Solution Manual for Statics and Mechanics of Materials 5th Edition Hibbeler 01343825959780134382593

Full link download

Solution Manual:

https://testbankpack.com/p/solution-manual-for-statics-and-mechanics-

 of-materials-5th-edition-hibbeler-0134382595-9780134382593/

[^0]
2-2.

If the magnitude of the resultant force is to be 500 N ,

bearescra
din te o the ositi y axis, determine the magnitude of force \mathbf{F} and its direction u.

SOLUTION

The PuLherblen law of addition and the triangular rule are shown in Figs. a and b, respeetpatallelogram law of addition and the triangular rule are shown in Figs. a and b, The parallelogram law of addition and the triangular rule are shown in Figs. a and b,

Applying the law of cosines to Fig. b,

$$
\begin{aligned}
& \mathrm{F}=2500^{2}+700^{2}-2(500)(700) \cos 105^{\circ} \\
& \mathrm{F} \overline{9} 59.78 \mathrm{~N}=960 \mathrm{~N}
\end{aligned}
$$

$$
=959.78 \mathrm{~N}=960 \mathrm{~N}
$$

Applying the law of sines to Fig. b, and using this result, yields

Ans.
Ans.

Ans.
Ans.

(b)

$$
\begin{aligned}
& \stackrel{\sin }{\mathrm{s}} \mathrm{700}=\frac{959.78}{959.78} \\
& \mathrm{u}=45.2^{\circ}
\end{aligned}
$$

[^1]2-3.

 froxisthe positive x axis.

SOLUTION

$\left.\mathrm{F}_{\mathrm{R}}=\mathbf{2 (2 5 0}\right)^{2}+(375)^{2}-2(250)(375) \cos 75^{\circ}=393.2=393 \mathrm{lb}$

$$
393.2 \quad 250
$$

$\sin 75^{\circ}=\frac{\sin u}{u}$
$\mathrm{u}=37.89^{\circ}$
$\mathbf{f}=360^{\circ}-45^{\circ}+37.89^{\circ}=353^{\circ}$

Ans.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& F_{R}=393 \mathrm{lb} \\
& \mathbf{f}=353^{\circ}
\end{aligned}
$$

*2-4.
The vertical force acts downward at on the two-membered
Prathe.metethrine aqnitudestufther thetwom mnentents of
directed alongmenters A Band AGret F. Set 500 N .

SOLUTION

S(Pardilqibgidxh Law: The parallelogram law of addition is shown in Fig. a.

Trigonometry: Using the law of sines (Fig. 50,0we have

$$
\begin{gathered}
\frac{I_{A B} \text { sines }}{F_{A B}}=\frac{\text { Fig. B0,ONe }}{\sin 60^{\circ}} \\
F_{A B}=448 \mathrm{~N} \\
\frac{F_{A C}}{\sin 45^{\circ}}=500 \sin \\
F_{A C}=
\end{gathered}
$$

366 N

Ans.
Ans.

Ans.

(d)

Ans.

(b)

> Ans:
> $F_{A B}=448 \mathrm{~N}$
> $F_{A C}=366 \mathrm{~N}$

2-5.

SQbetrpon

$$
\begin{aligned}
& \mathrm{F}_{A \mathbf{F}_{\mathrm{AB}}=}{ }^{353_{50}} \\
& \sin _{\text {sffl }} 60^{\circ} 60^{\circ} \text { 게 } 7^{77^{\circ}} 75^{\circ} \\
& \mathrm{F}_{\mathrm{AB}_{\mathrm{AB}}}=3141 \mathrm{l} \text { lb } \\
& \stackrel{\text { FAG }}{45^{\circ} C}=\begin{aligned}
350 \\
\sin 750
\end{aligned} \\
& \sin _{\underline{\sin } 45^{\circ}} \quad \underset{\sin 75}{ }{ }^{\circ} \mathrm{s}=5^{\circ} \\
& \mathrm{F}_{\mathrm{AG}_{\mathrm{A}}} \overline{\overline{\mathrm{C}}}{ }^{25625 \mathrm{lb}}
\end{aligned}
$$

Ans.ns.

Ans:
$F_{A B}=314 \mathrm{lb}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
F_{A C}=256 \mathrm{lb}
$$

2-6.
Determine the magnitude of the resultant force $\mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2}$ and its direction, measured clockwise from the positive u axis.

SOLUTION

Parallelogram Law. The parallelogram law of addition is shown in Fig. a. Trigonometry. Applying Law of cosines by referring to Fig. b,

$$
F_{R}=24^{2}+6^{2}-2(4)(6) \cos 105^{\circ}=8.026 \mathrm{kN}=8.03 \mathrm{kN}
$$

Using this result to apply Law of sines, Fig. b,

$$
\frac{\sin u}{6}=\frac{\sin 105^{\circ}}{8.026^{\circ}} ; \quad u=46.22^{\circ}
$$

Thus, the direction \mathbf{f} of \mathbf{F}_{R} measured clockwise from the positive u axis is

$$
\mathbf{f}=46.22^{\circ}-45^{\circ}=1.22^{\circ}
$$

(a)

Ans:
$F_{R}=8.03 \mathrm{kN}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\mathbf{f}=1.22^{\circ}
$$

2-7.

Resolve the force \mathbf{F}_{1} into components acting along the u and v axes and determine the magnitudes of the components.

SOLUTION

Parallelogram Law. The parallelogram law of addition is shown in Fig. a. Trigonometry. Applying the sines law by referring to Fig. b.

$$
\begin{array}{ll}
\frac{\left(F_{1}\right)_{\mathrm{v}}}{\sin 45^{\circ}}=\frac{4}{\sin 105^{\circ}} ; & \left(F_{1}\right)_{\mathrm{v}}=2.928 \mathrm{kN}=2.93 \mathrm{kN} \\
\left(F_{1}\right)_{u} & 4 \\
\sin 30^{\circ} & =\begin{array}{c}
4 \\
\sin 105^{\circ}
\end{array} ;
\end{array}\left(F_{1}\right)_{u}=2.071 \mathrm{kN}=2.07 \mathrm{kN}
$$

Ans.

Ans.

(b)

Ans:
$\left(F_{1}\right)_{\mathrm{v}}=2.93 \mathrm{kN}$
$\left(F_{1}\right)_{u}=2.07 \mathrm{kN}$
*2-8.
Resolve the force \mathbf{F}_{2} into components acting along the u and v axes and determine the magnitudes of the components.

SOLUTION

Parallelogram Law. The parallelogram law of addition is shown in Fig. a.
Trigonometry. Applying the sines law of referring to Fig. b,

$$
\begin{array}{ll}
\frac{\left(F_{2}\right)_{u}}{\sin 75^{\circ}}=\frac{6}{\sin 75^{\circ}} ; & \left(F_{2}\right)_{u}=6.00 \mathrm{kN} \\
\left(F_{2}\right)_{\mathrm{v}} & \text { Ans. } \\
\frac{\sin 30^{\circ}}{\sin } \frac{6}{\sin 75^{\circ}} ; & \left(F_{2}\right)_{\mathrm{v}}=3.106 \mathrm{kN}=3.11 \mathrm{kN}
\end{array} \quad \text { Ans. }
$$

Ans:
$\left(F_{2}\right)_{u}=6.00 \mathrm{kN}$
$\left(F_{2}\right)_{\mathrm{v}}=3.11 \mathrm{kN}$

2-9.

If the resultant force acting on the support is to be 1200 lb , directed horizontally to the right, determine the force \mathbf{F} in rope A and the corresponding angle u .

SOLUTION

Parallelogram Law. The parallelogram law of addition is shown in Fig. a.
Trigonometry. Applying the law of cosines by referring to Fig. b,

$$
F=2900^{2}+1200^{2}-2(900)(1200) \cos 30^{\circ}=615.94 \mathrm{lb}=616 \mathrm{lb}
$$

Ans.
Using this result to apply the sines law, Fig. b,

$$
\frac{\sin u}{900}=\frac{\sin 30^{\circ}}{615.94} ; \quad \mathrm{u}=46.94^{\circ}=46.9^{\circ}
$$

Ans.

(a)

(b)

Ans:
$F=616 \mathrm{lb}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\mathrm{u}=46.9^{\circ}
$$

2-10.
Determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

SOLUTION

Parallelogram Law. The parallelogram law of addition is shown in Fig. a.
Trigonometry. Applying the law of cosines by referring to Fig. b,

$$
F_{R}=2800^{2}+500^{2}-2(800)(500) \cos 95^{\circ}=979.66 \mathrm{lb}=980 \mathrm{lb}
$$

Ans.

Using this result to apply the sines law, Fig. b,

$$
\begin{array}{ll}
\sin u \\
500^{\circ} & ={\sin 95^{\circ}}_{979.66^{\circ}} ; \quad u=30.56^{\circ}
\end{array}
$$

Thus, the direction \mathbf{f} of \mathbf{F}_{R} measured counterclockwise from the positive x axis is

$$
\mathbf{f}=50^{\circ}-30.56^{\circ}=19.44^{\circ}=19.4^{\circ}
$$

Ans.

(a)

(b)

Ans:
$F_{R}=980 \mathrm{lb}$
$\mathbf{f}=19.4^{\circ}$

2-11.

If $0=60^{\circ}$, determine the magnitude of the resultant and its direction measured clockwise from the horizontal.

The plate is subjected to the two forces at A and B as shown. If $u=60^{\circ}$, determine the magnitude of the resultant of these two forces and its direction measured clockwise from the horizontal.

SOLUTION

Parallelogram Law: The parallelogram law of addition is shown in Fig. a.
Trigonometry: Using law of cosines (Fig. b), we have

$$
\begin{aligned}
\mathrm{F}_{\mathrm{R}} & =28^{2}+6^{2}-2(8)(6) \cos 100^{\circ} \\
& =10.80 \mathrm{kN}=10.8 \mathrm{kN}
\end{aligned}
$$

The angle u can be determined using law of sines (Fig. b).

$$
\begin{aligned}
\sin u & =\frac{\sin 100^{\circ}}{10.80} \\
\sin u & =0.5470 \\
u & =33.16^{\circ}
\end{aligned}
$$

Ans.

(a)

(b)

Ans:

$$
\begin{aligned}
& F_{R}=10.8 \mathrm{kN} \\
& \mathbf{f}=3.16^{\circ}
\end{aligned}
$$

*2-12.
Determine the angle 0 for connecting member A to the plate so that the resultant force of \mathbf{F}_{A} and \mathbf{F}_{B} is directed horizontally to the right. Also, what is the magnitude of the resultant force?

SOLUTION

Parallelogram Law: The parallelogram law of addition is shown in Fig. a.
$F_{A}=8 \mathrm{kN}$

From the triangle, $\mathbf{f}=180^{\circ}-\left(90^{\circ}-54.93^{\circ}\right)-50^{\circ}=94.93^{\circ}$. Thus, using law of cosines, the magnitude of \mathbf{F}_{R} is

$$
\begin{aligned}
\mathrm{F}_{\mathrm{R}} & =28^{2}+6^{2}-2(8)(6) \cos 94.93^{\circ} \\
& =10.4 \mathrm{kN}
\end{aligned}
$$

Ans.

Ans:

$0=54.9^{\circ}$
$F_{R}=10.4 \mathrm{kN}$

2-13.
The ffonceaacinggonote gegedudthis $F \mathrm{~s}=F 2 \theta$ 180RRes Reschis
 drebut this fagbe into two components acting along the lines $a a$ and $b b$.
sOLUTHON

$$
\begin{aligned}
& 20 \quad \mathrm{~F}_{\mathrm{a}} \\
& \begin{aligned}
& 20 \\
& \sin 40^{\circ}=\underset{\sin ^{2}}{ } 80^{\circ}
\end{aligned} \quad \mathrm{F}_{\mathrm{a}}=30.6 \mathrm{lb} \\
& \sin 40^{\circ} \quad \sin 80^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 40^{\circ} \quad \sin 60^{\circ}
\end{aligned}
$$

Ans.

Ans.

Ans.
Ans.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& F_{a}=30.6 \mathrm{lb} \\
& F_{b}=26.9 \mathrm{lb}
\end{aligned}
$$

2-14.

The component of force \mathbf{F} acting along line $a a$ is required to be 30 lb . Determine the magnitude of \mathbf{F} and its component along line $b b$.

SOLUTION

$$
30=\mathrm{F} ; \quad \mathrm{F}=19.6 \mathrm{lb}
$$

$$
\begin{array}{lll}
\sin 80^{\circ} & \sin 40^{\circ} \\
30 & \mathrm{~F}_{\mathrm{b}} \\
\sin 80^{\circ} & = & \mathrm{F}_{\mathrm{b}}=26.4 \mathrm{lb}
\end{array}
$$

Ans.

Ans.

Ans:
$F=19.6 \mathrm{lb}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
F_{b}=26.4 \mathrm{lb}
$$

2-15.

Force \mathbf{F} acts on the frame such that its component acting

 direction 0 . Set $\mathbf{f}=60^{\circ}$.

SOLUTION

SOHeழTHOLAgram law of addition and triangular rule are shown in Figs. a and b, respectively.
The parallelogram law of addition and triangular rule are shown in Figs. a and b, resplpqlyidg. the law of cosines to Fig. b,

Applying the law of cosines te Fig. b

$$
\stackrel{\text { of }}{F}=2500^{2}+650^{2}-2(500)(650) \cos 105^{\circ}
$$

$$
\mathrm{F}==916.91 \mathrm{lb}=917 \mathrm{lb}
$$

Using this resultald6aplbing llaw of sines to Fig. b yields

Ans.

