but will change from positive to negative at about $7=50$.
(c) To save on gas, drive at the speed where 7 is a maximum and 7^{0} is 0 , which is about 50 mi$\urcorner \mathrm{h}$

15. It appears that there are horizontal tangents on the graph of 7 for ${ }^{-}=1963$ and $^{-}=1971$. Thus, there are zeros for those values of ${ }^{-}$on the graph of $\cap{ }^{0}$. The derivative is negative for the years 1963 to 1971.

16. See Figure 3.3.1.
17.

The slope at 0 appears to be 1 and the slope at 1 appears to be 27 . As decreases, the slope gets closer to 0 . Since the graphs are so similar, we might guess that ${ }^{-0}\left(^{-}\right)={ }^{\circ}$.

18.

As increases toward $1,{ }^{\circ}()$ decreases from very lage numbers to 1 . As becomes large, ${ }^{\circ}()$ gets closer to 0 As a guess, ${ }^{\circ}\left({ }^{\circ}\right)=1^{-2}$ or ${ }^{\circ}{ }^{\circ}()=1^{-0}$ makes seme
19. (a) By zooming in, we estimate that $\quad 0(0)=0, \hat{1}_{2}^{1}=1, \quad{ }^{0}(1)=2$,

$$
\text { and } \quad 0(2)=4
$$

$$
\text { and }{ }^{0}(-2)=-4
$$

(c) It appears that ${ }^{-0}\left(^{-}\right.$) is twice the value of ${ }^{-}$, so we guess that ${ }^{-0}\left(^{-}\right)=2^{-}$.
(d) $\left.{ }^{-} 0()=\lim _{\rightarrow 0}\left(+^{-}\right)-{ }^{-} 0\right)=\lim _{\mathrm{I} \rightarrow 0}\left(+^{-}\right)^{2}-{ }^{-2}$

20. (a) By zooming in, we estimate that $\quad 0(0)=0, \quad \frac{1}{2} \approx 075, \quad{ }^{\circ}(1) \approx 3, \quad 0(2) \approx 12$, and $\quad 0(3) \approx 27$.
(b) By symmetry, $\quad 0(-)=0()$. So $^{-\quad} \quad-\frac{1}{2} \approx 075, \quad 0(-1) \approx 3, \quad 0(-2) \approx 12$, and $\quad 0(-3) \approx 27$.
(c)

(d) Since ${ }^{\circ}{ }^{0}(0)=0$, it appears that ${ }^{\circ} 0$ may have the form ${ }^{0}()={ }^{0}{ }^{0}$.

$$
\text { Using } \quad{ }^{0}(1)=3 \text {, we have }=3 \text {, so } \quad 0()=3^{2}
$$

(e) ${ }^{-0}()=\lim _{\rightarrow 0} \frac{\left.\left(+^{-}\right)-{ }^{-}\right)}{(}=\lim _{1 \rightarrow 0} \frac{\left(+^{-}\right)^{3}-^{-3}}{}=\lim _{1 \rightarrow 0} \frac{\left(3+3^{-} 2^{-}+3^{-{ }^{-}}{ }^{2}+{ }^{-}{ }^{3}\right)-{ }^{-3}}{\left({ }^{-3}\right.}$

$$
=\lim _{11 \rightarrow 0} \frac{3^{-2-}+3^{--2}+^{-3}}{-}=\lim _{11 \rightarrow 0} \frac{\square\left(3 \square^{2}+3^{--}+^{-2}\right)}{-}=\lim _{\rightarrow 0}\left(37^{2}+311+7\right)=37^{2}
$$

INSTRUCTORUSE ONLY

21. ${ }^{\circ}()=\lim _{\| \rightarrow 0} \xrightarrow{\left(+^{-}\right)-{ }^{-}()}=\lim _{\| \rightarrow 0} \frac{\left[3\left({ }^{+}\right)-8\right]-\left(3^{-}-8\right)}{-}=\lim _{\| \rightarrow 0} \frac{3^{-}+3^{-}-8-3+8}{1}$

$$
=\lim _{\rightarrow 0} \frac{37}{7}=\lim _{\rightarrow 0} 3=3
$$

Domain of ${ }^{-}=$domain of ${ }^{-} 0=R$.
22. ${ }^{0}()=\lim _{11^{\rightarrow 0}} \frac{\left(+^{*}\right)-0()}{-}=\lim _{11^{\rightarrow 0}} \frac{\left.\llbracket\left(+^{*}\right)+1\right]-\left(\Gamma^{+}+1\right)}{-}=\lim _{1^{\circ} \rightarrow 0} \frac{\Gamma^{+}+\Gamma^{+}+1-\Gamma^{-}-1}{1}$

$$
=\underset{\rightarrow 0}{\lim } \frac{\Gamma}{\urcorner}=\underset{\rightarrow 0}{\lim \Gamma}=\Gamma
$$

Domain of ${ }^{-}=$domain of ${ }^{-0}=R$
23. ${ }^{0}()=\lim _{\rightarrow 0}\left(+^{-}\right)-(0)=\lim _{1 \rightarrow 0} \frac{215\left(+^{-}\right)^{2}+6\left(+^{-}\right)-{ }^{-}{ }^{1} 215^{2}+6^{1}}{}$
$=\lim _{\rightarrow 0} \frac{25\left(^{2}+211+{ }^{-2}\right)+6+6^{-}-25^{2}-6}{}=\lim _{1 \rightarrow 0} \frac{25^{2}+511+25^{-2}+6^{-}-{ }^{25} 2}{2}$
$=\lim _{\rightarrow 0} \frac{511+25^{2}+6}{\lim _{1 \rightarrow 0}} \frac{\left(5+25^{-\oint}+\oint\right.}{\lim _{\rightarrow 0}(5+25+6)}$

$$
=5+6
$$

Domain of ${ }^{-}=$domain of ${ }^{-} 0=R$
24. ${ }^{0}()=\lim _{\rightarrow 0}\left(+^{+}\right)-()=\lim _{1 \rightarrow 0} 4+8\left(+^{-}\right)-5\left({ }^{-}+\right)^{2}-\left(4+8^{-}-5^{-2}\right)$

$$
=\lim _{\rightarrow 0} \frac{4+8^{-}+8^{-}-5\left({ }^{2}+2^{-}-+^{-2}\right)-4-8^{-}+{ }^{\frac{5}{2}}}{}=\lim _{1 \rightarrow 0} \frac{8 ।-57^{2}-10 \mid 7-57^{2}+{ }^{5}-7}{}
$$

$$
\left.=\lim _{\rightarrow 0} \frac{87-10 \mid 1-57}{1}=\lim _{1 \rightarrow 0} \xrightarrow{7(8-107-5)}=\lim _{\rightarrow 0}(8-10\urcorner-57\right)
$$

$$
=8-107
$$

Domain of ${ }^{-}=$domain of ${ }^{-} 0=R$
25. ${ }^{0}\left({ }^{0}\right)=\lim _{\| \rightarrow 0} \frac{\left(+^{-}\right)-()}{-}=\lim _{\| \rightarrow 0} \frac{\left[(7+7)^{2}-2(7+7)^{3}\right]-\left(7^{2}-27^{3}\right)}{1}$
$=\lim _{\rightarrow 0} \frac{7^{2}+277+7^{2}-27^{3}-67^{2} 1-617^{2}-27^{3}-7^{2}+2^{3}}{}$

$$
=\lim _{1 \rightarrow 0}\left(2^{-}+^{-}-6^{-2}-6^{--}-2^{-2}\right)=2^{-}-6^{-2}
$$

Domain of ${ }^{-}=$domain of ${ }^{-} 0=R$.
26. 0()$=\lim _{\rightarrow 0}$

NOT FOR SALE

Domain of $=$ domain of $0=(0 \infty)$.
 INSTRUCTOR USE ONLY

142 CHAPTER 2 LIMITS AND DERIVATIVES
 $\frac{\cap \overline{9-(+)}+\sqrt{9 \bar{F}}}{9-(+)+9-}$

$=\lim _{\rightarrow 0} \frac{-1}{\Gamma}=\frac{-1}{\sqrt{ }-}$
Domain of ${ }^{-}=\left(-\infty\right.$ 9], domain of $\left.{ }^{1} 0=(-)^{2} 9\right) .9$
28. ${ }^{\circ}{ }^{0}()=\lim \left(+^{-}\right)-(C)=\mathrm{m}$

$$
|\mid \rightarrow 0
$$

$$
|\mid \rightarrow 0
$$

$$
2\left(+{ }^{-}\right)_{3^{-}}^{-} 2^{-}-3
$$

$$
=\lim _{\rightarrow 0} \frac{\left.\left.\left.\left.4\rceil^{2}\right\urcorner+2\left|7^{2}-6\right| ।-3\right\urcorner^{2}-2\right\rceil^{2}\right\urcorner 母}{-\left(2^{-}+2^{-}-3\right)\left(2^{-}-3\right)}=\lim _{1 \rightarrow 0} \frac{\square\left(2 \square^{2}+2 \mid ।-6\right\urcorner-3 \mid+2}{\square\left(2 \square+2^{-}-3\right)\left(2^{-}-3\right)}
$$

$$
=\lim _{\rightarrow 0} \frac{2^{-2}+2^{--}-6^{-}-3^{-}+2}{\left(2^{-}+2^{-}-3\right)\left(2^{-}-3\right)}=\frac{2^{-}{ }^{2}-6^{-}+2}{\left(2^{-}-3\right)^{2}}
$$

Domain of ${ }^{-}=$domain of $\quad 0=\left(-\infty_{\frac{3}{2}}^{3}\right) \cup\left(\frac{3}{2} \infty\right)$.
29. ${ }^{0}()=\lim \overline{(+)-1()}=\mathrm{m} \quad \frac{\underline{1-2\left(+^{-}\right)}}{3+\left(+{ }^{-}\right)}-\frac{1-2}{3+{ }^{-}}$

$$
\begin{aligned}
& { }^{1 \rightarrow 0} \quad \quad{ }^{1} \rightarrow 0 \\
& =\lim _{\rightarrow 0} \frac{\left[1-2\left(+^{-}\right)\right](3+)-\left[3+\left(+^{-}\right)\right](1-2)}{\left.\left[3+\left(+^{-}\right)\right](3+)^{\prime}\right)} \\
& =\lim _{\rightarrow 0} \frac{3+-6-2^{2}-6^{-}-211-\left(3-6+-2^{2}+-2\right.}{\left[3+\left(+^{-}\right)\right](3+)}=\lim _{1 \rightarrow 0} \begin{array}{c}
-6- \\
(3++)(3+)
\end{array} \\
& =\lim _{1 \rightarrow 0} \frac{-77}{\left.\left(3++^{\prime}\right)(3+)^{\prime}\right)}=\lim _{1 \rightarrow 0} \frac{-7}{\left.\left(3++^{\prime}\right)(3+)^{\prime}\right)}=\frac{-7}{(3+)^{2}} \\
& \text { Domain of } 7=\text { domain of } 70=(-\infty-3) \cup(-3 \infty) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\rightarrow 0} \frac{\left.\left.+7)^{2}-1\right](2\rceil-3\right)-[2(7+7)-3]\left(7^{2}-1\right)}{[2(7+7)-3](2\rceil-3)} \\
& =\lim _{\rightarrow 0} \frac{\left.\left.\left.\left.\left.\left.(\urcorner^{2}+2\right\urcorner\right\urcorner+7^{2}-1\right)(2\urcorner-3\right)-(2\urcorner+2\right\rceil-3\right)\left(7^{2}-1\right.}{7[2(\urcorner+7)-3](2\rceil-3)} \\
& =\lim _{\rightarrow 0} \frac{\left(2^{-} 3+4^{-} 2^{-}+2^{-{ }^{-}} 2-2^{-}-3^{-}{ }^{2}-6^{-}-3^{-}+3\right)-\left(2^{-} 3+2^{-} 2^{-}-3^{-} 2-2^{-}-2+3\right)}{{ }^{-}\left(2^{-}+2^{-}-3\right)\left(2^{-}-3\right)}
\end{aligned}
$$

not exist (as a two-sided limit). But the right-hand derivative (in the sense of Exercise 64) does exist at 0 , so in that sense one could regard the domain of ${ }^{-} 0$ to be $[0 \infty)$.

Domain of ${ }^{-}=$domain of ${ }^{-} 0=R$.
32. (a)

(b) Note that the third graph in part (a) has small negative values for its slope, 7^{0}; but as $1 \rightarrow 6^{-}, 1^{0} \rightarrow-\infty$.

See the graph in part (d).
(c) $\left.{ }^{-0}()^{\circ}\right)=\lim _{\rightarrow 0}\left(+^{-}\right)-{ }^{-}$
(d)

Domain of $=\left(\begin{array}{ll}-\infty & 6\end{array}\right]$, domain of ${ }^{-} 0=\left(\begin{array}{ll}-\infty & 6\end{array}\right)$.
2
33. (a) ${ }^{-}()=\lim _{\rightarrow 0}\left({ }^{(}+{ }^{-}\right)-(0)=\lim _{1 \rightarrow 0} \frac{\left[(7+7)^{4}+2\left(+^{-}\right)\right]-\left({ }^{4}+7\right)}{}$

$$
\begin{aligned}
& =\lim _{\rightarrow 0} \frac{-^{-4}+4^{-} 3^{-}+6^{-} 2^{-2}+4^{-}-{ }^{3}+^{-4}+2^{-}+2^{-}-{ }^{-4} 7}{2} \\
& =\lim _{\rightarrow 0} \frac{4^{-3^{-}}+6^{-} 2^{-}{ }^{2}+4^{--}{ }^{3}+^{-} 4^{-}}{2}=\lim _{1 \rightarrow 0} \frac{{ }^{-}\left(4^{-3}+6^{-} 2^{-}+4^{--}{ }^{-2}+{ }^{-3}+7\right.}{}
\end{aligned}
$$

$$
\left.\left.\left.\left.\left.\left.=\lim _{\rightarrow 0}(4\urcorner^{3}+6\right\urcorner^{2}\right\rceil+4\right\rceil\right\urcorner^{2}+7^{3}+2\right)=4\right\urcorner^{3}+2
$$

(b) Notice that $\left.{ }^{\circ}{ }^{\circ}{ }^{\circ}\right)=0$ when has a horizontal tangent, $\left.{ }^{\circ}{ }^{\circ}{ }^{\circ}\right) \dot{s}$ positive when the tangents have positive slope, and $\left.{ }^{\circ} 0^{\circ}\right)$ is negative when the tangents have negative slope.

> -1
> $=\lim \frac{\sqrt{ }-7^{1} \sqrt{ }}{7}=\sqrt{ }$
$\rightarrow 0$ -
7
34. (a)

$$
\begin{aligned}
& { }^{-}()=\lim _{\| \rightarrow 0} \frac{\left(+^{-}\right)-0()}{-}=\lim _{\| \rightarrow 0} \frac{\left.\left[+^{-}\right)+1^{-}\left(+^{-}\right)\right]-\left(+1^{-}\right)}{7}=\lim _{\| \rightarrow 0} \frac{\frac{(1+7)^{2}+1}{7+1}-\frac{7^{2}+1}{-}}{1} \\
& =\lim _{\rightarrow 0} \frac{\left[\left((+7)^{2}+1\right]-(7+\square)\left(\square^{2}+1\right.\right.}{-^{-}\left(+^{-}\right)^{-}}=\lim _{1 \rightarrow 0} \frac{\left({ }^{3}+2^{--^{-}}+^{--}{ }^{-2}+^{-}\right)-\left({ }^{3}+^{-}++^{--2}+\right)}{{ }^{-}\left(+^{-}\right)^{-}} \\
& =\lim _{\rightarrow 0} \frac{-^{-2^{2}+{ }^{-2}-}}{7(7+7) \mid}=\lim _{1 \rightarrow 0} \frac{7\left(7^{2}+71-y\right.}{7(7+7) 7}=\lim _{1 \rightarrow 0} \frac{7^{2}+17-1}{(7+1) 7}=\frac{-2}{-2}-\text { or } 1-{ }_{2}^{1}
\end{aligned}
$$

(b) Notice that $\left.{ }^{\circ} 0^{\circ}\right)=0$ when has a horizontal tangent, ${ }^{\circ}{ }^{\circ}() \dot{s}$ positive when the tangents have positive slope, and ${ }^{\circ}{ }^{\circ}\left(^{\circ}\right)$ is negative when the tangents have negative slope. Both functions are discontinuous at $7=0$.

35. (a) ${ }^{-}{ }^{\circ}$ () is the rate at which the unemployment rate is changing with respect to time. Its units are percent unemployed per year.
(b) To find ${ }^{-} 0()$, we use $\lim _{\|} \frac{{ }^{-}\left(+^{-}\right)-{ }^{-}()}{\text {। }} \approx \frac{{ }^{-}\left(+^{-}\right)-{ }^{-}()}{7}$ for small values of .

For 2003: ${ }^{-}{ }^{0}(2003) \approx-\frac{(2004)-{ }^{-}}{2004-2003}=\frac{(2003)}{1}=-05$
For 2004: We estimate ${ }^{-}{ }^{0}(2004)$ by using ${ }^{-}=-1$ and ${ }^{-}=1$, and then average the two results to obtain a final estimate.

$$
\begin{aligned}
& =-1 \Rightarrow{ }^{-0}(2004) \approx-\frac{(2003)--(2004)}{2003-2004}=\frac{60-55}{-1}=-0.5 \\
& =1 \Rightarrow-{ }^{0}(2004) \approx-\frac{(2005)--}{2005-2004}=\frac{(2004)}{1}=-04
\end{aligned}
$$

So we estimate that ${ }^{-} 0(2004) \approx \frac{\mathrm{L}}{2}[-05+(-04)]=-045$.

| | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0() | -0.50 | -0.45 | -0.45 | -0.25 | 0.60 | 235 | 190 | -0.20 | -0.75 | -0.80 |

36. (a) ${ }^{\circ}()$ is the rate at which the number of minimally invasive cosmetic surgery procedures performed in the United States is changing with respect to time. Its units are thousands of surgeries per year.
(b) To find $\square^{\circ}()$, we use $\lim _{\|} \frac{\left.\urcorner\left(+^{-}\right)-\right\rceil()}{\rightarrow 0} \approx \frac{\square\left(+^{-}\right)-7()}{}$ for small values of .

For 2000: $7^{0}(2000) \approx \frac{-(2002)-7 \frac{(2000)}{2002-2000}}{}=\frac{4897-5500}{2}=-3015$
For 2002: We estimate 7° (2002) by using ${ }^{-}=-2$ and $^{-}=2$, and then average the two results to obtain a final estimate.

$$
\begin{aligned}
& =-2 \Rightarrow 7^{0}(2002) \approx-\frac{(2000)-7(2002)}{2000-2002}=\frac{5500-4897}{-2}=-3015 \\
& =2 \Rightarrow 7^{0}(2002) \approx-\frac{(2004)-7(2002)}{2004-2002}=\frac{7470-4897}{2}=12865
\end{aligned}
$$

So we estimate that ${ }^{0}(2002) \approx{ }_{2}^{1}[-3015+128615]=4925$.

	2000	2002	2004	2006	2008	2010	2012
$0^{\circ}()$	$-301 \cdot 5$	$492 \cdot 5$	$1060 \cdot 25$	85675	60575	$534 \cdot 5$	737

(c)

(d) We could get more accurate values for $\left[{ }^{\circ}(\mathrm{O})\right.$ by obtaining data for more values of 1 .
37. As in Exercise 35, we use one-sided difference quotients for the first and last values, and average two difference quotients for all other values.

	14	21	28	35	42	49
()	41	54	64	72	78	83
${ }^{\circ}()$	$\frac{13}{7}$	$\frac{23}{14}$	$\frac{18}{14}$	$\frac{14}{14}$	$\frac{11}{14}$	$\frac{5}{7}$

38. As in Exercise 35, we use one-sided difference quotients for the first and last values, and average two difference quotients for all other values. The units for $\square{ }^{\circ}(-)$ are grams per degree $\left(g^{\circ}{ }^{\circ} \mathrm{C}\right)$.

| | 155 | 177 | 200 | 224 | 244 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Gamma(\Gamma)$ | 372 | 310 | 198 | 97 | -98 |
| $\square{ }^{\circ}(\square)$ | -282 | -387 | -453 | -673 | -975 |

39. (a) time , measured in percentage points per year.
(b) 2 years after January 1, 2000 (January 1, 2002), the percentage of electrical power produced by solar panels was increasing at a rate of 3.5 percentage points per year.
40. ㅁำ 7 is the rate at which the number of people who travel by car to another state for a vacation changes with respect to te price of gasoline. If the price of gasoline goes up, we would expect fewer people to travel, so we would expect \square, to negative.
41. 7 is not differentiable at $7=-4$, because the graph has a corner there, and at $7=0$, because there is a discontinuity there.
42. ᄀ is not differentiable at $\urcorner=-1$, because there is a discontinuity there, and at $\urcorner=2$, because the graph has a corner there.
43. \urcorner is not differentiable at $\urcorner=1$, because \urcorner is not defined there, and at $\urcorner=5$, because the graph has a vertical tangent there.
44. \urcorner is not differentiable at $\urcorner=-2$ and $\urcorner=3$, because the graph has corners there, and at $\urcorner=1$, because there is a discontinuity there.
45. As we zoom in toward (-10), the curve appears more and more like a straight line, so $\square()={ }^{-}+\bar{\vdash}$ is differentiable at ${ }^{-}=-1$. But no matter how much we zoom in toward the origin, the curve doesn't straighten out-we can't eliminate the sharp point (a cusp). So \urcorner is not differentiable at $\urcorner=0$.

46. As we zoom in toward ($\left.\begin{array}{ll}0 & 1\end{array}\right)$, the curve appears more and more like a straight line, so 7 is differentiable at $\quad I=0$. But no matter how much we zoom in toward $\left(\begin{array}{ll}1 & 0\end{array}\right)$ or $\left(\begin{array}{ll}-1 & 0\end{array}\right)$, the curve doesn't straighten out-we can't eliminate the sharp point (a cusp). So 1 is not differentiable at $7= \pm 1$.