Ans.

(a)

Ans.

Ans.

*2-16.

Force \mathbf{F} acts on the frame such that its component acting along member $A B$ is 650 lb , directed from B towards A. Determine the required angle $\mathbf{f}\left(0^{\circ} \ldots \mathbf{f} \ldots 45^{\circ}\right)$ and the component acting along member $B C$. Set $F=850 \mathrm{lb}$ and $0=30^{\circ}$.

SOLUTIO

The parallelogram law of addition and the triangular rule are shown in Figs. a and b, respectively.
Applying the law of cosines to Fig. b,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{BC}} & =2850^{2}+650^{2}-2(850)(650) \cos 30^{\circ} \\
& =433.64 \mathrm{lb}=434 \mathrm{lb}
\end{aligned}
$$

Ans.
Using this result and applying the sine law to Fig. b yields

$$
\frac{\sin \left(45^{\circ}+\mathbf{f}\right)}{850}=\frac{\sin 30^{\circ}}{43364} \quad \mathbf{f}=33.5^{\circ}
$$

(a)

Ans:

2-17.

If $F_{1}=30 \mathrm{lb}$ and $F_{2}=40 \mathrm{lb}$, determine the angles 0 and \mathbf{f} so that the resultant force is directed along the positive x axis and has a magnitude of $F_{R}=60 \mathrm{lb}$.

SOLUTION

Parallelogram Law. The parallelogram law of addition is shown in Fig. a. Trigonometry. Applying the law of cosine by referring to Fig. b,

$$
\begin{gathered}
40^{2}=30^{2}+60^{2}-2(30)(60) \cos 0 \\
0=36.34^{\circ}=36.3^{\circ}
\end{gathered}
$$

Ans.
And

$$
\begin{gathered}
30^{2}=40^{2}+60^{2}-2(40)(60) \cos \mathbf{f} \\
\mathbf{f}=26.38^{\circ}=26.4^{\circ}
\end{gathered}
$$

Ans.

(b)

2-18.
Determine the magnitude and direction 6 of \mathbf{F}_{A} so that the
 hasulanatobfe ios dixfted along the positive x axis and has a magnitude of 1250 N .

SOLUTION

$$
\begin{aligned}
\pm F_{R_{x}}=F_{x} ; & F_{R_{x}}=F_{A} \sin 6+800 \cos 30^{\circ}=1250 \\
+\$ F_{R_{y}}=\quad F_{y} ; & F_{R_{y}}=F_{A} \cos 6-800 \sin 30^{\circ}=0 \\
& =54.3^{\circ} \\
& \\
& F_{A}=686 \mathrm{~N}
\end{aligned}
$$

Ans.

Ans:
$\mathrm{u}=54.3^{\circ}$
$F_{A}=686 \mathrm{~N}$

Datermine the magnitude and direction, measured counterclockwise from the positive x axis, of the resultant
 ring at O if $F_{A}=750 \mathrm{~N}$ and $0=A 5^{\circ}$. What is its direction, measured counterclockwise from the positive x axis?

SOLUTION

Scalar Notation: Suming the force components algebraically, we have
\& $F_{R_{x}}=F_{x} ; \quad F_{R_{x}}=750 \sin 45^{\circ}+800 \cos 30^{\circ}$

$$
=1223.15 \mathrm{~N}>
$$

$+\mathrm{T} F_{R_{y}}=\quad F_{y} ; \quad F_{R_{y}}=750 \cos 45^{\circ}-800 \sin 30^{\circ}$

$$
=130.33 \mathrm{~N} \mathrm{~T}
$$

The magnitude of the resultant force \mathbf{F}_{R} is

$$
\begin{aligned}
F_{R} & =3 F_{R_{x}}^{2}+F_{R_{y}}^{2} \\
& =2 \overline{1223.15^{2}+130.33^{2}}=1230 \mathrm{~N}=1.23 \mathrm{kN}
\end{aligned}
$$

The directional angle 6 measured counterclockwise from positive x axis is

$$
6=\tan ^{-1} \frac{F_{R_{y}}}{F_{R_{x}}}=\tan ^{-1}\binom{130.33}{1223.15}=6.08^{\circ}
$$

y

Ans.

Ans:
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
F_{R}=1.23 \mathrm{kN}
$$

$$
0=6.08^{\circ}
$$

*2-20.
Determine the magnitude of force \mathbf{F} so that the resultant \mathbf{F}_{R}
of the three forces is as small as possible. What is the minimum magnitude of \mathbf{F}_{R} ?

SOLUTION

Parallelogram Law. The parallelogram laws of addition for 6 kN and 8 kN and then their resultant F^{\prime} and F are shown in Figs. a and b, respectively. In order for F_{R} to be minimum, it must act perpendicular to \mathbf{F}.
Trigonometry. Referring to Fig. b,

$$
F^{\prime}=2 \underline{6^{2}+8^{2}}=10.0 \mathrm{kN} \quad 0=\tan ^{-1}\left(\frac{8}{6}\right)=53.13^{\circ} .
$$

Referring to Figs. c and d,

$$
\begin{aligned}
F_{R} & =10.0 \sin 83.13^{\circ}=9.928 \mathrm{kN}=9.93 \mathrm{kN} \\
F & =10.0 \cos 83.13^{\circ}=1.196 \mathrm{kN}=1.20 \mathrm{kN}
\end{aligned}
$$

Ans.
Ans.

Ans:
$F_{R}=9.93 \mathrm{kN}$
$F=1.20 \mathrm{kN}$

2-21.

If the resultant force of the two tugboats is 3 kN , directed along the positive x axis, determine the required magnitude If the rorce $F_{B_{B}}$ and its direction u. along the positive x axis, determine the required magnitude of force \mathbf{F}_{B} and its direction u .

SOLUTION

The parallelogram law of addition and the triangular rule are shown in Figs. a and b, SQepectilay,

Tha paraillel qeeamazy ofsiflestioning, the triangular rule are shown in Figs. a and b, respectively.

$\mathrm{F}_{\mathrm{B}}=22^{2}+3^{2}-2(2)(3) \cos 30^{\circ}$
Applying the law of cosines to Fig. b,

$$
\mathrm{F}_{\mathrm{B}}=\mathrm{E}^{1.615 \mathrm{kN}=1.61 \mathrm{kN}}+3^{2}-2(2)(3) \cos 30^{\circ}
$$

Using this result and applying the law of sines to Fig. b yields

$$
=1.615 \mathrm{kN}=1.61 \mathrm{kN}
$$

$\sin u \quad \sin 30^{\circ}$
Using this result and applying the law of sithess $88 . i^{\circ} \mathrm{g}$. b yields

$$
\sin u=\begin{gathered}
1.615 \\
\sin 30^{\circ} \\
1615
\end{gathered} \quad u=38.3^{\circ}
$$

Ans.

Ans.

Ans.

Ans.

(a)

(b)

[^2]
2-22.

If $\mathrm{F}_{B B} \equiv 331 \mathrm{ANandd} \mathrm{O}_{1} \equiv 45^{\circ}$, deaterminme the magnitude of the
 the saritivelockxisise from the positive x axis.

SOLUTION

The parallelogram law of addition and the triangular rule are shown in Figs. a and b, respectively.

Applying the law of cosines to Fig. b,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{R}} & =2 \underline{2^{2}+3^{2}-2(2)(3) \cos 105^{\circ}} \\
& =4.013 \mathrm{kN}=4.01 \mathrm{kN}
\end{aligned}
$$

Ans.

Using this result and applying the law of sines to Fig. b yields

$$
\frac{\sin \mathrm{a}}{3}=\frac{\sin 105^{\circ}}{4.013} \quad \mathrm{a}=46.22^{\circ}
$$

Thus, the direction angle \mathbf{f} of \mathbf{F}_{R}, measured clockwise from the positive x axis, is

$$
\mathbf{f}=\mathbf{a}-30^{\circ}=46.22^{\circ}-30^{\circ}=16.2^{\circ}
$$

Ans.

(b)

Ans:
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& F_{R}=4.01 \mathrm{kN} \\
& \mathbf{f}=16.2^{\circ}
\end{aligned}
$$

2-23.
If the resultant force of the two tugboats is required to be directed towards the positive x axis, and F_{B} is to be a minimum, determine the magnitude of \mathbf{F}_{R} and \mathbf{F}_{B} and the angle u.

SOLUTION

For \mathbf{F}_{B} to be minimum, it has to be directed perpendicular to \mathbf{F}_{R}. Thus,

$$
\mathrm{u}=90^{\circ}
$$

The parallelogram law of addition and triangular rule are shown in Figs. a and b, respectively.

By applying simple trigonometry to Fig. b,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{B}}=2 \sin 30^{\circ}=1 \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{R}}=2 \cos 30^{\circ}=1.73 \mathrm{kN}
\end{aligned}
$$

Ans.
Ans.

Ans:
$0=90^{\circ}$
$F_{B}=1 \mathrm{kN}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
F_{R}=1.73 \mathrm{kN}
$$

*2-24.

Determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

SOLUTION

Scalar Notation. Summing the force components along x and y axes algebraically by
 referring to Fig. a,

$$
\begin{array}{ll}
\$\left(F_{R}\right)_{x}=\Sigma F_{x} ; & \left(F_{R}\right)_{x}=200 \sin 45^{\circ}-150 \cos 30^{\circ}=11.518 \mathrm{~N} \mathrm{~S} \\
+\mathrm{c}\left(F_{R}\right)_{y}=\Sigma F_{y} ; & \left(F_{R}\right)_{y}=200 \cos 45^{\circ}+150 \sin 30^{\circ}=216.42 \mathrm{~N} \mathrm{c}
\end{array}
$$

Referring to Fig. b, the magnitude of the resultant force F_{R} is

$$
F_{R}=2\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}=211.518^{2}+216.42^{2}=216.73 \mathrm{~N}=217 \mathrm{~N} \quad \text { Ans. }
$$

And the directional angle 0 of \mathbf{F}_{R} measured counterclockwise from the positive x axis is

$$
0=\tan ^{-1}{ }_{c}{ }_{\left(F_{R}\right)_{x}}^{\left(F_{R}\right)_{y}}{ }_{\mathrm{d}}=\tan ^{-1}\binom{\overline{216.42}}{11.518}=86.95^{\circ}=87.0^{\circ} \quad \text { Ans. }
$$

(a)

(b)

Ans:
$F_{R}=217 \mathrm{~N}$
$0=87.0^{\circ}$

2-25.
Determine the magnitude of the resultant force and its direction, measured clockwise from the positive x axis.

SOLUTION

Scalar Notation. Summing the force components along x and y axes by referring to Fig. a,

$$
\begin{aligned}
& \mathbf{\$}\left(F_{R}\right)_{x}=\Sigma F_{x} ; \quad\left(F_{R}\right)_{x}=400 \cos 30^{\circ}+800 \sin 45^{\circ}=912.10 \mathrm{~N} \mathrm{~S} \\
& +\mathrm{c}\left(F_{R}\right)_{y}=\Sigma F_{y} ; \quad\left(F_{R}\right)_{y}=400 \sin 30^{\circ}-800 \cos 45^{\circ}=-365.69 \mathrm{~N}=365.69 \mathrm{NT}
\end{aligned}
$$

Referring to Fig. b, the magnitude of the resultant force is

$$
F_{R}=2\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}=2912.10^{2}+365.69^{2}=982.67 \mathrm{~N}=983 \mathrm{~N} \quad \text { Ans. }
$$

And its directional angle 0 measured clockwise from the positive x axis is

$$
0=\tan ^{-1} \frac{\left(F_{R}\right)_{y}}{\left(F_{R}\right)_{x}}{ }^{\mathrm{d}}=\tan ^{-1}\left(\frac{365.69}{912.10}\right)=21.84^{\circ}=21.8^{\circ}
$$

Ans.

Ans:
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
$F_{R}=983 \mathrm{~N}$
$0=21.8^{\circ}$

2-26.
Resolve \mathbf{F}_{1} and \mathbf{F}_{2} intion theirirx and ${ }^{2}$ commonents.

SOLUTION

$$
\begin{aligned}
\mathbf{F}_{1} & =\left\{400 \sin 30^{\circ}(+\mathbf{i})+400 \cos 30^{\circ}(+\mathbf{j})\right\} \mathrm{N} \\
& =\{200 \mathbf{i}+346 \mathbf{j}\} \mathrm{N} \\
\mathbf{F}_{2} & =\left\{250 \cos 45^{\circ}(+\mathbf{i})+250 \sin 45^{\circ}(-\mathbf{j})\right\} \mathrm{N} \\
& =\{177 \mathbf{i}-177 \mathbf{j}\} \mathrm{N}
\end{aligned}
$$

Ans.

Ans.

$$
\begin{array}{r}
\mathbf{F}_{1}=5200 \mathbf{i}+346 \mathbf{j} 6 \mathrm{~N} \\
\mathbf{F}_{2}=5177 \mathbf{i}-\mathbf{1 7 7} \mathbf{j} 6 \mathrm{~N}
\end{array}
$$

2-27.
Determine the magnitude of the resultant force and its direction measured counteried ordkwiseffrom theepositiveexaxisis.