47. Call the curve with the positive \urcorner-intercept \urcorner and the other curve \urcorner. Notice that \mid has a maximum (horizontal tangent) at $\neg=0$, but $\urcorner=0$, so \urcorner cannot be the derivative of \urcorner. Also notice that where \urcorner is positive, \urcorner is increasing. Thus, $\neg=\urcorner$ and $={ }^{\circ}$. Now ${ }^{\circ}(-1)$ is negative since ${ }^{\circ} 0$ is below the -axis there and ${ }^{00}(1)$ is positive since ${ }^{\circ}$ is concave upward at $=1$ Therefore, $\quad{ }^{00}(1)$ is greater than ${ }^{\circ}(-1)$.
48. Call the curve with the smallest positive -intercept $^{-}$and the other curve ।. Notice that where ${ }^{-}$is positive in the first quadrant, is increasing. Thus, ${ }^{-}$and ${ }^{-}{ }^{0}$. Now ${ }^{\circ}(-1)$ is positive since ${ }^{0}{ }^{0}$ is above the -axis there and (1) appears to be zero since ${ }^{*}$ has an inflection point at ${ }^{-}=1$. Therefore, ${ }^{0}(1)$ is greater than ${ }^{00}(-1)$.
49. $\neg=\square, \square=\urcorner^{0}, \neg=100$. We can see this because where \urcorner has a horizontal tangent, $\urcorner=0$, and where 7 has a horizontal tangent, $\urcorner=0$. We can immediately see that \urcorner can be neither \urcorner nor $\urcorner 0$, since at the points where \urcorner has a horizontal tangent, neither \urcorner nor ${ }^{-}$is equal to 0 .
50. Where \urcorner has horizontal tangents, only ${ }^{-}$is 0 , so ${ }^{-} 0=\square . \square$ has negative tangents for $\left.\urcorner\right\urcorner 0$ and $^{-}$is the only graph that is negative for $\urcorner \neg 0$, so ${ }^{-} 0=\square . \square$ has positive tangents on R (except at $\urcorner=0$), and the only graph that is positive on the snedomain is \neg, so ${ }^{-} 0=\neg$. We conclude that $\neg=\square, \square=\neg^{0},^{-}=\neg^{00}$, and $\neg=\neg^{000}$.
51. We can immediately see that 7 is the graph of the acceleration function, since at the points where \neg has a horizontal tangent, neither ${ }^{-}$nor $^{-}$is equal to 0 . Next, we note that $\urcorner=0$ at the point where ${ }^{-}$has a horizontal tangent, so ${ }^{-}$must be the graph the velocity function, and hence, ${ }^{-} 0=\mathrm{I}$. We conclude that ${ }^{-}$is the graph of the position function.
52. \urcorner must be the jerk since none of the graphs are 0 at its high and low points. \urcorner is 0 where ${ }^{-}$has a maximum, so ${ }^{-} 0=\square . \square$ is 0 where $^{-}$has a maximum, so ${ }^{-} 0=\neg$. Weconclude that ${ }^{-}$is the position function, ${ }^{-}$is the velocity, ${ }^{-}$is the acceleration, and ${ }^{-}$is the jerk.
53. $\left.{ }^{0}()=\lim _{\rightarrow 0}{ }^{0}\left(+^{-}\right)-0\right)=\lim _{1 \rightarrow 0} \xrightarrow[{\left.\left[3(7+7)^{2}+2(7+7)+1\right]-\left(3^{-}\right\rceil^{2}+2\right\rceil+} 1]{ }$

$$
\begin{aligned}
& =\lim _{\rightarrow 0} \frac{\left.\left.\left.\left.\left.\left.(3\rceil^{2}+6\right\rceil 7+3\right\rceil^{2}+2\right\rceil+2\right\rceil+1\right)-(3\rceil^{2}+2\right\rceil 4}{}=\lim _{1 \rightarrow 0} \frac{\left.61\urcorner+3\rceil^{2}+2\right\rceil}{} \\
& \left.\left.\left.=\lim _{\mid 1 \rightarrow 0} \frac{(6+3+2)}{}=\lim _{\rightarrow 0}(6\rceil+3\right\rceil+2\right)=6\right\rceil+2
\end{aligned}
$$

$$
=\lim _{\rightarrow 0} \frac{67}{7}=\lim _{\rightarrow 0} 6=6
$$

We see from the graph that our answers are reasonable because the graph of

- 0 is that of a linear function and the graph of ${ }^{-} 00$ is that of a constant function.

54. ${ }^{\circ}(0)=\lim _{\rightarrow 0} \frac{\left({ }^{-1}+{ }^{-}\right)-0}{}=\lim _{1 \rightarrow 0} \frac{\left[(+\square)^{3}-3(\square+\square)\right]-\left(7^{3}-7\right)}{3}$

$$
=\lim _{\rightarrow 0} \frac{\left({ }^{3}+3^{-} 2^{-}+3^{-}{ }^{-2}+{ }^{-3}-3^{-}-3^{-}\right)-\left({ }^{3}-\right)}{3}=\lim _{1 \rightarrow 0} \frac{37^{2} 7+317^{2}+7^{3}-3}{}
$$

$=\lim _{\rightarrow 0} \frac{\left.\square\left(3 \square^{2}+3\right\urcorner\right\urcorner+7^{2}-3}{\lim \left(37^{2}+3^{-}++^{-2}-3\right)=3^{-2}-3}$

$$
\begin{aligned}
{ }^{\infty 0}() & =\lim _{\rightarrow 0} \frac{{ }^{0}(+)-0}{\left.{ }^{0}\right)}=\lim _{1 \rightarrow 0} \frac{\left[3(7+7)^{2}-3\right]-\left(37^{2}-3\right.}{}=\lim _{1 \rightarrow 0} \frac{\left.\left(37^{2}+677+3\right\urcorner^{2}-3\right)-(3\urcorner^{2}-3}{} \\
& =\lim _{\rightarrow 0} \frac{6^{-}+3^{2}}{}=\lim _{1 \rightarrow 0} \frac{0(67+3)}{}=\lim _{\rightarrow 0}(67+37)=67
\end{aligned}
$$

We see from the graph that our answers are reasonable because the graph of
${ }^{-} 0$ is that of an even function (7 is an odd function) and the graph of ${ }^{-} 00$ is that of an odd function. Furthermore, ${ }^{-} 0=0$ when ${ }^{-}$has a horizontal tangent and - $00=0$ when ${ }^{-} 0$ has a horizontal tangent.

$$
{ }^{(4)}()=\lim \frac{{ }^{000}(+)-{ }^{000}(}{)}=\lim \frac{-6-}{\underline{(-6)}} \quad=\lim { }_{-}^{0}=\lim (0)=0
$$

${ }^{\prime} \rightarrow 0 \quad \rightarrow 0 \quad \rightarrow 0$

The graphs are consistent with the geometric interpretations of the
derivatives because ${ }^{-0}$ has zeros where ${ }^{-}$has a local minimum and a local ge Learning. All Rights Reserved.

$$
\begin{aligned}
& { }^{00}()=\lim _{\rightarrow 0} \frac{\left.{ }^{0}\left(+^{-}\right)-{ }^{-} \varnothing\right)}{\left.\lim _{1 \rightarrow 0} \frac{4\left({ }^{-}+{ }^{-}\right)-3\left({ }^{-}+{ }^{-}\right)^{2}-\left(4^{-}-{ }^{-}\right)}{3}=\lim _{1 \rightarrow 0} \frac{7(4-67-3)}{}\right)} \\
& =\lim _{\rightarrow 0}(4-67-37)=4-67 \\
& { }^{000}()=\lim _{11} \frac{{ }^{-00}\left(+^{-}\right)-{ }^{-00}()}{-0}=\lim _{11} \frac{\left[4-6\left({ }^{-}+{ }^{-}\right)\right]-\left(4-6^{-}\right)}{-}=\lim _{\rightarrow 0} \frac{-6^{-}}{-}=\lim _{\rightarrow 0}(-6)=-6
\end{aligned}
$$

56. (a) Since we estimate the velocity to be a maximum at ${ }^{-}=10$, the acceleration is 0 at $^{-}=10$.

(b) Drawing a tangent line at ${ }^{-}=10$ on the graph of \square, \square appears to decrease by $10 \mathrm{ft} 7 \mathrm{~s}^{2}$ over a period of 20 s

57. (a) Note that we have factored $\urcorner-\urcorner$ as the difference of two cubes in the third step.

$$
\begin{aligned}
& O()=\lim _{\| \rightarrow 1} \frac{()-0}{--^{-}}=\lim _{1 \rightarrow} \frac{7^{1113}-{ }^{-1}}{--^{-}}=\lim _{\rightarrow\left(7^{13}-7^{13}\right)\left(7^{23}-7^{1113}\right.}
\end{aligned}
$$

(b) $\mathscr{C}(0)=\lim _{\| \|^{\rightarrow 0}} \quad=\lim _{\| \rightarrow 0} \square=\lim _{\| \rightarrow 0 \rightarrow 3}$. This function increases without bound, so the limit does not exist, and therefore ${ }^{-}(0)$ does not exist.
(c) $\left.\left.\lim _{\rightarrow 0}\right|^{-0} C^{\circ}\right) \left\lvert\,=\lim _{\rightarrow 0} \frac{1}{3^{-23}}=\infty\right.$ and $^{-}$is continuous at ${ }^{-}=0$ (root function), so has a vertical tangent at ${ }^{-}=0$.
58. (a) $(x)=\lim _{\rightarrow 0} \frac{(0)-0)}{7-0}=\lim _{\rightarrow 0} \frac{-23-0}{-}=\lim _{\rightarrow 0} \frac{1}{-1}$, which does not exist.
(b) ${ }^{0}(1)=\lim (\square)-(1)=\lim { }^{23}-{ }^{23}=\lim \left(\square^{13}-7^{13}\right)\left(7^{13}+7^{13}\right)$
(c) (C) $=-23$ is continuous at ${ }^{-}=0$ and

$$
\lim _{\rightarrow 0}\left|0^{0}(-)\right|=\lim _{\rightarrow 03| |^{13}}=\infty \text {. This shows that }
$$

\urcorner has a vertical tangent line at $\quad \mathrm{I}=0$.
(d)

59. (-) $=|-6|=\begin{aligned} & -6 \quad \text { if }-6 \geq 6 \\ & -(-6) \text { if }^{-}-6^{-} 0\end{aligned}=\begin{aligned} & 7-6 \text { if } \geq 6 \\ & -\mid \text { if }{ }^{--} 6\end{aligned}$ So the right-hand limit is $\lim _{\rightarrow 6^{+}} \frac{()-(6)}{7-6}=\lim _{1 \rightarrow 6^{+}} \frac{|7-6|-\underline{0}}{7-6}=\lim _{\rightarrow 6^{+}} \frac{7-\underline{6}-6}{-6}=\lim _{\rightarrow 6^{+}} 1=1$, and the left-hand limit is $\lim \frac{()-(6)}{7}=\mathrm{m} \frac{|7-6|-\underline{0}}{7}=\lim \frac{6--}{-}=\lim (-1)=-1$. Since these limits are not equal,

NOT FOR SALE INSTRUCTOR USE ONLY

${ }^{\circ}(6)=\lim _{\rightarrow 6} \frac{()-(6)}{7-6}$ does not exist and is not differentiable at 6 1 if $\begin{aligned} & \text { - } 6\end{aligned}$
However, a formula for 0° is $0^{\circ}()$
$=\quad-1$ if । 76

Another way of writing the formula is $\left.{ }^{\circ} 0^{\circ}\right)=$
\qquad

$$
|7-6|
$$

60. () $=\llbracket \rrbracket$ is not continuous at any integer 7 , so is not differentiable \urcorner at by the contrapositive of Theorem 4. If is not an integer, then is constant on an open interval containing ${ }^{-}$, so $\left.^{-0^{\circ}}\right)=0$. Thus,
 ${ }^{-}{ }^{\circ}()=0, \quad$ not an integer.

$$
\left.{ }^{\prime} \neg^{2} \quad \text { if }\right\urcorner \geq 0
$$

61. (a): ()$=\mid=-2$ if $\urcorner \mid 0$

(b) Since ${ }^{-}$() $=^{-}{ }^{2}$ for ${ }^{-} \geq 0$, we have ${ }^{-0}\left(^{-}\right)=2^{-}$for ${ }^{-} 0$
[See Exercise 19(d).] Similarly, since (\quad) $=-{ }^{-2}$ for ${ }^{--} 0$, we have ${ }^{-0}\left(C^{-}\right)=-2^{-}$for ${ }^{-} 0$. At $^{-}=0$, we have $\left.{ }^{0}(0)=\lim _{\rightarrow 0} \frac{\left.()^{-}\right)-(0)}{\square-0}=\lim _{\mid 1 \rightarrow 0^{-}}=\left.\lim _{\rightarrow 0}\right|^{-} \right\rvert\,=0$

So \urcorner is differentiable at 0 . Thus, । is differentiable for all ।.
(c) From part (b), we have ${ }^{\circ}{ }^{\circ}()=\begin{array}{ll}\mid 2 & \text { if }-\geq 0\urcorner \\ -2\urcorner & \text { if }-70\end{array}=2| | \cdot$

$$
l \quad \text { if } \neg \geq 0
$$

62. (a) $\mid \|=$

- । if ᄀᄀ0
so ($)=\cdot+\left\lvert\,=\begin{array}{lll}2 & \text { if } \quad \geq 0 \\ 0 & \text { if } \quad \mid 70\end{array}\right.$.
Graph the line $\quad \mid=2\urcorner$ for $\quad 1 \geq 0$ and graph $\urcorner=0$ (the x-axis) for 170 .
(b) 7 is not differentiable at $7=0$ because the graph has a corner there, but
 is differentiable at all other values; that is, is differentiable on $(-\infty) \cup(0 \infty)$.

Another way of writing the formula is ${ }^{\circ}\left(^{\circ}\right)=1+\operatorname{sgn}^{-}$for ${ }^{\circ}=0$.
63. (a) If 7 is even, then

Therefore, ${ }^{-} 0$ is odd.

$$
\begin{aligned}
& { }^{-}{ }^{0}\left(-^{-}\right)=\lim _{\| \rightarrow 0} \frac{\left(-^{-}++^{-}\right)-^{-}\left(-^{-}\right)}{\mid}=\lim _{\| \rightarrow 0} \frac{\left.\left[-()^{-}-\right)\right]-{ }^{-}\left(-^{-}\right)}{1} \\
& \left.=\lim _{\| \|^{\rightarrow 0}}(-)^{-}\right)-()=-\lim _{\rightarrow 0} \frac{\left.(-)^{-}\right)-\chi}{-^{-}} \quad\left[\text { let } \Delta^{-}=-^{-}\right] \\
& =-\lim _{\Delta_{\mathrm{I}} \rightarrow 0} \frac{\left(+\Delta^{-}\right)-()^{-0}}{\Delta 7}=-{ }^{-0}()
\end{aligned}
$$

NOT FOR SALE INSTRUCTOR USE ONLY

a CHAPTER 2 LIMITS AND DERIVATIVES
(b) If 7 is odd, then

Therefore, ${ }^{-}{ }^{0}$ is even.
64. (a) ${ }^{-} 0(4)=\lim _{1 \rightarrow 0^{-}} \underline{\perp(4+7)-1(4)}=\lim _{\rightarrow 0^{-}} \frac{5-(4+7)-1}{-}$
(b)
$=\lim _{1 \rightarrow 0^{-}} \frac{-7}{-}=1$
and

$$
q(4)=\lim _{\rightarrow 0^{+}} \text {그 }\left(4+^{-}\right)-ㄱ(4)=\lim _{1 \rightarrow 0^{+}} \frac{\frac{1}{5-(4+7)}-1}{}
$$

$$
=\lim _{\rightarrow 0^{+}} \frac{7}{1-(1-)}\left(1-^{-}\right) \quad \lim _{\rightarrow 0^{+}} \frac{1}{\frac{1}{--^{-}}}=1
$$

$$
\Gamma \begin{array}{ll}
0 & \text { if }
\end{array}
$$

(c) $(\mathrm{c})=5-$ । if $0 \quad$ ㄱ | $4 \mid$
 continuous at 4. Since $\neg(5)$ is not defined, \mid is discontinuous at 5 . These expressions show that 7 is continuous on the intervals $(-\infty \quad 0),(04),(45)$ and (5∞). Since $\lim ()=\lim \left(5-^{-}\right)=56=0=\quad(), \lim ()$ does m

$$
\rightarrow 0^{+} \quad 1 \rightarrow 0^{+} \quad \rightarrow 0^{-} \quad \rightarrow 0
$$

not exist, so \mid is discontinuous (and therefore not differentiable) at 0 .
(d) From (a), ${ }^{-}$is not differentiable at 4 since ${ }^{-}{ }^{-0}(4) 6={ }_{+}^{-} 0$ (4), and from (c), ${ }^{-}$is not differentiable at 0 or 5.
65. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the graph in (a) would not have corners and the graph in (b) would be coñtinuous.
(a)

(b)

66. (a)

$$
\begin{aligned}
& =\lim _{\|^{\rightarrow} \rightarrow 0} \frac{\left.-\left(-^{-}\right)+()^{-}\right)}{-}=\lim _{\rightarrow 0} \frac{\left(-^{-}\right)-\gamma}{-^{-}} \quad\left[\operatorname{let} \Delta^{-}=-^{-}\right] \\
& =\lim _{\Delta_{1} \rightarrow 0} \frac{(+\Delta)-()}{\Delta 7}={ }^{-0}()
\end{aligned}
$$

NOT FOR SALE INSTRUCTORUSE ONLY

(b) The initial temperature of the water is close to room temperature because of the water that was in the pipes. When the water from the hot water tank starts coming out, $\mid\urcorner \square \mid \square$ is large and positive as \urcorner increases to the temperature of the water in the tank. In the next phase, $\mid ~ \| \square \square=0$ as the water comes out at a constant, high temperature. After some time, $1101 \square$
(c)
 becomes small and negative as the contents of the hot water tank are exhausted. Finally, when the hot water has run out, । $\square \mid \square$ is once again 0 the water maintains its (cold) temperature.
67.

In the right triangle in the diagram, let Δ be the side opposite angle and Δ the side adjacent to angle \urcorner. Then the slope of the tangent line is $\Gamma=\Delta \Delta^{-}=\tan ^{-}$. Note that $0{ }^{-}$. We know (see Exercise 19)
that the derivative of ()$\left.^{-}\right)=^{-2}$ is $\left.{ }^{-0}{ }^{\circ}\right)=2$. So the slope of the tangento the curve at the point $(1) 1)$ is 2 . Thus, is the angle between 0 and $\frac{1}{2}$ whose tangent is 2 ; that is, ${ }^{-}=\tan ^{-1} 2 \approx 63^{\circ}$.

2 Review

TRUE-FALSE QUIZ

1. False. Limit Law 2 applies only if the individual limits exist (these don't).
2. False. Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is).
3. True. Limit Law 5 applies.
4. False. $\frac{7^{2}-9}{7-3}$ is not defined when $\urcorner=3$, but $\quad 1+3$ is.
5. True. $\quad \lim _{\rightarrow 3} \frac{7^{2}-9}{\urcorner-3}=\lim _{1 \rightarrow 3} \frac{(7+3)(7-3}{(7-3)}=\lim _{\rightarrow 3}(7+3)$
6. True. The limit doesn't exist since () () doesn't approach any real number as approaches5 (The denominator approaches 0 and the numerator doesn't.)
7. False. Consider $\lim _{\rightarrow 5} \frac{-(-5)}{\neg-5}$ or $\lim _{\rightarrow 5} \frac{\sin \left({ }^{-}-5\right)}{7-5}$. The first limit exists and is equal to 5 . By Example 2.2.3, we know that the latter limit exists (and it is equal to 1).
8. False. If ()$=1^{-},()=-1^{-\cdots}$, and $=0$, then $\lim _{1 \rightarrow 0}(-)$ does not exist, $\lim _{\rightarrow 0}(-)$ does not exist, but $\lim _{\rightarrow 0}\left[()+^{+}()\right]=\underset{\rightarrow 0}{\lim 0}=0$ exists.
9. True. Suppose that $\lim _{\|\rightarrow\|}\left[()+^{\prime}\left({ }^{\circ}\right)\right]$ exists. Now $\lim _{\|\rightarrow\|}(-)$ exists and $\lim _{\rightarrow}{ }^{\circ}()$ does not exist, but
 we have a contradiction. Thus, $\lim \left[()^{\prime}+\left(^{-}\right)\right]$does not exist.

152 CHAPTER 2 LIMITS AND DERIVATIVES
10. False. Consider $\left.\lim _{\rightarrow 6}[()]()\right]=\lim _{\rightarrow 6}(-6) \xrightarrow[-6]{1}$. It exists (its value is 1$)$ but ${ }^{\circ}(6)=0$ and ${ }^{\circ}(6)$ does not exist, so $7(6)^{-}(6) 6=1$

7
11. True.

A polynomial is continuous everywhere, so $\lim _{\| \rightarrow| |}{ }^{-}\left({ }^{-}\right)$exists and is equal to (1).
12. False. Consider $\lim _{\rightarrow 0}[()-()]=\lim _{\rightarrow 0} \frac{1}{2}-\frac{1}{-}$. This limit is $-\infty$ (not 0), but each of the individual functions approaches ∞.
13. True.

See Figure 2.6.8.
14. False.
15. False.