SOLUTION

Rectangular Components: By referring to Fig. a, the x and y components of \mathbf{F}_{1} and \mathbf{F}_{2} can be written as

$$
\begin{array}{ll}
\left(\mathrm{F}_{1}\right)_{\mathrm{x}}=400 \sin 30^{\circ}=200 \mathrm{~N} & \left(\mathrm{~F}_{1}\right)_{\mathrm{y}}=400 \cos 30^{\circ}=346.41 \mathrm{~N} \\
\left(\mathrm{~F}_{2}\right)_{\mathrm{x}}=250 \cos 45^{\circ}=176.78 \mathrm{~N} & \left(\mathrm{~F}_{2}\right)_{\mathrm{y}}=250 \sin 45^{\circ}=176.78 \mathrm{~N}
\end{array}
$$

Resultant Force: Summing the force components algebraically along the x and y axes, we have

$$
\begin{array}{ll}
+\odot\left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{x}}=\odot \mathrm{F}_{\mathrm{x}} ; & \left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{x}}=200+176.78=376.78 \mathrm{~N} \\
+\mathrm{c} \odot\left(\mathrm{~F}_{\mathrm{R}}\right)_{\mathrm{y}}=\odot \mathrm{F}_{\mathrm{y}} ; & \left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{y}}=346.41-176.78=169.63 \mathrm{~N} \mathrm{c}
\end{array}
$$

The magnitude of the resultant force \mathbf{F}_{R} is \qquad

$$
\mathrm{F}_{\mathrm{R}}=2\left(\mathrm{~F}_{\mathrm{R}}\right)_{\mathrm{x}}^{2}+\left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{y}}^{2}=2376.78^{2}+169.63^{2}=413 \mathrm{~N}
$$

Ans.

The direction angle u of \mathbf{F}_{R}, Fig. b, measured counterclockwise from the positive axis, is

Ans.

(b)

Ans.

Ans:
$F_{R}=413 \mathrm{~N}$
$0=24.2^{\circ}$
*2-28.
Resolve each force acting on the gusset plate into its x and y components, and express each force as a Cartesian vector.

Resolve each force acting on the gusset plate into its x and y components, and express each force as a Cartesian vector.

SOLUTION

$$
\mathbf{F}_{1}=\{900(+\mathbf{i})\}=\{900 \mathbf{i}\} \mathbf{N}
$$

Ans.

$=\{530 \mathbf{i}+530 \mathbf{j}\} \mathrm{N}$
Ans.
$\mathbf{F}_{2}=\left\{750 \cos 45^{\circ}(+\mathbf{i})+750 \sin 45^{\circ}(+\mathbf{j})\right\} \mathrm{N}$

$$
=\{520 \mathbf{i}-390 \mathbf{j})\} \mathrm{N}
$$

Ans.

$$
\begin{gathered}
\mathbf{F}_{1}=5900 \mathbf{i} 6 \mathrm{~N} \\
\mathbf{F}_{2}=5530 \mathbf{i}+530 \mathbf{j} 6 \mathrm{~N} \\
\mathbf{F}_{3}=5520 \mathbf{i}-390 \mathbf{j} 6 \mathrm{~N}
\end{gathered}
$$

2-29.

Determine the magnitude of the resultant force acting on the gusset plate and its direction, measured counterclockwise from the positive x axis.

Determine the magnitude of the resultant force acting on the positive x axis.

SOLUTION

Rectangular Components: By referring to Fig. a, the x and y components of $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} can be written as

$$
\begin{array}{lr}
\left(\mathrm{F}_{1}\right)_{\mathrm{x}}=900 \mathrm{~N} & \left(\mathrm{~F}_{1}\right)_{\mathrm{y}}=0 \\
\left(\mathrm{~F}_{2}\right)_{\mathrm{x}}=750 \cos 45^{\circ}=530.33 \mathrm{~N} & \left(\mathrm{~F}_{2}\right)_{\mathrm{y}}=750 \sin 45^{\circ}=530.33 \mathrm{~N} \\
\left(\mathrm{~F}_{3}\right)_{\mathrm{x}}=650 \mathrm{a}{ }_{5}^{4} \mathrm{~b}=520 \mathrm{~N} & \left(\mathrm{~F}_{3}\right)_{\mathrm{y}}=650 \mathrm{a}_{5}^{3} \mathrm{~b}=390 \mathrm{~N}
\end{array}
$$

Resultant Force: Summing the force components algebraically along the x and y axes, we have

$$
\begin{array}{ll}
\pm \odot\left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{x}}=\odot \mathrm{F}_{\mathrm{x}} ; & \left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{x}}=900+530.33+520=1950.33 \mathrm{~N}= \\
+\mathrm{c} \odot\left(\mathrm{~F}_{\mathrm{R}}\right)_{\mathrm{y}}=\odot \mathrm{F}_{\mathrm{y}} ; & \left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{y}}=530.33-390=140.33 \mathrm{~N} \mathrm{c}
\end{array}
$$

The magnitude of the resultant force \mathbf{F}_{R} is

$$
\mathrm{F}_{\mathrm{R}}=2\left(\mathrm{~F}_{\mathrm{R}}\right)_{\mathrm{x}}^{2}+\left(\mathrm{F}_{\mathrm{R}}\right)_{\mathrm{y}}^{2}=21950.33^{2}+140.33^{2}=1955 \mathrm{~N}=1.96 \mathrm{kN} \text { Ans. }
$$

The direction angle u of \mathbf{F}_{R}, measured clockwise from the positive x axis, is

[^3]2-30.
Express each of the three forces acting on the support in Cartesian vector form and determine the magnitude of the resultant force and its direction, measured clockwise from positive x axis.

SOLUTION

Cartesian Notation. Referring to Fig. a,

$$
\begin{aligned}
& \mathbf{F}_{1}=\left(F_{1}\right)_{x} \mathbf{i}+\left(F_{1}\right)_{y} \mathbf{j}=50\left(_{\underline{5}}\right) \mathbf{i}+50\left({ }_{\underline{5}}\right) \mathbf{j}=\{30 \mathbf{i}+40 \mathbf{j}\} \mathrm{N} \\
& \mathbf{F}_{2}=-\left(F_{2}\right)_{x} \mathbf{i}-\left(F_{2}\right)_{y} \mathbf{j}=-80 \sin 15^{\circ} \mathbf{i}-80 \cos 15^{\circ} \mathbf{j} \\
&=\{-20.71 \mathbf{i}-77.27 \mathbf{j}\} \mathrm{N} \\
&=\{-20.7 \mathbf{i}-77.3 \mathbf{j}\} \mathrm{N} \\
& F_{3}=\left(F_{3}\right)_{x} \mathbf{i}=\{30 \mathbf{i}\}
\end{aligned}
$$

Thus, the resultant force is

$$
\begin{aligned}
\mathbf{F}_{R}=\Sigma \mathbf{F} ; \quad \mathbf{F}_{R} & =\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3} \\
& =(30 \mathbf{i}+40 \mathbf{j})+(-20.71 \mathbf{i}-77.27 \mathbf{j})+30 \mathbf{i} \\
& =\{39.29 \mathbf{i}-37.27 \mathbf{j}\} \mathbf{N}
\end{aligned}
$$

Referring to Fig. b, the magnitude of \mathbf{F}_{R} is

$$
F_{R}=239.29^{2}+37.27^{2}=54.16 \mathrm{~N}=54.2 \mathrm{~N}
$$

And its directional angle 0 measured clockwise from the positive x axis is

$$
0=\tan ^{-1}\left(\frac{37.27}{39.29}\right)=43.49^{\circ}=43.5^{\circ}
$$

$$
y \quad F_{1}=50 \mathrm{~N}
$$

Ans.

Ans.
Ans.

(a)

Ans:
$\mathbf{F}_{1}=\{30 \mathbf{i}+40 \mathbf{j}\} \mathbf{N}$
$\mathbf{F}_{\mathbf{2}}=\{-20.7 \mathbf{i}-77.3 \mathbf{j}\} \mathbf{N}$
$F_{3}=\{30 \mathbf{i}\}$
$F_{R}=54.2 \mathrm{~N}$
$0=43.5^{\circ}$

2-31.

Determine the x and y components of \mathbf{F}_{1} and \mathbf{F}_{2}.

SOLUTION

$$
\begin{aligned}
& \mathrm{F}_{1 \mathrm{x}}=200 \sin 45^{\circ}=141 \mathrm{~N} \\
& \mathrm{~F}_{1 \mathrm{y}}=200 \cos 45^{\circ}=141 \mathrm{~N} \\
& \mathrm{~F}_{2 \mathrm{x}}=-150 \cos 30^{\circ}=-130 \mathrm{~N} \\
& \mathrm{~F}_{2 \mathrm{y}}=150 \sin 30^{\circ}=75 \mathrm{~N}
\end{aligned}
$$

Ans.

Ans.
Ans.
Ans.

Ans:
$F_{1 x}=141 \mathrm{~N}$
$F_{1 y}=141 \mathrm{~N}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& F_{2 x}=-130 \mathrm{~N} \\
& F_{2 y}=75 \mathrm{~N}
\end{aligned}
$$

*2-32.
Determ ne the magnitude of te resu tant force and its direction, measured counterellockwise ffom the positive x axis.

SOLUTION

$+\mathrm{R} \mathrm{F}_{\mathrm{Rx}}=\oplus \mathrm{F}_{\mathrm{x}} ; \quad \mathrm{F}_{\mathrm{Rx}}=-150 \cos 30^{\circ}+200 \sin 45^{\circ}=11.518 \mathrm{~N}$
$\mathrm{Q}+\mathrm{F}_{\mathrm{Ry}}=\odot \mathrm{F}_{\mathrm{y}} ; \quad \mathrm{F}_{\mathrm{Ry}}=150 \sin 30^{\circ}+200 \cos 45^{\circ}=216.421 \mathrm{~N}$
$\mathrm{F}_{\mathrm{R}}=2(11.518)^{2}+(216.421)^{2}=217 \mathrm{~N}$
Ans.
$u=\tan ^{-1} \phi \frac{216.421}{11.518} \leq=87.0^{\circ}$
Ans.

2-33.
Determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

SOLUTION

Scalar Notation. Summing the force components along x and y axes algebraically by referring to Fig. a,

$$
\begin{array}{ll}
\$\left(F_{R}\right)_{x}=\Sigma F_{x} ; & \left(F_{R}\right)_{x}=4+5 \cos 45^{\circ}-8 \sin 15^{\circ}=5.465 \mathrm{kN} \mathrm{~S} \\
+\mathrm{c}\left(F_{R}\right)_{y}=\Sigma F_{y} ; & \left(F_{R}\right)_{y}=5 \sin 45^{\circ}+8 \cos 15^{\circ}=11.263 \mathrm{kN} \mathrm{c}
\end{array}
$$

By referring to Fig. b, the magnitude of the resultant force \mathbf{F}_{R} is

Ans.

And the directional angle 0 of \mathbf{F}_{R} measured counterclockwise from the positive x axis is

$$
0=\tan ^{-1}{ }_{\left({ }^{(} F_{R}\right)_{y}}^{\left.F_{R}\right)_{x}} \mathrm{~d}=\tan ^{-1}\left({ }_{5.465}^{11.263}\right)=64.12^{\circ}=64.1^{\circ}
$$

Ans.

(a)

(b)
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& F_{R}=12.5 \mathrm{kN} \\
& 0=64.1^{\circ}
\end{aligned}
$$

2-34.

Express $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} as Cartesian vectors.

SOLUTION

$$
\begin{aligned}
\mathbf{F}_{1} & ={ }^{4} \underline{5}^{(850) \mathbf{i}-{ }_{\underline{5}}}(850) \mathbf{j} \\
& =\{680 \mathbf{i}-510 \mathbf{j}\} \mathrm{N}
\end{aligned}
$$

$\mathbf{F}_{2}=-625 \sin 30^{\circ} \mathbf{i}-625 \cos 30^{\circ} \mathbf{j}$

$$
=\{-312 \mathbf{i}-541 \mathbf{j}\} N
$$

$$
\mathbf{F}_{3}=-750 \sin 45^{\circ} \mathbf{i}+750 \cos 45^{\circ} \mathbf{j}
$$

$$
\{-530 \mathbf{i}+530 \mathbf{j}\} \mathbf{N}
$$

$$
=
$$

Ans.

Ans.

Ans.

Ans:
$\mathbf{F}_{1}=\{680 \mathbf{i}-5 \mathbf{1 0} \mathbf{j}\} \mathrm{N}$
$\mathbf{F}_{2}=\{-312 \mathbf{i}-54 \mathbf{1} \mathbf{j}\} \mathrm{N}$

$$
\mathbf{F}_{3}=\{-530 \mathbf{i}+530 \mathbf{j}\} \mathrm{N}
$$

2-35.
Determine the magnitude of the resultant force and its
 direction, measured counterclockwise from the positive x axis.

sCOLUTFON

$$
\begin{aligned}
& \pm \mathrm{F}_{\mathrm{Rx}}=\odot \mathrm{F}_{\mathrm{x}} ; \mathrm{F}_{\mathrm{Rx}}=\underline{4}^{4}(850)-625 \sin 30^{\circ}-750 \sin 45^{\circ}=-162.83 \mathrm{~N} \\
& \pm \mathrm{F}_{\mathrm{Rx}}=\odot \mathrm{F}_{\mathrm{x}} ; \mathrm{F}_{\mathrm{Rx}}={ }_{5}(8850)-625 \sin 30^{\circ}-750 \sin 45^{\circ}=-162.83 \mathrm{~N} \\
& 3 \\
&+\stackrel{\mathrm{c}}{\mathrm{~F}} \mathrm{~F}_{\mathrm{Ry}}=\odot \mathrm{F}_{\mathrm{y}} ; \mathrm{F}_{\mathrm{R}} \mathrm{~F}_{\mathrm{Ry}}=-\frac{3}{5}(850)-625 \cos 30^{\circ}+750 \cos 45^{\circ}=-520.94 \mathrm{~N} \\
&+880)-625 \cos 30^{\circ}+750 \cos 45^{\circ}=-520.94 \mathrm{~N}
\end{aligned}
$$

$$
\left.\mathrm{F}_{\mathrm{R}}=2(-162.83)^{2}+(-520.94)^{2}\right)^{2}=546 \mathrm{~N} \mathrm{~N} \quad \text { Ans. }
$$

$$
\mathbf{f}=\tan ^{-1} \underline{\underline{\mathrm{a}}} \underline{520.94}
$$

$$
\mathbf{f}=\tan ^{-1} \mathrm{a} \frac{{ }^{\frac{\mathrm{a}}{5}} 520.94 \mathrm{~b}}{} \mathrm{~b} 2.83 \mathrm{~b}=72.64^{\circ}
$$

$$
162.83 b=72.64^{\circ}
$$

$$
\mathrm{u}=180^{\circ}+72.64^{\circ}=253^{\circ}
$$

Ans.