Consider (${ }^{-}=\sin ^{-}$for $\left.\geq 0 . \lim _{1 \rightarrow \infty^{-}}()^{-}\right) \pm \infty$ and has no horizontal asymptote.
Consider $^{-}()=.\begin{array}{ll}1(-1) & \text { if }-6=1 \\ 2 & \text { if } ᄀ=1\end{array}$
16. False. The function 7 must be continuous in order to use the Intermediate Value Theorem. For example, let

$$
()=\begin{aligned}
& 1 \quad \text { if } 0 \leq \leq^{-} 3 \\
& -1 \text { if }\urcorner=3
\end{aligned} \quad \text { There is no number } 1 \in\left[\begin{array}{ll}
0 & 3
\end{array}\right] \text { with } \quad()=0
$$

17. True.

Use Theorem 2.5.8 with ${ }^{-}=2,1=5$, and ${ }^{-}()=4^{2}-11$. Note that ${ }^{-}(4)=3$ is not needed.
18. True. Use the Intermediate Value Theorem with $\urcorner=-1, \neg=1$, and $\quad \mid=7$, since $\left.3^{--}\right\urcorner 4$.
19. True, by the definition of a limit with $\urcorner=1$.
20. False. For example, let ()$=\begin{gathered}-2+1 \text { if }=0 \\ 2 \quad \text { if } 7=0\end{gathered}$

Then [()] 1 for all ${ }^{-}$, but $\lim _{\rightarrow 0}()^{1}=\lim _{\rightarrow 0}-2+1^{1} \neq$
21. False. See the note after Theorem 2.8.4.
22. True. $\quad{ }^{0}(1)$ exists \Rightarrow is differentiable at ${ }^{l} \Rightarrow$ is continuous at ${ }^{l} \Rightarrow \lim _{\||\rightarrow| \mid}()=()$.
23. False. $\frac{2^{2}}{-2}$ is the second derivative while $\frac{17^{-}}{7\rceil}$ is the first derivative squared. For example, if $\quad \mathrm{l}=\mathrm{7}$, then $\frac{e_{2}^{-2}}{-2}=0$, but ${ }^{\frac{1}{71}}=1$.
24. True.
() $=^{-10}-10^{-2}+5$ is continuous on the interval $[02],^{\circ}(0)=5,^{*}(1)=-4$, and ${ }^{*}(2)=989$. Since $-4 \cap 0 \cap 5$, there is a number 1 in $\left(\begin{array}{ll}0 & 1) \text { such that }()=0 \text { by the Intermediate Value Theorem. Thus, there isa }\end{array}\right.$ root of the equation ${ }^{-10}-10^{-2}+5=0$ in the interval $\left(\begin{array}{ll}0 & 1\end{array}\right)$. Similarly, there is a root in (12).
25. True.

See Exercise 2.5.72(b).
26. False

See Exercise 2.5.72(b).

NOT FOR SALE INSTRUCTOR USE ONLY

1. (a) (i) $\lim _{-2^{+}}()=3$
(ii) $\lim _{\rightarrow-3^{+}}(\mathrm{O})=0$
(iii) $\lim _{\rightarrow-3}($.$) does not exist since the left and right limits are not equal. (The left limit is -2$.)
(iv) $\lim _{-4}(\mathrm{O})=2$
(v) $\lim _{\rightarrow 0}($ ($)=\infty$
(vi) $\lim _{\rightarrow 2^{-}}()=-\infty$
(vii) $\lim _{\rightarrow \infty}(()=4$
(viii) $\lim _{\rightarrow-\infty}()=-1$
(b) The equations of the horizontal asymptotes are $\urcorner=-1$ and $\urcorner=4$
(c) The equations of the vertical asymptotes are $\quad=0$ and $\rceil=2$.
(d) \urcorner is discontinuous at $\mathrm{I}=-3,0,2$, and 4 . The discontinuities are jump, infinite, infinite, and removable, respectively.
2. $\lim _{\rightarrow-\infty}()=-2, \quad \lim _{\rightarrow \infty}()=0, \quad \lim _{\rightarrow-3}()=.\infty$,
$\lim _{1 \rightarrow 3^{-}}\left(()=-\infty, \quad \lim _{\rightarrow 3^{+}}(()=2\right.$,

7 is continuous from the right at 3

3. Since the exponential function is continuous, $\lim _{\rightarrow 1} 1^{3}-^{1}=\jmath^{1-1}=\jmath^{0}=1$.
4. Since rational functions are continuous, lim \qquad $=$ \qquad $=\underline{0}=0$.

$$
\rightarrow 3 \quad 2+2-3 \quad 3^{2}+2(3)-3 \quad 12
$$

5. $\lim _{\rightarrow-3} \frac{7^{2}-9}{\left.7^{2}+2\right\rceil-3}=\lim _{\rightarrow-3} \frac{(7+3)(7-3}{(7+3)(7-1)}=\lim _{\rightarrow-3^{-}} \frac{7-3}{-1}=\frac{-3-3}{-3-1}=\frac{-6}{-4}=\frac{3}{2}$

$$
171
$$

$$
\neg^{2}-9 \quad 2 \quad+\quad+\quad 7^{2}-9
$$

Another solution: Factor the numerator as a sum of two cubes and then simplify.

$$
\begin{aligned}
\lim _{1 \rightarrow 0} \frac{(7-1)^{3}+1}{}= & \lim _{1} \frac{(7-1)^{3}+1^{3}}{}=\lim _{\rightarrow 0}[(-1)+1](-1)^{2}-1(-1)+1^{2} \\
= & \lim _{1 \rightarrow 0}(-1)^{2}-+2=1-0+2=3
\end{aligned}
$$

8. $\lim _{\rightarrow 2} \frac{2-4}{3^{3}-8}=\lim _{\rightarrow 2(-2)\left({ }^{2}+2+4\right)} \frac{+2}{(+2)(-2)}=\frac{2+2}{\lim _{\rightarrow 2^{2}} \frac{+2+4}{4+4+4} 12}=\frac{4}{3}=\frac{1}{\sqrt{2}}$
\qquad

$$
\begin{aligned}
& \text { NOT FOR SALE } \\
& \text { 9. } \lim \\
& \rightarrow 9(-9)^{4} \\
& (1-9)^{4} \\
& \text { INSTRUCTOR USE ONLY }
\end{aligned}
$$

154 CHAPTER 2 LIMITS AND DERIVATIVES
10. $\lim _{\rightarrow 4^{+}} \frac{4-^{-}}{\left|4-{ }^{-}\right|}=\lim _{\rightarrow 4^{+}} \frac{4-7}{\left.-(4-)^{-}\right)}=\lim _{\rightarrow 4^{+}} \frac{1}{-1}=-1$
11. $\lim 4^{4}-1=\lim \left({ }^{2}+1\right)\left({ }^{2}-1\right)=\lim \left({ }^{2}+1\right)(+1)(-1)=\lim \left({ }^{2}+1\right)(+1)=\underline{2(2)}=4$
12. $\lim \frac{7^{3}-37^{2}}{}=\lim \frac{2}{2}$
$\sqrt{\sqrt{7+6}+-}=\lim _{\|^{3} \square{ }_{(\square-3)}^{2} 7 \sqrt{7+6}+7}$

$$
=\lim _{11 \rightarrow 3} \frac{7{ }^{2} \frac{(7+2)}{-6+}-\Gamma}{-6+}=-\frac{5}{9(3+3)}=-\frac{5}{54}
$$

\sqrt{N}_{-2}	$V_{=2-9} V_{-2}$	$1-9-2$	V_{1-0}
2 - -6		$-2+6^{-}$	

15. Let $=\sin$. Then as $\quad-$, $\sin \quad 0^{+}$, so $^{-} \rightarrow 0^{+}$. Thus, $\lim _{-} \ln (\sin)=\lim _{\rightarrow 0^{+}} \ln =-\infty$.
16. $\lim _{1 \rightarrow-\infty} \frac{1-2^{-2}-^{-4}}{5+1-3^{-4}}=\lim _{\rightarrow-\infty} \frac{\left(1-27^{2}--4-7^{4}\right.}{\left(5+^{-}-3^{-4}\right)^{--4}}=\lim _{\rightarrow-\infty} \frac{1^{--4}-2^{--2}-1}{5^{-4+1^{--3}-3}}=\frac{0-0-1}{0+0-3}=\frac{-1}{-3}=\frac{1}{3}$
 $\operatorname{l\rightarrow \infty }^{2}+4+1-$

$$
\begin{aligned}
& \quad \frac{1 \rightarrow \infty}{\frac{1}{\left(4^{-}+1\right)^{-}}} \\
& =\lim _{\rightarrow \infty} \frac{\sqrt{ }}{7^{2}+47+1+\pi}
\end{aligned}
$$

$$
=\lim _{1 \rightarrow \infty}\left\lceil\frac{4+177}{1+4^{-}+1^{-} 2^{2}}+1 \quad=\sqrt{\frac{4+0}{1+0+0+1}}=\frac{4}{2}=2\right.
$$

18. Let $\left.\left.\left.{ }^{-}=\right\urcorner-\right\urcorner^{2}=\right\urcorner(1-7)$. Then as $\urcorner \rightarrow \infty,{ }^{-} \rightarrow-\infty$, and $\underset{\mathrm{I}_{\rightarrow \infty}}{ } \jmath^{1-1^{2}}=\lim _{\rightarrow-\infty}{ }^{-}=0$.
19. Let ${ }^{-}=1^{--}$. Then as ${ }^{-} \rightarrow 0^{+},{ }^{-} \rightarrow \infty$, and $\lim _{1 \rightarrow 0+} \tan ^{-1}\left(1^{--}\right)=\lim _{\rightarrow \infty} \tan ^{-1-}=\frac{-}{2}$.

INSTRUCTOR USE ONLY

NOT FOR SALE

21. From the graph of $\left.\urcorner=\cos ^{2}|\quad|\right\urcorner^{2}$, it appears that $\mid=0$ is the horizontal asymptote and $\urcorner=0$ is the vertical asymptote. Now $0 \leq(\cos 7)^{2} \leq 1 \Rightarrow$ $\frac{0}{-2} \leq \frac{\cos ^{2} \mid}{-2} \leq \frac{1}{-2} \Rightarrow 0 \leq \frac{\cos ^{2} \mid}{\left.\right|^{2}} \leq{\underset{2}{2} . \text { But } \underset{\substack{\rightarrow \pm \infty \\ \cos ^{2}}}{\lim _{1}} 0=0 \text { and }}_{1} 0=1$ $\lim _{\rightarrow \pm \infty^{-}}-{ }^{2}=0$, so by the Squeeze Theorem, $\lim _{\rightarrow \pm \infty} \overline{\rceil^{2}}=0$.

$$
\cos ^{2} 7
$$

$=\infty$ because $\cos ^{2}$

 as $\neg \rightarrow 0$, so $\neg=0$ is the Thus, $\quad I=0$ is the horizontal asymptote. $\lim _{\rightarrow 0} \quad 2$ vertical asymptote.
22. From the graph of $=()=^{\sqrt{ } \frac{V^{2}+1}{-}+\sqrt{ }{ }^{2}-}$, it appears that there are 2 horizontal asymptotes and possibly 2 vertical asymptotes. To obtain a different form for 7 , let's multiply and divide it by its conjugate.

$$
\begin{aligned}
& 2\rceil+1 \\
& =V_{-} \quad V_{-} \\
& 2+\quad+1+\quad 2-
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left\ulcorner\lim _{\rightarrow \infty} \frac{\overline{\overline{\left.1+(1\rceil\rceil)+(1\rceil\rceil^{2}\right)}+} \overline{1-\left(1^{--}\right)}}{\overline{1}}\right. \\
& \text { [since }{ }^{\sqrt{ }} \text { for } 7 \text { । } 0 \text {] } \\
& \overline{7}=1 \\
& =\frac{2}{1+1}=1 \text {, }
\end{aligned}
$$

so । $=1$ is a horizontal asymptote. For $|\quad| 0$, we have $\left.\sqrt{ } \overline{ך^{2}}=\mid\right\urcorner \mid=-$, so when we divide the denominator by , with 7 । 0 , we get