Ans.

 Ans.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& F_{R}=546 \mathrm{~N} \\
& 0=253^{\circ}
\end{aligned}
$$

*2-36.
Determine the magnitude of the resultant force and its direction, measured clockwise from the positive x axis.

SOLUTION

Scalar Notation. Summing the force components along x and y axes algebraically by referring to Fig. a,

$$
\begin{aligned}
& \mathbf{S}\left(F_{R}\right)_{x}=\Sigma F_{x} ; \quad\left(F_{R}\right)_{x}=40\left(\frac{3}{5}\right)+91\left(\frac{5}{13}\right)+30=89 \mathrm{lb} \mathrm{~S} \\
& +\mathrm{c}\left(F_{R}\right)_{y}=\Sigma F_{y} ; \quad\left(F_{R}\right)_{y}=40(\underline{4})-91\left({ }_{13}\right)=-52 \mathrm{lb}=52 \mathrm{lbT}
\end{aligned}
$$

By referring to Fig. b, the magnitude of resultant force is

$$
F_{R}=2 \underline{\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}=2 \underline{89^{2}}+52^{2}=103.08 \mathrm{lb}=103 \mathrm{lb}, ~}
$$

Ans.

And its directional angle 0 measured clockwise from the positive x axis is

$$
0=\tan ^{-1}{ }_{\frac{\left(F_{R}\right)_{y}}{\left(F_{R}\right)_{x}}}^{d}=\tan ^{-1}\binom{52}{89}=30.30^{\circ}=30.3^{\circ}
$$

Ans.

(a)

(b)

2-37.

Determine t e magnitude and direct on u of the resulttanit force \mathbf{F}_{R}. Expresss the resullt in terms of the magnitudes of the components \mathbf{F}_{1} and \mathbf{F}_{2} and the anglle \mathbf{f}.
$\begin{array}{ll}\mathbf{F}_{1} & \mathbf{F}_{R}\end{array}$
f
u
F_{2}

SOLUTION

$$
\mathrm{F}_{\mathrm{R}}^{2}=\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}-2 \mathrm{~F}_{1} \mathrm{~F}_{2} \cos \left(180^{\circ}-\mathbf{f}\right)
$$

Since $\cos \left(180^{\circ}-\mathbf{f}\right)=-\cos \mathbf{f}$,

$$
F_{R}=2 F^{2}+F^{2}+2 F F \cos f
$$

Ans.
f
$\mathbf{F}_{1} \quad \mathbf{F}_{R}$
u
F
From the figure,

$$
\begin{aligned}
& \tan \mathrm{u}=\begin{array}{c}
\mathrm{F}_{1} \sin \mathbf{f} \\
\mathrm{~F}_{2}+\mathrm{F}_{1} \cos \mathbf{f} \\
\mathrm{u}=\tan ^{-1} \phi \frac{\mathrm{~F}_{1} \underline{\sin \mathbf{f}}}{\mathrm{~F}_{2}+\mathrm{F}_{1} \cos \mathbf{f}} \leq
\end{array}
\end{aligned}
$$

Ans.

Ans:

$$
\begin{gathered}
F_{R}=2 F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \mathbf{f} \\
F_{1} \underline{\sin \mathbf{f}}
\end{gathered}
$$

2-38.
The force \mathbf{F} has a magnitude of 80 lb . Determine the magnitudes of the x, y, z components of \mathbf{F}.

SOLUTION

$1=\cos ^{2} 60^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} \mathrm{~g}$
Solving for the positive root, $\mathrm{g}=60^{\circ}$
$\mathrm{F}_{\mathrm{x}}=80 \cos 60^{\circ}=40.0 \mathrm{lb}$
$\mathrm{F}_{\mathrm{y}}=80 \cos 45^{\circ}=56.6 \mathrm{lb}$
$\mathrm{F}_{\mathrm{z}}=80 \cos 60^{\circ}=40.0 \mathrm{lb}$

Ans.
Ans.
Ans.

$$
\begin{aligned}
& F_{x}=40.0 \mathrm{lb} \\
& F_{y}=56.6 \mathrm{lb} \\
& F_{z}=40.0 \mathrm{lb}
\end{aligned}
$$

2-39.

The bolt is subjected to the force \mathbf{F}, which has components acting along the x, y, z axes as shown. If the magnitude of \mathbf{F} is 80 N , and $\mathrm{a}=60^{\circ}$ and $\mathrm{g}=45^{\circ}$, determine the magnitudes of its components.

SOLUTION

$$
\begin{aligned}
\operatorname{cosb} & =2 \underline{1-\cos ^{2} \mathrm{a}-\cos ^{2} \mathrm{~g}} \\
& =2 \frac{1-\cos 60^{\circ}-\cos 45^{\circ}}{2} \\
\mathrm{~b} & =120^{\circ} \\
\mathrm{F}_{\mathrm{x}} & =\left|80 \cos 60^{\circ}\right|=40 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{y}} & =\left|80 \cos 120^{\circ}\right|=40 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{z}} & =\left|80 \cos 45^{\circ}\right|=56.6 \mathrm{~N}
\end{aligned}
$$

Ans.
Ans.
Ans.

Ans:
$F_{x}=40 \mathrm{~N}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
F_{y} & =40 \mathrm{~N} \\
F_{z} & =56.6 \mathrm{~N}
\end{aligned}
$$

*2-40.

Determine the magnitude and coordinate direction angles of the force \mathbf{F} acting on the support. The component of \mathbf{F} in the $x-y$ plane is 7 kN .

SOLUTION

Coordinate Direction Angles. The unit vector of \mathbf{F} is

$$
\begin{aligned}
\mathbf{u}_{F} & =\cos 30^{\circ} \cos 40^{\circ} \mathbf{i}-\cos 30^{\circ} \sin 40^{\circ} \mathbf{j}+\sin 30^{\circ} \mathbf{k} \\
& =\{0.6634 \mathbf{i}-0.5567 \mathbf{j}+0.5 \mathbf{k}\}
\end{aligned}
$$

Thus,

$$
\begin{array}{ll}
\cos a=0.6634 ; & \mathrm{a}=48.44^{\circ}=48.4^{\circ} \\
\cos \mathrm{b}=-0.5567 ; & \mathrm{b}=123.83^{\circ}=124^{\circ} \\
\cos \mathrm{g}=0.5 ; & \mathrm{g}=60^{\circ}
\end{array}
$$

Ans.
Ans.
Ans.

Ans.

Ans:
$\mathrm{a}=48.4^{\circ}$
$b=124^{\circ}$
$\mathrm{g}=60^{\circ}$

$$
F=8.08 \mathrm{kN}
$$

2-41.
Determine thbemagraigndadad andrdimathedinatetiatirengikas
 coordinate system.

SOLUTION

$\mathbf{F}_{1}=\left\{80 \cos 30^{\circ} \cos 40^{\circ} \mathbf{i}-80 \cos 30^{\circ} \sin 40^{\circ} \mathbf{j}+80 \sin 30^{\circ} \mathbf{k}\right\} \mathrm{lb}$
$\mathbf{F}_{1}=\{53.1 \mathbf{i}-44.5 \mathbf{j}+40 \mathbf{k}\} \mathrm{lb}$
$\mathbf{F}_{2}=\{-130 \mathbf{k}\} \mathrm{lb}$
$\mathbf{F}_{\mathrm{R}}=\mathbf{F}_{1}+\mathbf{F}_{2}$
$\mathbf{F}_{\mathrm{R}}=\{53.1 \mathbf{i}-44.5 \mathbf{j}-90.0 \mathbf{k}\} \mathrm{lb}$
$\mathrm{F}_{\mathrm{R}}=2 \underline{(53.1)^{2}+(-44.5)^{2}+(-90.0)^{2}}=114 \mathrm{lb}$
$a=\cos ^{-1} \phi \frac{53.1}{113.6} \leq=62.1^{\circ}$
$b=\cos ^{-1} \phi \frac{-44.5}{113.6} \leq=113^{\circ}$
$g=\cos ^{-1} \phi \frac{-90.0}{113.6} \leq=142^{\circ}$

Ans.

Ans.

Ans:
$F_{R}=114 \mathrm{lb}$
$\mathrm{a}=62.1^{\circ}$
$\mathrm{b}=113^{\circ}$
$\mathrm{g}=142^{\circ}$

2-42.
Specify the coordinate direction angles of \mathbf{F}_{1} and \mathbf{F}_{2} and express each force as a Cartesian vector.

SOLUTION

$\mathbf{F}_{1}=\left\{80 \cos 30^{\circ} \cos 40^{\circ} \mathbf{i}-80 \cos 30^{\circ} \sin 40^{\circ} \mathbf{j}+80 \sin 30^{\circ} \mathbf{k}\right\} \mathrm{lb}$
$\mathbf{F}_{1}=\{53.1 \mathbf{i}-44.5 \mathbf{j}+40 \mathbf{k}\} \mathrm{lb}$
$a_{1}=\cos ^{-1} \phi_{-80}^{53.1} \leq=48.4^{\circ}$
$b_{1}=\cos ^{-1} \phi \frac{-44.5}{80} \leq=124^{\circ}$
$g_{1}=\cos ^{-1} \mathrm{a}_{80}^{40} \mathrm{~b}=60^{\circ}$
$\mathbf{F}_{2}=\{-130 \mathbf{k}\} \mathrm{lb}$
$a_{2}=\cos ^{-1} \phi \frac{0}{130} \leq=90^{\circ}$
$\mathrm{b}_{2}=\cos ^{-1} \stackrel{0}{0}_{130} \leq=90^{\circ}$
$g_{2}=\cos ^{-1} \phi \frac{-130}{130} \leq=180^{\circ}$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans:
$\mathbf{F}_{1}=\{53.1 \mathbf{i}-44.5 \mathbf{j}+40 \mathbf{k}\} \mathrm{lb}$ $\mathrm{a}_{1}=48.4^{\circ}$

$$
\begin{aligned}
& \mathrm{b}_{1}=124^{\circ} \\
& \mathrm{g}_{1}=60^{\circ} \\
& \mathbf{F}_{2}=\{-130 \mathbf{k}\} \mathrm{lb} \\
& \mathrm{a}_{2}=90^{\circ} \\
& \mathrm{b}_{2}=90^{\circ} \\
& \mathrm{g}_{2}=180^{\circ}
\end{aligned}
$$

2-43.

Ehpress veach iforidejenteC antlseatwoforoes fibownardx phess dedarfonine ithe aressildannteforefo ifinedhthbemdetaitudeethed corviliandtedice Etiohthaghesgofitthderandll tandrfinate direction angles of the resultant force.

SOLUTION

$$
\begin{aligned}
\mathbf{F}_{1} & =300\left(-\cos 60^{\circ} \sin 45^{\circ} \mathbf{i}+\cos 60^{\circ} \cos 45^{\circ} \mathbf{j}+\sin 60^{\circ} \mathbf{k}\right) \\
& =\{-106.07 \mathbf{i}+106.07 \mathbf{j}+259.81 \mathbf{k}\} \mathrm{N} \\
& =\{-106 \mathbf{i}+106 \mathbf{j}+260 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

$\mathbf{F}_{2}=500\left(\cos 60^{\circ} \mathbf{i}+\cos 45^{\circ} \mathbf{j}+\cos 120^{\circ} \mathbf{k}\right)$
$=\{250.0 \mathbf{i}+353.55 \mathbf{j}-250.0 \mathbf{k}\} \mathrm{N}$
$=\{250 \mathbf{i}+354 \mathbf{j}-250 \mathbf{k}\} \mathrm{N}$
$\mathbf{F}_{\mathrm{R}}=\mathrm{F}_{1}+\mathrm{F}_{2}$
$=-106.07 \mathbf{i}+106.07 \mathbf{j}+259.81 \mathbf{k}+250.0 \mathbf{i}+353.55 \mathbf{j}-250.0 \mathbf{k}$

$$
=143.93 \mathbf{i}+459.62 \mathbf{j}+9.81 \mathbf{k}
$$

$$
=\{144 \mathbf{i}+460 \mathbf{j}+9.81 \mathbf{k}\} \mathrm{N}
$$

$F_{R}=2143.93^{2}+459.62^{2}+9.81^{2}=481.73 \mathrm{~N}=482 \mathrm{~N}$
$\mathbf{u}_{\mathrm{F}_{\mathrm{R}}}=\stackrel{\mathbf{F}_{\mathrm{R}}}{\mathrm{F}_{\mathrm{R}}}=\begin{gathered}143.93 \mathbf{i}+459.62 \mathbf{j}+9.81 \mathbf{k} \\ 481.73\end{gathered}=0.2988 \mathbf{i}+0.9541 \mathbf{j}+0.02036 \mathbf{k}$
$\cos \mathrm{a}=0.2988$
$\mathrm{a}=72.6^{\circ}$
$\cos \mathrm{b}=0.9541$
$\mathrm{b}=17.4^{\circ}$
=
g $\quad 88.8^{\circ}$

Ans.