Therefore,

so $\urcorner=-1$ is a horizontal asymptote.
The domain of ${ }^{-}$is $(-\infty \quad 0] \cup\left[\begin{array}{ll}1 & \infty\end{array}\right) . \mathrm{As}^{-} \rightarrow 0^{-}, \quad() \rightarrow 1$, so
$=0$ is not a vertical asymptote. As $\rightarrow 1^{+},() \rightarrow \sqrt{ } \quad$, so $=1$

INSTRUCTOR USE ONLY

23. Since $2-1 \leq 0() \leq^{-2}$ for $0^{-} \cap 3$ and $\lim _{\rightarrow 1}\left(2^{-}-1\right)=1=\lim _{\rightarrow 1}{ }^{2}$, we have $\lim _{\rightarrow 1}()=1$ by the Squeeze Theorem.
24. Let ()$=-{ }^{-2},()={ }^{-2} \cos 1^{1}$ and ()$={ }^{2}$. Then since $\cos ^{1} 1^{-2} \leq 1$ for $6=0$, we have ()$\leq() \leq:()$ for $^{-}=0$, and so $\lim _{\rightarrow 0}()=\lim _{1 \rightarrow 0}()=0 \Rightarrow \quad \lim _{\rightarrow 0}()=0$ by the Squeeze Theorem.
25. Given $\mid\urcorner 0$, we need $\urcorner । 0$ such that if $0 \square|\square-2|\urcorner\urcorner$, then $|(14-57)-4|\urcorner$ ।. But $\mid(14-5\urcorner)-4 \mid$ । $\urcorner \Leftrightarrow$ $|-57+10|\urcorner$ । $\Leftrightarrow|-5| \mid\urcorner-2|\quad|\urcorner \Leftrightarrow|।-2|\urcorner \mid 75$. So if we choose $\urcorner=\mid 75$, then $0 \square|\square-2|$ । $\mid \Rightarrow$ $\left|\left(14-5^{-}\right)-4\right|^{-}$. Thus, $\lim _{1}\left(14-5^{-}\right)=4$ by the definition of a limit.

 Therefore, by the definition of a limit, $\lim _{\rightarrow 0}^{\sqrt{V}-}=0$.
26. Given $\mid । 0$, we need $\urcorner\urcorner 0$ so that if $0 \square|\square-2|\urcorner$ ।, then $\urcorner^{2}-3|-(-2)| 7$. First, note that if $\left.\mid\right\urcorner-2| | 1$, then

$$
\begin{aligned}
& \left.\left.-1^{-}-271 \text {, so } 0-1\right\urcorner\left.2 \Rightarrow\right|^{-}-1 \mid \cap 2 \text {. Now let }\right\rceil=\min \{2 \mid 1\} \text {. Then } 0|-2| 77 \Rightarrow \\
& { }^{2}-3-(-2)=|(-2)(-1)|=\left.\right|^{-}-2| |-1 \mid 0(2) \fallingdotseq
\end{aligned}
$$

Thus, $\lim _{\rightarrow 2}\left(-^{-2}-3^{-}\right)=2$ by the definition of a limit.
28. Given ${ }^{-}$। 0 , we need $\left.\urcorner\right\urcorner 0$ such that if 0 । $7-47$ ।, $\left.\left.\overline{\text { then } 2}\right\urcorner^{\sqrt{ }}\right\urcorner-4$ । 7 . This is true ${ }_{\Leftrightarrow}^{\Leftrightarrow}$ ।-4 | $47 \Leftrightarrow$
$\urcorner-4 \square 4 \square ।^{2}$. So if we choose $\left.\left.\urcorner=4\right\urcorner\right\urcorner^{2}$, then $0 \quad$ । $-4 \quad$ । $\left.\urcorner \Rightarrow 2 \xlongequal{7}\right\urcorner-4 \quad$ । 7 . So by the definition of a limit $\left.\lim _{1 \rightarrow 4^{+}} \neg_{2}\right\urcorner^{\sqrt{ }} \neq 4{ }^{7}=\infty$.
29. (a) ()$={ }^{\sqrt{ }-}$ if $_{-}$ 0, () $=3-$ if $0 \leq$ 3, ()$=(-3)^{2}$ if 3.
(i) $\lim _{\rightarrow 0^{+}}\left(()=\lim _{1 \rightarrow 0^{+}}(3-7)=3\right.$
(ii) $\lim _{\rightarrow 0^{-}}()=\lim _{1 \rightarrow 0^{-}}{\sqrt{ }{ }_{-}}=0$
(iii) Because of (i) and (ii), $\lim _{\rightarrow 0}$ () does not exist.
(iv) $\lim _{\rightarrow 3^{-}}(-)=\lim _{\rightarrow 3^{-}}(3-7)=0$
(v) $\lim _{\rightarrow 3^{+}}($($)=\lim _{1 \rightarrow 3^{+}}(-3)^{2}=0$
(b) is discontinuous at 0 since $\lim _{\rightarrow 0}(-)$ does not exist. 7 is discontinuous at 3 since । (3) does not exist.
(vi) Because of (iv) and (v), $\lim _{\rightarrow 3}()=0$.
(c)

Therefore, $\left.\lim _{\rightarrow 2^{-}}(O)=\lim _{1 \rightarrow 2^{-}} 2\right\rceil \quad 7^{2}=0$ and $\lim _{\rightarrow 2^{+}}(O)=\lim _{1 \rightarrow 2^{+}}\left(2^{-}\right)=0$. Thus, $\lim _{\rightarrow 2}(()=0=$ (Q) so \quad is continuous at $2 . \lim _{\rightarrow 3^{-}}(-)=\lim _{1 \rightarrow 3^{-}}(2-7)=-1$ and $\lim _{1 \rightarrow 3^{+}}(-)=\lim _{1 \rightarrow 3^{+}}(7-4)=-1$. Thus,

INSTRUCTOR USE ONLY

$\lim _{\rightarrow 3}()=-1=^{-}(3)$, so $^{-}$is continuous at 3
$\lim _{1 \rightarrow 4^{-}}(0)=\lim _{1 \rightarrow 4^{-}}(7-4)=0$ and $\lim _{\rightarrow 4^{+}}(-)=\lim _{1 \rightarrow 4^{+}} 7=7$.

Thus, $\lim _{\rightarrow 4}(-)$ does not exist, so ${ }^{-}$is discontinuous at 4. But
$\lim _{1 \rightarrow 4^{+}}(-)^{-}=(4)$, so $^{-}$is continuous from the right at 4.
(b)

31. $\sin 7$ and $\left.\right|^{\prime \prime}$ are continuous on R by Theorem 2.5.7. Since 7^{\prime} is continuous on R, $7^{\sin 1}$ is continuous on R by Theorem 259 . Lastly, । is continuous on R since it's a polynomial and the product $\mid 7^{\sin \mid}$ is continuous on its domain R by Theorem 2.5.4.
32. ${ }^{2}-9$ is continuous on R since it is a polynomial and ${ }^{\sqrt{ }}$ - is continuous on $[0 \infty)$ by Theorem 2.5 .7 , so the composition $\sqrt{ }-{ }^{2}-9$ is continuous on $\mid-2 \sqrt{-9} \geq 0=(-\infty \mid-3] \cup[3 \mid \infty)$ by Theorem 2.5.9. Note that ${ }^{-2}-26=0$ on this set and so the quotient function $(C)=\frac{-29}{7^{2}-2}$ is continuous on its domain, $(-\infty-3] \cup[3 \infty)$ by Theorem 2.5.4.
33. $(C)={ }^{-5}-{ }^{3}+3-5$ is continuous on the interval $\left[\begin{array}{ll}1 & 2\end{array}\right] \quad(1)=-2$, and $(2)=25$. Since $-270 \cap 25$, theresa number ${ }^{1}$ in (1 2) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ${ }^{-5}-3+3-5=0$ in the interval $\left(\begin{array}{ll}1 & 2\end{array}\right)$.
 number ${ }^{l}$ in (01) such that $\quad()=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation $\cos ^{\sqrt{ }-}-1+2=0$, or $\cos ^{\sqrt{ }-}=1-2$, in the interval (0|1).
35. (a) The slope of the tangent line at (2 1) is

$$
\begin{aligned}
\lim _{1 \rightarrow 2} \frac{()-\theta}{7-2} & =\lim _{1 \rightarrow 2} \frac{9-2^{2}-1}{7-2}=\lim _{1 \rightarrow 2} \frac{8-2^{2}}{1-2}=\lim _{1} \frac{-2\left(7^{2}-4\right)}{7}=\lim _{1} \frac{-2(7-2)(7+2)}{7} \\
& =\lim _{1 \rightarrow 2}\left[-2\left(^{-}+2\right)\right]=-2 \cdot 4=-8
\end{aligned}
$$

(b) An equation of this tangent line is $\mathrm{I}-1=-8(\mathrm{I}-2)$ or $7=-8 \quad \mid+17$.
36. For a general point with \urcorner-coordinate \urcorner, we have

$$
\begin{aligned}
7= & \lim _{\| \rightarrow 1} \frac{2\urcorner(1-3\urcorner)-2\urcorner(1-3\urcorner)}{---}=\lim _{\rightarrow} \frac{2(1-37)-2(1-37)}{(1-37)(1-3 \square)(\square-7)}=\lim _{\rightarrow} \frac{6\left(-{ }^{-}\right)}{(1-37)(1-3 \square)(\square-7)} \\
= & \lim _{7} \frac{6}{7}=\frac{6}{77} \\
& \rightarrow(1-3)(1-3) \quad(1-3)^{2}
\end{aligned}
$$

For ${ }^{-}=0, \Gamma=6$ and $^{*}(0)=2$, so an equation of the tangent line is ${ }^{-}-2=6\left(^{-}-0\right)$ or ${ }^{-}=6+2$ For $^{-}=-1, \Gamma=\frac{3}{8}$

37. (a) ${ }^{l}=1()=1+2+{ }^{2}$ 4. The average velocity over the time interval $\left[11+{ }^{-}\right]$is

$$
7_{\mathrm{ave}}=\frac{1\left(1+{ }^{+}\right)-1(1)}{(1+7)-1}=\frac{1+2(1+7)+(1+7)^{2} 4-1374}{4}=\frac{10^{-}+^{-}-2}{4}=\frac{10+-}{4}
$$

NOT FOR SALE INSTRUCTOR USE ONLY

So for the following intervals the average velocities are:
(i) $[13]:=2$, ave $=(10+2) 4=3 \mathrm{~m} \mathrm{~s}$
(ii) $[12]:=1$, ave $=(10+1) 4=275 \mathrm{~m} \mathrm{~s}$

(b) When $=1$, the instantaneous velocity is $\lim _{\rightarrow 0} \frac{1\left(1+^{-}\right)-1(1)}{\urcorner}=\lim _{\rightarrow 0} \frac{10+^{-}}{4}=\frac{10}{4}=25 \mathrm{~m}^{\text {s }}$.
38. (a) When ${ }^{-}$increases from $200 \mathrm{in}^{3}$ to $250 \mathrm{in}^{3}$, we have $\Delta^{-}=250-200=50 \mathrm{in}^{3}$, and since ${ }^{-}=800^{-}$,

$$
\begin{aligned}
& \Delta\rceil=\rceil(250)-\rceil(200)=\frac{800}{250}-\frac{800}{200}=32-4=-08 \mathrm{lb}^{-} \mathrm{in}^{2} \text {. So the average rate of change } \\
& \text { is } \frac{\Delta\urcorner}{\Delta\rceil}=\frac{-08}{50}=-0016 \frac{\mathrm{lb}^{-} \mathrm{in}^{2}}{\mathrm{in}^{3} .}
\end{aligned}
$$

(b) Since \quad = $=8007$, , the instantaneous rate of change of 7 with respect to \urcorner is

$$
=\lim _{\rightarrow 0} \frac{7171}{800[-(7+7)]}
$$

$$
=\lim _{\rightarrow 0} \frac{-800}{(\urcorner+7)\urcorner}=-\frac{800}{1^{2}}
$$

which is inversely proportional to the square of \urcorner.
39. (a)
\lim

$$
\begin{aligned}
{ }^{0}(2) & =()-\theta=\lim _{\rightarrow 2} \frac{\left.7^{3}-2\right\urcorner-4}{7} \\
& \left.=\lim _{\rightarrow 2} \frac{\left.(\urcorner-2)(\urcorner^{2}+2\right\urcorner+2}{7-2}=\lim _{\rightarrow 2}\left(7^{2}+2\right\urcorner+2\right)=10
\end{aligned}
$$

(b) $\urcorner-4=10(7-2)$ or $\urcorner=10\urcorner-16$
(c)

40. $2^{6}=64$, so ()$={ }^{-6}$ and $^{-}=2$.
41. (a) ${ }^{0}$ () is the rate at which the total cost changes with respect to the interest rate. Its units are dollars ${ }^{\text {- }}$ (percent per year).
(b) The total cost of paying off the loan is increasing by $\$ 12007$ (percent per year) as the interest rate reaches 10%. So if the interest rate goes up from 10% to 11%, the cost goes up approximately $\$ 1200$.
(c) As ${ }^{1}$ increases, ${ }^{-}$increases. So $^{-}{ }^{\text {o (}}$) will always be positive.
42.

43.

INSTRUCTOR USE ONLY

(b) Domain of ㄱ: (the radicand must be nonnegative) $3-5$ । $\geq 0 \Rightarrow$

$$
5 \leq 3 \Rightarrow \quad e_{5}^{3 \infty}
$$

Domain of $\mid 0$: excludes ${ }^{-3}$ because it makes the denominator zero; $1-\epsilon_{5}^{3} \infty$
(c) Our answer to part (a) is reasonable because ${ }^{\circ}{ }^{\circ}()$ is always negative and
 \neg is always decreasing.
46. (a) $\mathrm{As}^{-} \rightarrow \pm \infty,()=\left(4-^{-}\right)\left(3+^{+}\right) \rightarrow-1$, so there is a horizontal asymptote at $=-1$. As $\rightarrow-3^{+},() \rightarrow \infty$, and as $\rightarrow-3^{-}$, () $\rightarrow-\infty$. Thus, there is a vertical asymptote at $=-3$.

(b) Note that is decreasing on $(-\infty-3)$ and (-3∞), so 0 is negative athose intervals. $\mathrm{As}^{-} \rightarrow \pm \infty,{ }^{-} 0 \rightarrow 0 . \mathrm{As}^{-} \rightarrow-3^{-}$and as ${ }^{-} \rightarrow-3^{+}$, $-0 \rightarrow-\infty$.

(c) $\left.{ }^{-0}(0)=\lim \quad=\operatorname{m} \frac{3+(1+7}{77} \quad 3+\quad=\lim ^{(3+)}[4-(1+)]^{1-(4-}\right)[3+(+)]$

$$
=\lim _{\rightarrow 0} \frac{\left(12-3^{-}-3^{-}+4^{-}-^{-{ }^{-}}-^{--}\right)-\left(12+4^{-}+4^{-}-3^{-}-^{-2}-\right)}{7[3+(7+7)](3+7)}
$$

$\rightarrow 0 \quad[3+(+)](3+)$

$$
=\lim _{\rightarrow 0} \frac{-77}{7[3+(7+7)](3+7)}=\lim _{\rightarrow 0} \frac{-7}{[3+(7+7)](3+7)}=-\frac{7}{(3+7)^{2}}
$$

(d) The graphing device confirms our graph in part (b).
47. 7 is not differentiable: at $\urcorner=-4$ because \mid is not continuous, at $\quad \mid=-1$ because 7 has a corner, at $7=2$ because 7 is it continuous, and at $7=5$ because । has a vertical tangent.
48. The graph of ${ }^{-}$has tangent lines with positive slope for $\urcorner \quad 10$ and negative slope for $7^{-} 0$, and the values of ${ }^{-}$fit this patem, so must be the graph of the derivative of the function for 7 . The graph of ${ }^{-}$has horizontal tangent lines to the left and right dfhe 7 -axis and ${ }^{-}$has zeros at these points. Hence, ${ }^{-}$is the graph of the derivative of the function for \quad. Therefore, ${ }^{-}$is the graphof 7 , is the graph of ${ }^{-} 0$, and ${ }^{-}$is the graph of ${ }^{-} 00$.

$$
\begin{aligned}
& =\lim \\
& 3-5(+)+\sqrt{ } 3-5^{-}=\lim ^{-}{ }^{-} 3-5\left(^{-}+{ }^{-}\right)+\sqrt{ } 3-5^{-}={ }_{2} 3-5^{-}
\end{aligned}
$$

NOT FOR SALE INSTRUCTOR USE ONLY

160
a CHAPTER 2 LIMITS AND DERIVATIVES
49. Domain: $(-\infty 0) \cup(0 \infty) ; \lim _{\rightarrow 0^{-}}()=1 ; \lim _{1 \rightarrow 0^{+}}(0)=0$;
${ }^{0}($) $) 70$ for all ${ }^{-}$in the domain; $\lim _{\rightarrow-\infty}{ }^{-0}()=0 ; \lim _{\rightarrow \infty}{ }^{-0}\left(C^{-\infty}\right)=1$

50. (a) 7° () is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are percent per year (\% 7yr).
(b) To find $\urcorner^{\circ}\left(\right.$), we use $\lim _{\|} \frac{1\left(+^{-}\right)-1()}{\rightarrow 0} \approx \frac{1\left(+^{+}\right)-1(0)}{}$ for small values of .

For 1950: $7^{\circ}(1950) \approx \frac{1(1960)-7(1950)}{1960-1950}=\frac{357-311}{10}=0.46$
For 1960: We estimate ${ }^{1}{ }^{\circ}(1960)$ by using $=-10$ and $=10$, and then average the two results to obtain a final estimate.

$$
\begin{aligned}
& =-10 \Rightarrow 7^{0}(1960) \approx \frac{1(1950)-1(1960)}{1950-1960}=\frac{3111-357}{-10}=0.46 \\
& =10 \Rightarrow 7^{0}(1960) \approx \frac{1(1970)-1(1960)}{1970-1960}=\frac{340-357}{10}=-0.17
\end{aligned}
$$

So we estimate that $\rceil^{0}(1960) \approx \frac{1}{2}[046+(-017)]=0145$.

| | 1950 | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7^{\circ}(\cdot)$ | 0460 | 0145 | -0385 | -0415 | -0115 | -0.085 | -0.170 |

(c)

(d) We could get more accurate values for 7° () by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, 1995, and 2005.
51. ${ }^{-0}(1)$ is the rate at which the number of US $\$ 20$ bills in circulation is changing with respect to time. Its units are billions of bills per year. We use a symmetric difference quotient to estimate ${ }^{-0}(2000)$.
${ }^{-}{ }^{0}(2000) \approx \frac{{ }^{-}(2005)-^{-}(1995)}{}=\frac{577-421}{}=0156$ billions of bills per year (or 156 million bills per year).

NOT FOR SALE INSTRUCTOR USE ONLY

52. (a) Drawing slope triangles, we obtain the following estimates: $7 \quad 0(1950) \approx \frac{11}{10}=011,7 \quad 0(1965) \approx+1{ }^{10}=-016$, and $7 \quad 0(1987) \quad \frac{02}{10}=002$. \approx
(b) The rate of change of the average number of children born to each woman was increasing by 011 in 1950, decreasing by 016 in 1965 , and increasing by 002 in 1987.
(c) There are many possible reasons:

- In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.
- In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a large family.
- In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.

53. $|()| \leq 0() \Leftrightarrow-() \leq 0() \leq 0()$ and $\lim _{\rightarrow \rightarrow}()=0=\lim _{\rightarrow}-()$.

Thus, by the Squeeze Theorem, \lim ($)=0$
54. (a) Note that is an even function since ()$={ }^{-}\left(-^{*}\right)$. Now for any integer 7 ,
$[[7]]+[[-7]]=$ । $-7=0$, and for any real number । which is not an integer,

 for all values of .
(b) \urcorner is discontinuous at all integers.

PROBLEMS PLUS

1. Let $={ }_{6}{ }^{-}$, so $={ }^{-}$. Then $\rightarrow 1$ as $\rightarrow 1$, so
$\lim _{\lim } \frac{\sqrt[3]{7}-1}{\square}=\frac{-2}{3^{2}-1}=\lim \underline{(}=\frac{\left.1) f^{\circ}+1\right)}{2}=\lim 2^{-2}+1=-^{1+1}=\underline{2}$.
\lim

Another method: Multiply both the numerator and the denominator by $(\sqrt{ }-1)^{\sqrt{2}} \tau_{+}-1$.
2. First rationalize the numerator: $\lim \quad \underline{\vee}^{\wedge 1+7}-2 \cdot \underline{ } 1 ।+7+2=\lim \frac{17+7-4}{}$. Now since the denominator

$$
\underset{\substack{1 \rightarrow 0 \\ \rightarrow 0}}{ } \sqrt{\overline{7 \mid 7}+}+2 \quad \mid \sqrt{ } \sqrt{17+1}+2
$$

approaches 0 as $\urcorner \rightarrow 0$, the limit will exist only if the numerator also approaches 0 as $\quad \mid \rightarrow \underline{0}$. So we require that

Therefore, $7=1=4$.
3. For $-\frac{1}{2}^{-}{ }^{1} \overline{2}$, we have $2^{-}-1^{-} 0$ and $2^{-}+1^{-} 0$, so $\left|2^{-}-1\right|=-\left(2^{-}-1\right)$ and $\left|2^{-}+1\right|=2^{-}+1$. Therefore, $\lim _{\| \rightarrow 0} \frac{\left|2^{-}-1\right|-\left|2^{-}+1\right|}{=\lim _{\| \rightarrow 0} \frac{-\left(2^{-}-1\right)-\left(2^{-}+1\right)}{-}=\operatorname{m}_{\| \rightarrow 0} \frac{-4\rceil}{-}=\lim (-4)=-4 \text {. } n \rightarrow 0}$
4. Let | be the midpoint of $\urcorner\urcorner$, sothe coordinates of \mid are ${ }^{\left.-1-\square_{2}^{1} \square \frac{2}{2}\right\urcorner}$ since the coordinates of \mid are $\left.{ }^{-}-\right\urcorner^{2}$. Let $\urcorner=(\emptyset)$.