Ans.

Ans.
Ans.

Ans.
Ans.
Ans.

Ans:
$\mathbf{F}_{1}=\{-106 \mathbf{i}+106 \mathbf{j}+260 \mathbf{k}\} \mathrm{N}$
$\mathbf{F}_{2}=\{250 \mathbf{i}+354 \mathbf{j}-250 \mathbf{k}\}$
$\mathrm{N} \mathbf{F}_{R}=\{144 \mathbf{i}+460 \mathbf{j}+9.81 \mathbf{k}\}$
$\mathrm{N} F_{R}=482 \mathrm{~N}$
$\mathrm{a}=72.6^{\circ}$
$\mathrm{b}=17.4^{\circ}$
$\mathrm{g}=88.8^{\circ}$
*2-44.

Determine the coordinate direction angles of \mathbf{F}_{1}.

SOLUTION

$$
\begin{aligned}
\mathbf{F}_{1} & =300\left(-\cos 60^{\circ} \sin 45^{\circ} \mathbf{i}+\cos 60^{\circ} \cos 45^{\circ} \mathbf{j}+\sin 60^{\circ} \mathbf{k}\right) \\
& =\{-106.07 \mathbf{i}+106.07 \mathbf{j}+259.81 \mathbf{k}\} \mathrm{N} \\
& =\{-106 \mathbf{i}+106 \mathbf{j}+260 \mathbf{k}\} \mathrm{N} \\
\mathbf{u}_{1} & =\frac{\mathbf{F}_{1}}{300}=-0.3536 \mathbf{i}+0.3536 \mathbf{j}+0.8660 \mathbf{k} \\
\mathrm{a}_{1} & =\cos ^{-1}(-0.3536)=111^{\circ} \\
\mathrm{b}_{1} & =\cos ^{-1}(0.3536)=69.3^{\circ} \\
\mathrm{g}_{1} & =\cos ^{-1}(0.8660)=30.0^{\circ}
\end{aligned}
$$

Ans.
Ans.
Ans.

Ans:
$\mathrm{a}_{1}=111^{\circ}$
$\mathrm{b}_{1}=69.3^{\circ}$
$\mathrm{g}_{1}=30.0^{\circ}$

2-45.

Determine the magnitude and coordinate direction angles of \mathbf{F}_{3} so that the resultant of the three forces acts along the positive y axis and has a magnitude of 600 lb .

SOLUTION

$\mathrm{F}_{\mathrm{Rx}}=\oplus \mathrm{F}_{\mathrm{x}} ; \quad 0=-180+300 \cos 30^{\circ} \sin 40^{\circ}+\mathrm{F}_{3} \cos \mathrm{a}$
$\mathrm{F}_{\mathrm{Ry}}=\odot \mathrm{F}_{\mathrm{y}} ; \quad 600=300 \cos 30^{\circ} \cos 40^{\circ}+\mathrm{F}_{3} \cos \mathrm{~b}$
$\mathrm{F}_{\mathrm{Rz}}=© \mathrm{~F}_{\mathrm{z}} ; \quad 0=-300 \sin 30^{\circ}+\mathrm{F}_{3} \cos \mathrm{~g}$
$\cos ^{2} a+\cos ^{2} b+\cos ^{2} g=1$

Solving:

$$
\begin{aligned}
\mathrm{F}_{3} & =428 \mathrm{lb} \\
\mathrm{a} & =88.3^{\circ} \\
\mathrm{b} & =20.6^{\circ} \\
\mathrm{g} & =69.5^{\circ}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.

Ans:
$F_{3}=428 \mathrm{lb}$

[^4]
2-46.

Determine the magnitude and coordinate direction angles of \mathbf{F}_{3} so that the resultant of the three forces is zero.

SOLUTION

$\mathrm{F}_{\mathrm{Rx}}=\odot \mathrm{F}_{\mathrm{x}} ; \quad 0=-180+300 \cos 30^{\circ} \sin 40^{\circ}+\mathrm{F}_{3} \cos \mathrm{a}$
$\mathrm{F}_{\mathrm{Ry}}=\bigcirc \mathrm{F}_{\mathrm{y}} ; \quad 0=300 \cos 30^{\circ} \cos 40^{\circ}+\mathrm{F}_{3} \cos \mathrm{~b}$
$\mathrm{F}_{\mathrm{Rz}}=\odot \mathrm{F}_{\mathrm{z}} ; \quad 0=-300 \sin 30^{\circ}+\mathrm{F}_{3} \cos \mathrm{~g}$
$\cos ^{2} \mathrm{a}+\cos ^{2} \mathrm{~b}+\cos ^{2} \mathrm{~g}=1$

Solving:

$$
\begin{aligned}
\mathrm{F}_{3} & =250 \mathrm{lb} \\
\mathrm{a} & =87.0^{\circ} \\
\mathrm{b} & =143^{\circ} \\
\mathrm{g} & =53.1^{\circ}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.

Ans:
$F_{3}=250 \mathrm{lb}$

2-47.

Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.

SOLUTION

Cartesian Vector Notation. For \mathbf{F}_{1} and \mathbf{F}_{2},
$\mathbf{F}_{1}=400\left(\cos 45^{\circ} \mathbf{i}+\cos 60^{\circ} \mathbf{j}-\cos 60^{\circ} \mathbf{k}\right)=\{282.84 \mathbf{i}+200 \mathbf{j}-$ 200k\} N
$\mathbf{F}_{2}=125 \mathrm{c}{ }_{5}^{4}\left(\cos 20^{\circ}\right) \mathbf{i}-{ }_{5}^{4}\left(\sin 20^{\circ}\right) \mathbf{j}+{ }_{5}^{3} \mathbf{k} d=\{93.97 \mathbf{i}-34.20 \mathbf{j}+75.0 \mathbf{k}\}$

Resultant Force.

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{1}+\mathbf{F}_{2} \\
& =\{282.84 \mathbf{i}+200 \mathbf{j}-2 \mathbf{O O} \mathbf{k}\}+\{93.97 \mathbf{i}-34.20 \mathbf{j}+75.0 \mathbf{k}\} \\
& =\{376.8 \mathbf{i}+165.80 \mathbf{j}-
\end{aligned}
$$

125.OOk $\} \mathrm{N}$ The magnitude of the resultant
force is

$$
\begin{aligned}
F_{R}=2\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}+\left(F_{R}\right)_{z}^{2} & =2376.81^{2}+165.80^{2}+(-125.00)^{2} \\
& =430.23 \mathrm{~N}=430 \mathrm{~N}
\end{aligned}
$$

Ans.
The coordinate direction angles are

$$
\cos \mathrm{a}=\begin{aligned}
& \left(F_{R}\right)_{x}=\begin{array}{l}
376.81 \\
F_{R}
\end{array} \underline{430.23} ; \quad \mathrm{a}=28.86^{\circ}=28.9^{\circ}
\end{aligned}
$$

Ans.

$$
\cos \mathrm{b}=\frac{\left(F_{R}\right)_{y}}{F_{R}}=\begin{aligned}
& 165.80 \\
& 430.23
\end{aligned} ; \quad \mathrm{b}=67.33^{\circ}=67.3^{\circ}
$$

Ans.

$$
\cos \mathrm{g}=\frac{\left.\underline{\left(F_{\underline{R}}\right.}\right)_{\underline{z}}}{F_{R}}=\frac{-125.00}{Z}
$$

Ans.

Ans:

$$
\begin{gathered}
F_{R}=430 \mathrm{~N} \\
\mathrm{a}=28.9^{\circ} \\
\mathrm{b}=67.3^{\circ} \\
\mathrm{g}=107^{\circ}
\end{gathered}
$$

*2-48.
Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.

SOLUTION

Cartesian Vector Notation. For \mathbf{F}_{1} and \mathbf{F}_{2},

$$
\begin{aligned}
& \mathbf{F}_{1}=450\left({ }_{5}^{3} \mathbf{j}-{ }_{5}^{4} \mathbf{k}\right)=\{270 \mathbf{j}-36 \mathbf{O} \mathbf{k}\} \mathbf{N} \\
& \mathbf{F}_{2}=525\left(\cos 45^{\circ} \mathbf{i}+\cos 120^{\circ} \mathbf{j}+\cos 60^{\circ} \mathbf{k}\right)=\{371.23 \mathbf{i}-262.5 \mathbf{j}+262.5 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

Resultant Force.

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{1}+\mathbf{F}_{2} \\
& =\{270 \mathbf{j}-360 \mathbf{O} \mathbf{k}\}+\{371.23 \mathbf{i}-262.5 \mathbf{j}+262.5 \mathbf{k}\} \\
& =\{371.23 \mathbf{i}+7.50 \mathbf{j}-
\end{aligned}
$$

$97.5 \mathbf{k}\} \mathrm{N}$ The magnitude of the resultant force
is

$$
\begin{aligned}
F_{R}=2\left(F_{R}\right)_{c}^{2}+\left(F_{R}\right)_{y}^{2}+\left(F_{R}\right)_{z}^{2} & =2371.23^{2}+7.50^{2}+(-97.5)^{2} \\
& =383.89 \mathrm{~N}=384 \mathrm{~N}
\end{aligned}
$$

Ans.
The coordinate direction angles are

$$
\begin{array}{ll}
\cos \mathrm{a}=\frac{\left(F_{R}\right)_{x}}{F_{R}}=\frac{371.23}{383.89} ; & \mathrm{a}=14.76^{\circ}=14.8^{\circ} \\
\cos \mathrm{b}=\frac{\left(F_{R}\right)_{y}}{F_{R}}=\frac{7.50}{383.89} ; & \mathrm{b}=88.88^{\circ}=88.9^{\circ} \\
\cos \mathrm{g}=\frac{\left(F_{R}\right)_{z}}{F_{R}}=\frac{-97.5}{383.89} ; & \mathrm{g}=104.71^{\circ}=105^{\circ}
\end{array}
$$

Ans.

Ans.

Ans.

Ans:
$F_{R}=384 \mathrm{~N}$
$\mathrm{a}=14.8^{\circ}$

$$
\begin{aligned}
\mathrm{b} & =88.9^{\circ} \\
\mathrm{g} & =105^{\circ}
\end{aligned}
$$

2-49.
Determine the magnitude and coordinate direction angles a_{1}, b_{1}, g_{1} of \mathbf{F}_{1} so that the resultant of the three forces acting on the bracket is $\mathbf{F}_{R}=5-350 \mathrm{k} 6 \mathrm{lb}$.
x

SOLUTION

$\mathbf{F}_{1}=\mathrm{F}_{\mathrm{x}} \mathbf{i}+\mathrm{F}_{\mathrm{y}} \mathbf{j}+\mathrm{F}_{\mathrm{z}} \mathbf{k}$
$\mathbf{F}_{2}=-200 \mathbf{j}$
$\mathbf{F}_{3}=-400 \sin 30^{\circ} \mathbf{i}+400 \cos 30^{\circ} \mathbf{j}$
$=-200 \mathbf{i}+346.4 \mathbf{j}$
$\mathbf{F}_{\mathrm{R}}=\mathbb{C}$
$-350 \mathbf{k}=\mathrm{F}_{\mathrm{x}} \mathbf{i}+\mathrm{F}_{\mathrm{y}} \mathbf{j}+\mathrm{F}_{\mathrm{z}} \mathbf{k}-200 \mathbf{j}-200 \mathbf{i}+346.4 \mathbf{j}$
$0=\mathrm{F}_{\mathrm{x}}-200 ; \quad \mathrm{F}_{\mathrm{x}}=200 \mathrm{lb}$
$0=\mathrm{F}_{\mathrm{y}}-200+346.4 ; \quad \mathrm{F}_{\mathrm{y}}=-146.4 \mathrm{lb}$
$\mathrm{F}_{\mathrm{z}}=-350 \mathrm{lb}$
$F_{1}=2(200)^{2}+(146.4)^{2}+(350)^{2}$
$\mathrm{F}_{1}=425.9 \mathrm{lb}=429 \mathrm{lb}$
$\mathrm{a}_{1}=\cos ^{-1} \frac{200}{\mathrm{a}_{428.9}} \mathrm{~b}=62.2^{\circ}$
$b_{1}=\cos ^{-1} a^{\frac{-146.4}{428.9}} \mathrm{~b}=110^{\circ}$
$g_{1}=\cos ^{-1} \frac{-350}{428.9}=145^{\circ}$

Ans.

Ans.

Ans.

Ans.

$$
\begin{aligned}
& F_{1}=429 \mathrm{lb} \\
& \mathrm{a}_{1}=62.2^{\circ} \\
& \mathrm{b}_{1}=110^{\circ} \mathrm{g}_{1} \\
& =145^{\circ}
\end{aligned}
$$

2-50.
If the resultant force \mathbf{F}_{R} has a magnitude of 150 lb and the coordinate direction angles shown, determine the magnitude of \mathbf{F}_{2} and its coordinate direction angles.