Since the slope ${ }^{-}=\frac{7^{2}}{7}=\square, \square=-^{\underline{1}}$ (negative reciprocal). But ${ }^{-}=\frac{\bar{m}^{2}-{ }^{-}}{1-1}=\frac{7^{2}-2}{}$, so we conclude that $-1={ }^{-2}-2 \Rightarrow 2^{-2}+1 \quad \Rightarrow \quad=\frac{1}{2}{ }^{2}+\frac{1}{2}$. As $\rightarrow 0, \quad \rightarrow \frac{1}{2}$ and the limiting position of \urcorner is $^{1} 0^{1} 7$
5. (a) For 0$\urcorner\urcorner \mid 1, \llbracket \backslash \rrbracket=0$, so ${ }^{-}=0$, and $\lim _{\mathrm{lom}^{+}} \mathbb{\llbracket}=0$. For $-1^{-} 0, \llbracket \rrbracket=-1$, so ${ }^{-}=\frac{-}{=}$, and
(b) For $\mid\urcorner 0,1$ ।।-1 $\leq[[1 \neg 7]] \leq 1$ ।। $\Rightarrow \square(1 \square\urcorner-1) \leq 7[[1$ । 7$]] \leq \square(1 \square\urcorner) \Rightarrow 1-\neg \leq 7[[1 \neg 7]] \leq 1$.

As $\left.{ }^{\prime} \rightarrow 0^{+}, 1-\right\urcorner^{\rightarrow}$, so by the Squeeze Theorem, $\lim _{\rightarrow 0^{+}}{ }^{-}\left[\left[1^{--}\right]\right]=1$.

As ${ }^{\prime} \rightarrow 0^{-}, 1_{-}{ }^{\rightarrow} 1$, so by the Squeeze Theorem, $\lim _{\rightarrow 0^{-}}\left[\left[1^{--}\right]\right]=1$.
Since the one-sided limits are equal, $\lim _{\rightarrow 0}^{-}\left[\left[1^{--}\right]\right]=1$.
6. (a) $\left.\left.\llbracket\urcorner \|^{2}+\llbracket\right\urcorner \rrbracket\right]^{2}=1$. Since $\left.\llbracket\right\urcorner \|^{2}$ and $\left.\llbracket\right\urcorner \rrbracket^{2}$ are positive integers or 0 , there ae only 4 cases:

Case (i): $\|\urcorner \|=1, \llbracket \rrbracket \rrbracket=0 \Rightarrow 1 \leq\urcorner \mid 2$ and $0 \leq\urcorner ᄀ$ Case

(b) $\left.[[\urcorner]]^{2}-[[\urcorner]\right]^{2}=3$. The only integral solution of $7^{2}-7^{2}=3$ is $\urcorner= \pm 2$ and ${ }^{-}= \pm 1$. So the graph is

(c) $\left.\left.\left.\left.[[\urcorner+\urcorner]]^{2}=1 \Rightarrow[[\urcorner+\urcorner\right]\right]= \pm 1 \Rightarrow 1 \leq\right\urcorner+\right\urcorner$ ᄀ 2
or $-1 \leq 7+7$ । 0

(d) For $\urcorner \leq\urcorner\urcorner$ । $+1,[[\urcorner]]=$. Then $[[\urcorner]]+[[\urcorner]]=1 \Rightarrow[[\urcorner]]=1-\urcorner \Rightarrow$ $1-7 \leq 7\urcorner 2-7$. Choosing integer values for 7 produces the graph.

7. is continuous on $(-\infty \cap)$ and (∞). To make continuous on R, we must have continuity at . Thus,

[by the quadratic formula] ${ }^{-}=1 \pm 5 \quad 2 \approx 1618$ or -0618 .
8. (a) Here are a few possibilities:

(b) The "obstacle" is the line $\urcorner=\urcorner$ (see diagram). Any intersection of the graph of \urcorner with the line $\urcorner=7$ constitutes a fixed point, and if the graph of the function does not cross the line somewhere in ($0 \quad 1$), then it must either start at $\left(\begin{array}{ll}0 & 0\end{array}\right)$ (in which case 0 is a fixed point) or finish at (1) (in which case 1 is a fixed point).

NOT FOR SALE INSTRUCTOR USE ONLY

(c) Consider the function $(-)=()^{-}$, where ${ }^{-}$is any continuous function with domain $\left[\begin{array}{lll}0 & 1\end{array}\right]$ and range in $\left[\begin{array}{ll}0 & 1\end{array}\right]$. We shall prove that \urcorner has a fixed point. Now if $\neg(0)=0$ then we are done: 7 has a fixed point (the number 0), which is what we are trying to prove. So assume * (0) 6= For the same reason we can assume that ${ }^{*}$ (1) $6=$ Then $\urcorner(0)={ }^{*}(0) \cap 0$ and $\rceil(1)=(1)-1\urcorner 0$. So by the Intermediate Value Theorem, there exists some number 1 in the interval (0) 1) such that $\left[()=(\Gamma)-1=0 . \operatorname{So}^{-}()=1\right.$, and therefore has a fixed point.
9. $\Gamma \lim _{1 \rightarrow}\left[(\square)+[()]=2 \quad\left\lceil\lim _{1 \rightarrow} \square()+\lim _{1 \rightarrow}\right]\left(Z_{1}\right)=2\right.$
9.

$$
\begin{equation*}
\Gamma \lim _{1 \rightarrow}[(\square)-\square(\square)]=1 \quad \Rightarrow \quad \Gamma \lim _{1 \rightarrow} \square()-\lim _{1 \rightarrow} \square()=1 \tag{1}
\end{equation*}
$$

Adding equations (1) and (2) gives us $\left.2 \lim _{\|\rightarrow\|}(-)=3 \Rightarrow \lim _{\|\rightarrow\|}()^{-}\right)=\frac{3}{2}$. From equation (1), $\left.\lim _{\|\rightarrow\|}()^{-}\right)=\frac{1}{\overline{2}}$ Thus, $\left.\lim _{\| 11}[()](0)\right]=\lim _{\| 11}(0) \cdot \lim \left[()=.\frac{3}{2} \cdot \frac{1}{2}{ }^{3} \cdot{ }_{4}\right.$
10. (a) Solution 1: We introduce a coordinate system and drop a perpendicular from \urcorner, as shown. We see from $\left.\left.\angle^{-}\right\urcorner\right\urcorner$that $\tan 2 \quad \left\lvert\,=\frac{1}{1-\rceil}\right.$, and from $\angle \square \mid \square$ that $\tan \quad \mathrm{I}=\square\urcorner \square$. Using the double-angle formula for tangents, we get $\frac{1}{1-1}=\tan 2^{-}=\frac{2 \tan ^{-}}{\left.1-\tan ^{2}\right\rceil}=\frac{2(\cdots)}{1-(\cdots)^{2}}$. After a bit of
\qquad
 simplification, this becomes $\frac{1}{1-1-7-7}=2 . \Leftrightarrow \neg \mathcal{F}(37-2)$.

As the altitude $\mid\urcorner$ decreases in length, the point \mid will approach the 7 -axis, that is, $\neg \rightarrow 0$, so the limiting location of must be one of the roots of the equation $\square(3 \square-2)=0$. Obviously it is not $\neg=0$ (the point \urcorner can never be to the left of the altitude $\neg \neg$, which it would have to be in order to approach 0) so it must be $3 \perp-2=0$, that is, $\quad \left\lvert\,=\frac{2}{\bar{E}}\right.$

Solution 2: We add a few lines to the original diagram, as shown. Now note that $\angle\urcorner\urcorner \quad \mathrm{I}=\angle\urcorner\urcorner\urcorner$ (alternate angles; । ㄱ k ㄱ by symmetry) anl similarly $\angle \square \square \square=\angle \square \square \square$. So $\Delta \mid\urcorner \mid$ and $\Delta \square \mid \square$ are isosceles, althe line segments $|\square, \square|$ and $\urcorner\urcorner$ are all of equal length. As $\mid\urcorner\urcorner \mid \rightarrow 0$, \neg and \neg approach points on the base, and the point $।$ is seen to approacha
 position two-thirds of the way between । and 7 , as above.
(b) The equation $\nabla^{2}=\square(3 \square-2)$ calculated in part (a) is the equation \boldsymbol{f} the curve traced out by \urcorner. Now as $|\neg ᄀ||\rightarrow \infty, 2 \quad| \rightarrow \frac{1}{2}, 7 \rightarrow \frac{1}{4}_{4}$
$\neg \rightarrow 1$, and since $\tan \urcorner=\square \mid \square, \neg \rightarrow 1$. Thus, । only traces out le part of the curve with $0 \leq \neg \neg 1$.

NOT FOR SALE INSTRUCTOR USE ONLY

11. (a) Consider $\urcorner(\neg)=\square\left(\square+180^{\circ}\right)-\square(\square)$. Fix any number \quad. If $\left.\mid(\urcorner\right)=0$, we are done: Temperature at $\urcorner=$ Temparueat $\urcorner+$ 180°. If $\neg(\square) \square 0$, then $\left.\left.\left.\urcorner(\urcorner+180^{\circ}\right)=\neg(\urcorner+360^{\circ}\right)-\square\left(\square+180^{\circ}\right)=\neg(\neg)-\neg(\urcorner+180^{\circ}\right)=-7(\square) 0$.

Also, 7 is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, I has a zero on the interval $[।\urcorner \mid+180^{\circ}$]. If $7(\square) \square 0$, then a similar argument applies.
(b) Yes. The same argument applies.
(c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.

$$
=\lim _{\| \rightarrow 0} \frac{\left.(+)^{-}\right)-()}{\rightarrow 0}+\lim ^{0}\left(+^{-}\right)={ }^{0} 0()+()
$$

because \urcorner is differentiable and therefore continuous.
13. (a)Put $\rceil=0$ and $\rceil=0$ in the equation: $\left.\left.\rceil(0+0)=\rceil(0)+\rceil(0)+0^{2} \cdot 0+0 \cdot 0^{2} \Rightarrow\right\rceil(0)=2\right\rceil$ (0).

Subtracting $\urcorner(0)$ from each side of this equation gives $\neg(0)=0$.
(b)
(c) ${ }^{-0}()=\lim _{\rightarrow 0}$

$$
=\lim _{1 \rightarrow 0} \frac{()}{-}+2+\cdots=1+2
$$

14. We are given that $\left.\right|^{-}() \mid \leq{ }^{-2}$ for all ${ }^{-}$. In particular, $\left.\right|^{-}(0) \mid \leq 0$, but $\left.\right|^{-} \mid \geq 0$ for all ${ }^{-}$. The only conclusion is

But $\lim _{\rightarrow 0}\left(-\left.\right|^{-} \mid\right)=0=\left.\lim _{\rightarrow 0}\right|^{-} \mid$, so by the Squeeze Theorem, $\lim _{\rightarrow 0} \frac{\left.()^{-}\right)-(0)}{\neg^{-}-0}=0$. So by the definition of a derivative, is differentiable at 0 and, furthermore, ${ }^{\circ}(0)=0$.

NOT FOR SALE INSTRUCTOR USE ONLY