SOLUTION

Cartesian Vector Notation. For $\mathbf{F}_{R}, \mathrm{~g}$ can be determined from

$$
\begin{gathered}
\cos ^{2} \mathrm{a}+\cos ^{2} \mathrm{~b}+\cos ^{2} \mathrm{~g}=1 \\
\cos ^{2} 120^{\circ}+\cos ^{2} 50^{\circ}+\cos ^{2} \mathrm{~g}=1 \\
\cos \mathrm{~g}=\{0.5804
\end{gathered}
$$

Here g 690°, then

$$
\mathrm{g}=54.52^{\circ}
$$

Thus

$$
\begin{aligned}
\mathbf{F}_{R} & =150\left(\cos 120^{\circ} \mathbf{i}+\cos 50^{\circ} \mathbf{j}+\cos 54.52^{\circ} \mathbf{k}\right) \\
& =\{-75.0 \mathbf{i}+96.42 \mathbf{j}+87.05 \mathbf{k}\} \mathrm{lb}
\end{aligned}
$$

Also

$$
\mathbf{F}_{1}=\{80 \mathbf{j}\} \mathrm{lb}
$$

Resultant Force.

$$
\begin{gathered}
\mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2} \\
\{-75.0 \mathbf{i}+96.42 \mathbf{j}+87.05 \mathbf{k}\}=\{80 \mathbf{j}\}+\mathbf{F}_{2} \\
F_{2}=\{-75.0 \mathbf{i}+16.42 \mathbf{j}+87.05 \mathbf{k}\} \mathrm{lb}
\end{gathered}
$$

Thus, the magnitude of \mathbf{F}_{2} is

$$
\begin{aligned}
F_{2}=2\left(F_{2}\right)_{x}+\left(F_{2}\right)_{y}+\left(F_{2}\right)_{z} & =2(-75.0)^{2}+16.42^{2}+87.05^{2} \\
& =116.07 \mathrm{lb}=116 \mathrm{lb}
\end{aligned}
$$

Ans.
And its coordinate direction angles are

$$
\begin{array}{ll}
\cos \mathrm{a}_{2}=\frac{\left(F_{2}\right)_{\underline{x}}}{F_{2}}=\frac{-75.0}{116.07} ; & \mathrm{a}_{2}=130.25^{\circ}=130^{\circ} \\
\cos \mathrm{b}_{2}=\left(F_{2}\right)_{y}=\frac{16.42}{F_{2}}=\underline{116.07} ; & \mathrm{b}_{2}=81.87^{\circ}=81.9^{\circ} \\
\cos \mathrm{g}_{2}=\left(F_{2}\right)_{z}=87.05 ; & \mathrm{g}_{2}=41.41^{\circ}=41.4^{\circ}
\end{array}
$$

Ans.

Ans.

Ans.

Ans:
$F_{2}=116 \mathrm{lb}$
$\mathrm{a}_{2}=130^{\circ}$
$\mathrm{b}_{2}=81.9^{\circ}$

2-51.

Express each force as a Cartesian vector.

SOLUTION

Cartesian Vector Notation. For $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3},
$\mathbf{F}_{1}=90\left({ }_{5}^{4} \mathbf{i}+{ }_{5}^{3} \mathbf{k}\right)=\{72.0 \mathbf{i}+54.0 \mathbf{k}\} \mathrm{N}$
$\mathbf{F}_{2}=150\left(\underline{\cos } 60^{\circ} \sin 45^{\circ} \mathbf{i}+\cos 60^{\circ} \cos 45^{\circ} \mathbf{j}+\sin 60^{\circ} \mathbf{k}\right)$
$=\{53.03 \mathbf{i}+53.03 \mathbf{j}+129.90 \mathbf{k}\} \mathrm{N}$
$=\{53.0 \mathbf{i}+53.0 \mathbf{j}+130 \mathbf{k}\} \mathrm{N}$
$\mathbf{F}_{3}=\{200 \mathbf{k}\}$

Ans.

Ans.
Ans.

[^5]*2-52.
Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.

SOLUTION

Cartesian Vector Notation. For $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3},

$$
\begin{aligned}
\mathbf{F}_{1} & =90\left({ }_{5}^{4} \mathbf{i}+{ }_{5}^{3} \mathbf{k}\right)=\{72.0 \mathbf{i}+54.0 \mathbf{k}\} \mathrm{N} \\
\mathbf{F}_{2} & =150\left(\cos 60^{\circ} \sin 45^{\circ} \mathbf{i}+\cos 60^{\circ} \cos 45^{\circ} \mathbf{j}+\sin 60^{\circ} \mathbf{k}\right) \\
& =\{53.03 \mathbf{i}+53.03 \mathbf{j}+129.90 \mathbf{k}\} \mathrm{N} \\
\mathbf{F}_{3} & =\{200 \mathrm{k}\} \mathbf{N}
\end{aligned}
$$

Resultant Force.

$$
\begin{aligned}
\mathbf{F} & =\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3} \\
& =(72.0 \mathbf{i}+54.0 \mathbf{k})+(53.03 \mathbf{i}+53.03 \mathbf{j}+129.90 \mathbf{k})+(200 \mathbf{k}) \\
& =\{125.03 \mathbf{i}+53.03 \mathbf{j}+383.90\} \mathbf{N}
\end{aligned}
$$

The magnitude of the resultant force is

$$
\begin{aligned}
F_{R}=2\left(F_{R}\right)_{t}^{2}+\left(F_{R}\right)_{y}^{2}+\left(F_{R}\right)_{z}^{2} & =2125.03^{2}+53.03^{2}+383.90^{2} \\
& =407.22 \mathrm{~N}=407 \mathrm{~N}
\end{aligned}
$$

And the coordinate direction angles are

$$
\begin{array}{ll}
\cos \mathrm{a}=\frac{\left(F_{R}\right)_{x}}{F_{R}}=\frac{125.03}{407.22} ; & \mathrm{a}=72.12^{\circ}=72.1^{\circ} \\
\cos \mathrm{b}=\begin{array}{c}
\left(F_{R}\right)_{y} \\
F_{R}=\frac{53.03}{407.22} ;
\end{array} \mathrm{b}=82.52^{\circ}=82.5^{\circ} \\
\cos \mathrm{g}=\frac{\left(F_{R}\right)_{z}}{F_{R}}=\frac{383.90}{407.22} ; & \mathrm{g}=19.48^{\circ}=19.5^{\circ}
\end{array}
$$

Ans.

Ans.

Ans.

Ans:

$F_{R}=407 \mathrm{~N}$
$\mathrm{a}=72.1^{\circ}$
$\mathrm{b}=82.5^{\circ}$
$\mathrm{g}=19.5^{\circ}$

2-53.
The spur gear is subjected to the two forces. Express each force as a Cartesian vector.

SOLUTION

$$
\begin{aligned}
\mathbf{F}_{1}= & \underset{25}{7}(50) \mathbf{j}-\underset{24}{25}(50) \mathbf{k}=\{14.0 \mathbf{j}- \\
& -\quad \underline{48} . \mathbf{O k}\} l \mathrm{~b}
\end{aligned}
$$

Ans.

Ans.

Ans:
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\mathbf{F}_{2}=\{90 \mathbf{i}-127 \mathbf{j}+90 \mathbf{k}\} \mathrm{lb}
$$

2-54.
The spur gear is subjected to the two forces. Determine the resultant of the two forces and express the result as a Cartesian vector.

SOLUTION

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Rx}}=180 \cos 60^{\circ}=90 \\
& \mathrm{~F}_{\mathrm{Ry}}=\underline{25}^{(50)}+180 \cos 135^{\circ}=-113 \\
& \mathrm{~F}_{\mathrm{Rz}}=-\frac{24}{25}(50)+180 \cos 60^{\circ}=42 \\
& \mathbf{F}_{\mathrm{R}}=\{90 \mathbf{i}-113 \mathbf{j}+42 \mathbf{k}\} \mathrm{lb}
\end{aligned}
$$

Ans.

[^6]
2-55.

Determine the magnitude and coordinate direction angles of the resultant force, and sketch this vector on the coordinate system.

SOLUTION

Cartesian Vector Notation. For \mathbf{F}_{1} and \mathbf{F}_{2},

$$
\begin{aligned}
\mathbf{F}_{1} & =400\left(\sin 60^{\circ} \cos 20^{\circ} \mathbf{i}-\sin 60^{\circ} \sin 20^{\circ} \mathbf{j}+\cos 60^{\circ} \mathbf{k}\right) \\
& =\{325.52 \mathbf{i}-118.48 \mathbf{j}+200 \mathbf{k}\} \mathbf{N}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{F}_{2} & =500\left(\cos 60^{\circ} \mathbf{i}+\cos 60^{\circ} \mathbf{j}+\cos 135^{\circ} \mathbf{k}\right) \\
& =\{250 \mathbf{i}+250 \mathbf{j}-353.55 \mathbf{k}\} \mathbf{N}
\end{aligned}
$$

Resultant Force.

$\mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2}$
$=(325.52 \mathbf{i}-118.48 \mathbf{j}+200 \mathbf{k})+(250 \mathbf{i}+250 \mathbf{j}-353.55 \mathbf{k})$
$=\{575.52 \mathbf{i}+131.52 \mathbf{j}-153.55 \mathbf{k}\} \mathrm{N}$
The magnitude of the resultant force is

$$
\begin{aligned}
F_{R}=2\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{v}^{2}+\left(F_{R}\right)_{z}^{2} & =2 \underline{575.52^{2}+131.52^{2}+(-153.55)^{2}} \\
& =610.00 \mathrm{~N}=610 \mathrm{~N}
\end{aligned}
$$

The coordinate direction angles are

$$
\begin{aligned}
& \cos \mathrm{a}=\begin{array}{l}
\left(F_{R}\right)_{x} \\
F_{R}
\end{array}=\begin{array}{l}
575.52 \\
610.00
\end{array} \\
& \cos \mathrm{~b}=\begin{array}{c}
\left(F_{R}\right)_{y} \\
F_{R}
\end{array}=\begin{array}{l}
131.52 \\
610.00
\end{array} \mathrm{~b}=77.549^{\circ}=77.5^{\circ} \\
& \left(F_{\underline{R}}\right)_{\underline{z}} \quad-153.55 \\
& \cos \mathrm{~g}={ }_{F_{R}}=610.00 \quad \mathrm{~g}=104.58^{\circ}=105^{\circ} \\
& \mathrm{a}=19.36^{\circ}=19.4^{\circ} \\
& b=77.549^{\circ}=77.5^{\circ} \\
& g=104.58^{\circ}=105^{\circ}
\end{aligned}
$$

Z

$$
F_{1}=400 \mathrm{~N}
$$

$$
F_{R}=610 \mathrm{~N}
$$

Ans.

Ans.

Ans.

Ans:
$F_{R}=610 \mathrm{~N}$
$\mathrm{a}=19.4^{\circ}$
$\mathrm{b}=77.5^{\circ}$
$\mathrm{g}=105^{\circ}$

*2-56.

Determine the length of the connecting rod $A B$ by first formulating a position vector from A to B and then determining its magnitude.

SOLUTION

Position Vector. The coordinates of points A and B are $A\left(-150 \cos 30^{\circ}\right.$,

- $\left.150 \sin 30^{\circ}\right) \mathrm{mm}$ and $B(0,300) \mathrm{mm}$ respectively. Then
$\mathbf{r}_{A B}=\left[0-\left(-150 \cos 30^{\circ}\right)\right] \mathbf{i}+\left[300-\left(-150 \sin 30^{\circ}\right)\right] \mathbf{j}$

$$
=\{129.90 \mathbf{i}+375 \mathbf{j}\} \mathrm{mm}
$$

Thus, the magnitude of $\mathbf{r}_{A B}$ is

$$
\mathbf{r}_{A B}=2 \overline{129.90^{2}+375^{2}}=396.86 \mathrm{~mm}=397 \mathrm{~mm}
$$

Ans.

$$
x
$$

Ans:

$r_{A B}=397 \mathrm{~mm}$

2-57.
Express force \mathbf{F} as a Cartesian vector; then determine its coordinate direction angles.

SOLUTION

$$
\begin{aligned}
& \mathbf{r}_{A B}=\left(5+10 \cos 70^{\circ} \sin 30^{\circ}\right) \mathbf{i} \\
& +\left(-7-10 \cos 70^{\circ} \cos 30^{\circ}\right) \mathbf{j}-10 \sin 70^{\circ} \mathbf{k} \\
& \mathbf{r}_{A B}=\{6.710 \mathbf{i}-9.962 \mathbf{j}-9.397 \mathbf{k}\} \mathrm{ft} \\
& r_{A B}=\frac{2(6.710)^{2}+(-9.962)^{2}+(-9.397)^{2}}{}=15.25 \\
& \mathbf{r}_{A B}=\underline{r}_{A B}=(0.4400 \mathbf{i}-0.6532 \mathbf{j}-\mathbf{0 . 6 1 6 2} \mathbf{k}) \\
& \begin{aligned}
\mathbf{F}=135 \mathbf{u}_{A B} & =(59.40 \mathbf{i}-88.18 \mathbf{j}-\mathbf{8 3 . 1 8 k}) \\
& =\{59.4 \mathbf{i}-88.2 \mathbf{j}-\mathbf{8 3 . 2 \mathbf { k }}\} \mathrm{lb}
\end{aligned}
\end{aligned}
$$

$\mathrm{a}=\cos ^{-1}\left(\frac{59.40}{135}\right)=63.9^{\circ}$
$b=\cos ^{-1}\left(\frac{-88.18}{135}\right)=131^{\circ}$
$g=\cos ^{-1}\left(\frac{-83.18}{135}\right)=128^{\circ}$

Z

Ans.

Ans.

Ans.

Ans.

Ans:

$\mathbf{F}=\{59.4 \mathbf{i}-88.2 \mathbf{j}-83.2 \mathbf{k}\} \mathrm{lb}$
$\mathrm{a}=63.9^{\circ}$
$\mathrm{b}=131^{\circ}$
$\mathrm{g}=128^{\circ}$

2-58.

Express each force as a Cartesian vector, and then determine the magnitude and coordinate direction angles of the resultant force.

SOLUTION

$\mathbf{r}_{A C}=\mathrm{e}-2.5 \mathbf{i}-4 \mathbf{j}+{ }_{5}^{12}(2.5) \mathbf{k} \mathbf{f} \mathbf{f t}$
$\mathbf{F}_{1}=80 \mathrm{lb}\left(\begin{array}{c}\frac{\mathbf{r}_{A C}}{r_{A C}}\end{array}\right)=-26.20 \mathbf{i}-41.93 \mathbf{j}+62.89 \mathbf{k}$
$=\{-26.2 \mathbf{i}-41.9 \mathbf{j}+62.9 \mathbf{k}\} \mathrm{lb}$
$\mathbf{r}_{A B}=\{2 \mathbf{i}-4 \mathbf{j}-6 \mathbf{k}\} \mathrm{ft}$
$\mathbf{F}_{2}=50 \mathrm{lb}\binom{\underline{\mathbf{r}}_{A B}}{r_{A B}}=13.36 \mathbf{i}-26.73 \mathbf{j}-40.09 \mathbf{k}$
$=\{13.4 \mathbf{i}-26.7 \mathbf{j}-40.1 \mathbf{k}\} \mathrm{lb}$
$\mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2}$
$=-12.84 \mathbf{i}-68.65 \mathbf{j}+22.80 \mathbf{k}$
$=\{-12.8 \mathbf{i}-68.7 \mathbf{j}+22.8 \mathbf{k}\} \mathrm{lb}$
$\left.\mathbf{F}_{R}=\mathbf{2 (- 1 2 . 8 4}\right)^{2}(-68.65)^{2}+(22.80)^{2}=73.47=73.5 \mathrm{lb}$
$\ldots-\sim_{\infty}^{-1}\left(\frac{-12.84}{73.47}\right)=100^{\circ}$
n $-\cdots \infty^{-1}\left(\frac{-68.65}{73.47}\right)=159^{\circ}$
$g=\cos ^{-1}\left(\frac{22.80}{73.47}\right)=71.9^{\circ}$

Ans:
$\mathbf{F}_{1}=\{-26.2 \mathbf{i}-41.9 \mathbf{j}+62.9 \mathbf{k}\} \mathrm{lb}$
$\mathbf{F}_{2}=\{13.4 \mathbf{i}-26.7 \mathbf{j}-40.1 \mathbf{k}\} \mathrm{lb}$
$\mathbf{F}_{R}=73.5 \mathrm{lb}$
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& \mathrm{a}=100^{\circ} \\
& \mathrm{b}=159^{\circ} \\
& \mathrm{g}=71.9^{\circ}
\end{aligned}
$$

2-59.

If $\mathbf{F}=53500^{i}=2500^{j}=459 \mathrm{k} 6^{6} \mathrm{~N}$ and cablle $A B$ is 9 m long,

SOLUTION

Position Vector: The position vector \mathbf{r}_{AB}, directed from point A to point B , is given by

$\mathbf{r}_{\mathrm{AB}}=[0-\mathrm{x}] \mathbf{i}+(0-\mathrm{y}) \mathbf{j}+(0-\mathrm{z}) \mathbf{k}$
$=-\mathrm{x} \mathbf{i}-\mathrm{y} \mathbf{j}-\mathrm{z} \mathbf{k}$
Unit Vector: Knowing the magnitude of \mathbf{r}_{AB} is 9 m , the unit vector for \mathbf{r}_{AB} is given by
$\mathbf{u}_{\mathrm{AB}}=\frac{\mathbf{r}_{\mathrm{AB}}}{\mathbf{r}_{\mathrm{AB}}}=\frac{-\mathrm{xi}-\mathrm{y} \mathbf{j}-\mathrm{zk}}{9}$
The unit vector for force \mathbf{F} is
$\mathbf{u}_{\mathrm{F}}=\frac{\mathbf{F}}{\mathrm{F}}=\frac{350 \mathbf{i}-250 \mathbf{j}-450 \mathbf{k}}{3350^{2}+(-250)^{2}+(-450)^{2}}=0.5623 \mathbf{i}-0.4016 \mathbf{j}-0.7229 \mathbf{k}$

Since force \mathbf{F} is also directed from point A to point B, then
$\mathbf{u}_{\mathrm{AB}}=\mathbf{u}_{\mathrm{F}}$
$\begin{gathered}-x \mathbf{i}-y \mathbf{j}-z \mathbf{k} \\ 9\end{gathered}=-0.5623 \mathbf{i} \quad 0.4016 \mathbf{j}-0.7229 \mathbf{k}$

Equating the \mathbf{i}, \mathbf{j}, and \mathbf{k} components,

$$
\begin{array}{ll}
\bar{x} \\
9 & =-0.5623 \\
\frac{-y}{-y}=-0.4016 & y=-5.06 \mathrm{~m} \\
9 & z .61 \mathrm{~m} \\
\frac{-z}{9}=0.7229 & z=6.51 \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.

Ans:
$x=-5.06 \mathrm{~m}$

$$
\begin{aligned}
& y=3.61 \mathrm{~m} \\
& z=6.51 \mathrm{~m}
\end{aligned}
$$

*2-60.

The 8 -m-long cable is anchored to the ground at A. If $x=4 \mathrm{~m}$ and $y=2 \mathrm{~m}$, determine the coordinate z to the highest point of attachment along the column.

SOLUTION

$\mathbf{r}=\{4 \mathbf{i}+2 \mathbf{j}+z \mathbf{k}\} \mathrm{m}$
$r=2(4)^{2}+(2)^{2}+(z)^{2}=8$
$z=6.63 \mathrm{~m}$

2-61.

The 8 -m-long cable is anchored to the ground at A. If $z=5 \mathrm{~m}$, determine the location $+x,+y$ of the support at A. Choose a value such that $x=y$.

SOLUTION

$\mathbf{r}=\{x \mathbf{i}+y \mathbf{j}+5 \mathbf{k}\} \mathrm{m}$
$r=2 \overline{(x)^{2}+(y)^{2}+(5)^{2}}=8$
$x=y$, thus
$2 x^{2}=8^{2}-5^{2}$
$x=y=4.42 \mathrm{~m}$

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
x=y=4.42 \mathrm{~m}
$$

2-62.

Express each of the forces in Cartesian vector form and then determine the magnitude and coordinate direction angles of the resultant force

$$
\begin{aligned}
\mathbf{u}_{A B}=\frac{\mathbf{r}_{A B}}{\mathbf{r}_{A B}} & =\frac{\left(2 \cos 40^{\circ}-0\right) \mathbf{i}+\left[2 \sin 40^{\circ}-(-0.75)\right] \mathbf{j}+(0-3) \mathbf{k}}{2\left(2 \cos 40^{\circ}-0\right)^{2}+\left[2 \sin 40^{\circ}-(-0.75)\right]^{2}+(0-3)^{2}} \\
& =0.3893 \mathbf{i}+0.5172 \mathbf{j}-0.7622 \mathbf{k}
\end{aligned}
$$

$$
\mathbf{u}_{A C}=\frac{\mathbf{r}_{A C}}{\mathbf{r}_{A C}}=\frac{(2-0) \mathbf{i}+[-1-(-0.75)] \mathbf{j}+(0-3) \mathbf{k}}{2(2-0)^{2}+[-1-(-0.75)]^{2}+(0-3)^{2}}
$$

$$
=0.5534 \mathbf{i}-0.0692 \mathbf{j}-0.8301 \mathbf{k}
$$

Force Vectors

$\mathbf{F}_{A B}=\mathbf{F}_{A B} \mathbf{u}_{A B}=250(0.3893 \mathbf{i}+0.5172 \mathbf{j}-$
O.7622k)

$$
=\{97.32 \mathbf{i}+129.30 \mathbf{j}-
$$

$190.56 k\} \mathrm{N}$

$$
=\{97.3 \mathbf{i}+129 \mathbf{j}-191 \mathbf{k}\} \mathbf{N}
$$

$\mathbf{F}_{A C}=\mathbf{F}_{A C} \mathbf{u}_{A C}=400(0.5534 \mathbf{i}-0.06917 \mathbf{j}-$
O.8301k)

$$
\begin{aligned}
& =\{221.35 \mathbf{i}-27.67 \mathbf{j}-332.02 \mathbf{k}\} \\
& \mathrm{N}
\end{aligned}
$$

Ans.

Ans.

$$
=\{221 \mathbf{i}-27.7 \mathbf{j}-332 \mathbf{k}\} \mathrm{N}
$$

Resultant Force

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{A B}+\mathbf{F}_{A C} \\
& =\{97.32 \mathbf{i}+129.30 \mathbf{j}-\mathbf{1 9 0 . 5 6 \mathbf { k }}\}+\{221.35 \mathbf{i}-27.67 \mathbf{j}-332.02 \mathbf{k}\} \\
& =\{318.67 \mathbf{i}+101.63 \mathbf{j}-522.58 \mathbf{k}\} \mathbf{N}
\end{aligned}
$$

The magnitude of \mathbf{F}_{R} is

$$
\begin{aligned}
\mathbf{F}_{R}=2\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}+\left(F_{R}\right)_{z}^{2} & =2318.67^{2}+101.63^{2}+(-522.58)^{2} \\
& =620.46 \mathrm{~N}=620 \mathrm{~N}
\end{aligned}
$$

And its coordinate direction angles are

$$
\begin{array}{ll}
\cos \mathrm{a}=\begin{array}{c}
\left(F_{R}\right)_{x} \\
F_{R}
\end{array}=\frac{318.67}{620.46} ; & \mathrm{a}=59.10^{\circ}=59.1^{\circ} \\
\cos \mathrm{b}=\begin{array}{c}
\left(F_{R}\right)_{y} \\
F_{R}
\end{array}=\frac{101.63}{620.46} ; & \mathrm{b}=80.57^{\circ}=80.6^{\circ}
\end{array}
$$

Ans.

Ans.
$\left(F_{\underline{R}}\right)_{z} \quad-522.58$
$\cos \mathrm{g}={ }_{F_{R}}=620.46 ; \quad \mathrm{g}=147.38^{\circ}=147^{\circ}$

2-63.

If $F_{B}=560 \mathrm{~N}$ and $F_{C}=700 \mathrm{~N}$, determine the magnitude and coordinate direction angles of the resultant force acting on the flag pole.

SOLUTION

Force Vectors: The unit vectors \mathbf{u} and \mathbf{u} of \mathbf{F} and \mathbf{F} must be determined first. From Fig. a,

$$
\begin{aligned}
& \mathbf{u}_{B}=\frac{\mathbf{r}_{B}}{r_{B}}=\frac{\left.(2-0) \mathbf{i}+\left({ }_{-}^{3}-0\right) \mathbf{j}+{ }^{(0}-6\right) \mathbf{k}}{\sqrt{(2-0)^{2+}(-3-0)^{2+}(0-6)^{2}}}=\frac{{ }^{2}}{7}{ }^{2}-\frac{{ }^{3}}{7} \mathbf{j}_{-}{ }_{-}{ }^{6}{ }_{7}^{6}
\end{aligned}
$$

Thus, the force vectors $\underset{B}{=} \underline{F_{B}}$ and \mathbf{F}_{-}are given by
$\mathbf{F}_{C}=F_{C} \mathbf{u}_{C}=560\left({ }_{7}^{2} \mathbf{i}+{ }_{7}^{3} \mathbf{j}-{ }_{-7}^{6} \mathbf{k}\right)=\left\{160 \mathbf{i}+240 \mathbf{j}-480 \mathbf{k}_{\}} \mathbf{N}\right.$

Resultant Force: $+\quad\}$
F $\quad \mathbf{F} \quad \mathbf{F} \quad(160 \mathbf{i} \quad 240 \mathbf{j} \quad 480 \mathbf{k}) \quad(300 \mathbf{i} \quad 200 \mathbf{j} \quad 600 \mathbf{k})$
$F_{R}=\sqrt{60 \%} F_{R} x 40 \ddagger \quad F_{10080 \mathbf{k}^{+}} \mathrm{N}_{R} z$
The magnitude of \mathbf{F}-is +-

$$
\begin{gathered}
\left.\left(\begin{array}{c}
)^{2} \\
\alpha=\quad \\
-\left([46 \sigma)^{2} x\right. \\
F_{R} x
\end{array}\right] \Leftrightarrow 40\right)^{2}\binom{2}{(1080)}^{2}=1174.56 \mathrm{~N} \quad 1.17 \mathrm{kN}
\end{gathered}
$$

Ans.
(a)

The coordinde direction angles of \mathbf{F} are
$\beta=-\left[\begin{array}{c} \\ F_{R}\end{array}\right]=$
$\gamma={ }^{\cos }{ }^{1}-\left[\begin{array}{c}\left(\begin{array}{c}F_{R z} \\ F_{R}\end{array}\right]={ }^{\cos { }^{1}}-(\overline{460}\end{array}\right)=66.9^{\circ}$
$\cos ^{1} \underline{(\quad)} \cos ^{1} \frac{-40}{1174.56} \quad 92.0^{\circ}$
$\cos ^{1} \underline{(\quad)} \quad \cos ^{1} \frac{1080}{1174.56} \quad 157^{\circ}$
Ans.

Ans.

Ans.

[^7]
*2-64.

If $F_{B}=700 \mathrm{~N}$, and $F_{C}=560 \mathrm{~N}$, determine the magnitude and coordinate direction angles of the resultant force acting on the flag pole.

SOLUTION

Force Vectors: The unit vectors \mathbf{u} and \mathbf{u} of \mathbf{F} and \mathbf{F} must be determined first. From Fig. a,

$$
\begin{aligned}
& \left.\left.\mathbf{u} \quad \underline{\mathbf{r}} \quad \begin{array}{llllllllll}
(3 & 0
\end{array}\right) \mathbf{i} \quad \underline{6} 2 \quad 0\right) \dot{\mathbf{i}} \quad\left(\begin{array}{lllll}
0 & 6
\end{array}\right) \mathbf{k} \quad \underline{3}_{\mathbf{i}} \quad \underline{2}_{\mathbf{j}} \quad \underline{6}_{\mathbf{k}} \\
& \left.{ }_{B}=F_{B}{ }_{B}=\left(3(\theta)^{2}--(2-\theta)^{2}\right)=\left(\begin{array}{lllll}
0 & 6
\end{array}\right)^{2} \quad 7-7 \quad-7 \quad\right\}^{7}
\end{aligned}
$$

Thus, the force vectors \mathbf{F} and \mathbf{F} are given by

Resultant Force:

	(240i	160j	480k)
$=\sqrt{440 i} 140 \mathbf{j}^{-1080 \mathbf{k}^{+}} \mathrm{N}$		=	

(a)

The magnitude of \mathbf{F} is R
$\alpha=-\left(\left[\begin{array}{c}F_{R_{2} x} \\ {\underset{F}{R}}^{2}\end{array}\right] \neq\right)^{-2}\left((\quad)^{2}\right)=$
$\beta=--\left[\begin{array}{c}(440)_{R y}^{2} \\ F_{R}\end{array}\right]=-(140)^{2}\left(\begin{array}{c}(1080)^{2} \\ \end{array}\right)=1174.56 \mathrm{~N} \quad 1.17 \mathrm{kN}$
Ans.

The coordmate ${ }^{R}$ direction angles of \mathbf{F} are

$$
\begin{aligned}
& \cos ^{1} \underline{(\quad)} \quad \cos ^{1} \frac{-140}{1174.56} \quad 96.8^{\circ} \\
& \cos ^{1} \underline{(\quad)} \quad \cos ^{1} \frac{1080}{1174.56} \quad 157^{\circ}
\end{aligned}
$$

Ans.

Ans.

[^8]
2-65.

The plate is suspended using the three cables which exert the forces shown. Express each force as a Cartesian vector.

SOLUTION

$\mathbf{F}_{B A}=350\binom{\underline{\mathbf{r}}_{B A}}{\left(r_{B A}\right.}=350\left(-\frac{5}{16.031} \mathbf{i}+\frac{6}{16.031} \mathbf{j}+\frac{14}{16.031} \mathbf{k}\right)$

$$
=\{-109 \mathbf{i}+131 \mathbf{j}+306 \mathbf{k}\} \mathbf{l b}
$$

$$
\mathbf{F}_{C A}=500\binom{\mathbf{r}_{C A}}{r_{C A}}=500\left(\begin{array}{c}
3 \\
14.629
\end{array} \mathbf{i}_{14.629} \mathbf{j}+\begin{array}{c}
14 \\
14.629
\end{array} \mathbf{k}\right)
$$

$=\{103 \mathbf{i}+103 \mathbf{j}+479 \mathbf{k}\} \mathrm{lb}$
$\mathbf{F}_{D A}=400(\underset{D A}{(r})=400\left(-\frac{2}{15.362} \mathbf{i}-\frac{6}{15.362} \mathbf{j}+\frac{14}{15.362} \mathbf{k}\right)$
$=\{-52.1 \mathbf{i}-156 \mathbf{j}+365 \mathbf{k}\} \mathrm{lb}$

x

Ans.

Ans.

[^9]
2-66.

Represent each cable force as a Cartesian vector.

SOLUTION

$\mathbf{r}_{C}=(0-5) \mathbf{i}+(-2-0) \mathbf{j}+(3-0) \mathbf{k}=\{-5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}\} \mathrm{m}$
$r_{C}=2(-5)^{2}+(-2)^{2}+3^{2}=238 \mathrm{~m}$
$\mathbf{r}_{B}=(0-5) \mathbf{i}+(2-0) \mathbf{j}+(3-0) \mathbf{k}=\{-5 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}\} \mathrm{m}$
$r_{B}=2(-5)^{2}+2^{2}+3^{2}=238 \mathrm{~m}$
$\mathbf{r}_{E}=(0-2) \mathbf{i}+(0-0) \mathbf{j}+(3-0) \mathbf{k}=\{-2 \mathbf{i}+0 \mathbf{j}+3 \mathbf{k}\} \mathrm{m}$
$r_{E}=2(-2)^{2}+0^{2}+3^{2}=213 \mathrm{~m}$
$\mathbf{F}=F_{\mathbf{u}}=F\binom{\mathbf{r}}{r}$
$\mathbf{F}_{C}=400\binom{-5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}}{138}=\{-324 \mathbf{i}-130 \mathbf{j}+195 \mathbf{k}\} \mathrm{N}$
$\mathbf{F}_{B}=400\left(\frac{-5 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}}{138}\right)=\{-324 \mathbf{i}+130 \mathbf{j}+195 \mathbf{k}\} \mathbf{N}$
$\mathbf{F}_{E}=350\left(\frac{-2 \mathbf{i}+0 \mathbf{j}+3 \mathbf{k}}{\mathbf{1} 13}\right)=\{-194 \mathbf{i}+291 \mathbf{k}\} \mathrm{N}$

Ans.

Ans.

Ans.

Ans:
$\mathbf{F}_{C}=\{-324 \mathbf{i}-130 \mathbf{j}+195 \mathbf{k}\} \mathrm{N}$
$\mathbf{F}_{B}=\{-324 \mathbf{i}+130 \mathbf{j}+195 \mathbf{k}\} \mathbf{N}$
$\mathbf{F}_{E}=\{-194 \mathbf{i}+291 \mathbf{k}\} \mathrm{N}$

2-67.

Determine the magnitude and coordinate direction angles of the resultant force of the two forces acting at point A.

SOLUTION

$\mathbf{r}_{C}=(0-5) \mathbf{i}+(-2-0) \mathbf{j}+(3-0) \mathbf{k}=\{-5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}\}$
$r_{C}=2(-5)^{2}+(-2)^{2}+(3)^{2}=238 \mathrm{~m}$
$\mathbf{F}_{C}=400\left(\frac{\mathbf{r}_{C}}{r_{C}}\right)=400\left(\frac{(-5 \mathbf{i}-2 \mathbf{j}+\overline{3} \mathbf{k})}{\mathbf{1 3 8}}\right)$
$\mathbf{F}_{C}=(-324.4428 \mathbf{i}-129.777 \mathbf{j}+194.666 \mathbf{k})$
$\mathbf{r}_{B}=(0-5) \mathbf{i}+(2-0) \mathbf{j}+(3-0) \mathbf{k}=\{-5 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}\}$
$r_{B}=2(-5)^{2}+2^{2}+3^{2}=238 m$
$\mathbf{F}_{B}=400\left(\frac{\underline{\mathbf{r}}_{\underline{B}}}{r_{B}}\right)=400\left(\frac{(-5 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k})}{138}\right)$
$\mathbf{F}_{B}=(-324.443 \mathbf{i}+129.777 \mathbf{j}+194.666 \mathbf{k})$
$\mathbf{F}_{R}=\mathbf{F}_{C}+\mathbf{F}_{B}=(-648.89 \mathbf{i}+389.33 \mathbf{k})$
$F_{R}=2(-648.89)^{2}+(389.33)^{2}+0^{2}=756.7242$
$F_{R}=757 \mathrm{~N}$
$\mathrm{a}=\cos ^{-1}\left(\frac{-648.89}{756.7242}\right)=149.03=149^{\circ}$
$\mathrm{b}=\cos ^{-1}\left(\frac{0}{756.7242}\right)=90.0^{\circ}$
$\mathrm{g}=\cos ^{-1}\left(\frac{389.33}{756.7242}\right)=59.036=59.0^{\circ}$

Ans.
Ans.

Ans.

Ans.

Ans:
$F_{R}=757 \mathrm{~N}$
$\mathrm{a}=149^{\circ}$
$\mathrm{b}=90.0^{\circ}$
$\mathrm{g}=59.0^{\circ}$

*2-68.

The force \mathbf{F} has a magnitude of 80 lb and acts at the midpoint C of the rod. Express this force as a Cartesian vector.

SOLU'TIUN

$\mathbf{r}_{A B}=(-3 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k})$
$\mathbf{r}_{C B}={ }_{2}^{1} \mathbf{r}_{A B}=(-1.5 \mathbf{i}+1 \mathbf{j}+3 \mathbf{k})$
$\mathbf{r}_{C O}=\mathbf{r}_{B O}+\mathbf{r}_{C B}$
$=-6 \mathbf{k}-1.5 \mathbf{i}+1 \mathbf{j}+3 \mathbf{k}$
$r_{C O} \equiv 3.5 .5 \mathbf{i}+1 \mathbf{j}-3 \mathbf{k}$
$F=80\left(\frac{\mathbf{r}_{C O}}{r_{C O}}\right)=\{-34.3 \mathbf{i}+22.9 \mathbf{j}-\mathbf{6 8 . 6 k}\} \mathrm{lb}$

Ans.

Ans:
$F=\{-34.3 \mathbf{i}+22.9 \mathbf{j}-68.6 \mathbf{k}\} \mathrm{lb}$

2-69.

The load at A creates a force of 60 lb in wire $A B$. Express this force as a Cartesian vector.

SOLUTION

Unit Vector: First determine the position vector \mathbf{r}_{AB}. The coordinates of point B are
B $\left(5 \sin 30^{\circ}, 5 \cos 30^{\circ}, 0\right) \mathrm{ft}=\mathrm{B}(2.50,4.330,0) \mathrm{ft}$
Then
$\mathbf{r}_{\mathrm{AB}}=5(2.50-0) \mathbf{i}+(4.330-0) \mathbf{j}+[0-(-10)] \mathbf{k} 6 \mathrm{ft}$

$$
=52.50 \mathbf{i}+4.330 \mathbf{j}+10 \mathbf{k} 6 \mathrm{ft}
$$

$\mathrm{r}_{\mathrm{AB}}=32.50^{2}+4.330^{2}+10.0^{2}=11.180 \mathrm{ft}$
$\mathbf{u}_{\mathrm{AB}}=\frac{\mathbf{r}_{\mathrm{AB}}}{\mathrm{r}_{\mathrm{AB}}}=\frac{2.50 \mathbf{i}+4.330 \mathbf{j}+10 \mathbf{k}}{11.180}$

$$
=0.2236 \mathbf{i}+0.3873 \mathbf{j}+0.8944 \mathbf{k}
$$

Force Vector:

$\mathbf{F}=F \mathbf{u}_{\mathrm{AB}}=6050.2236 \mathbf{i}+0.3873 \mathbf{j}+0.8944 \mathbf{k} 6 \mathrm{lb}$

$$
=513.4 \mathbf{i}+23.2 \mathbf{j}+53.7 \mathbf{k} 6 \mathbf{l b}
$$

Ans.
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\mathbf{F}=\{13.4 \mathbf{i}+23.2 \mathbf{j}+53.7 \mathbf{k}\} \mathrm{lb}
$$

2-70.

Determine the magnitude and coordinate direction angles of the resultant force acting at point A on the post.

$$
F_{A C}=150 \mathrm{~N} \quad A \quad F_{A B}=200 \mathrm{~N}
$$

C

SOLUTION

O

Unit Vector. The coordinates for points A, B and C are $A(0,0,3) \mathrm{m}, B(2,4,0) \mathrm{m}$, and $C(-3,-4,0) \mathrm{m}$, respectively.
$\mathbf{r}_{A B}=(2-0) \mathbf{i}+(4-0) \mathbf{j}+(0-3) \mathbf{k}=\{2 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}\} \mathrm{m}$

$\mathbf{r}_{A C}=(-3-0) \mathbf{i}+(-4-0) \mathbf{j}+(0-3) \mathbf{k}=\{-3 \mathbf{i}-4 \mathbf{j}-3 \mathbf{k}\} \mathrm{m}$

Force Vectors

$\mathbf{F}_{A B}=\mathbf{F}_{A B} \mathbf{u}_{A B}=200\left(\begin{array}{c}2 \\ 2 \overline{29} \\ \mathbf{i}\end{array}+\begin{array}{c}4 \\ 2 \overline{29} \\ \mathbf{j}\end{array}-\begin{array}{c}3 \\ 22 \overline{29}\end{array} \mathbf{k}\right)$

$$
=\{74.28 \mathbf{i}+148.56 \mathbf{j}-\mathbf{1} \mathbf{1} \mathbf{1} .42 \mathbf{k}\} \mathrm{N}
$$

$\mathbf{F}_{A C}=\mathbf{F}_{A C} \mathbf{u}_{A C}=150\left(-\begin{array}{c}3 \\ 2 \overline{34}\end{array} \mathbf{i}-\begin{array}{c}4 \\ 23 \overline{4} \\ \mathbf{j}-\stackrel{3}{234}\end{array} \mathbf{k}\right)$

$$
=\{-77.17 \mathbf{i}-102.90 \mathbf{j}-77.17 \mathbf{k}\} \mathrm{N}
$$

Resultant Force

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{A B}+\mathbf{F}_{A C} \\
& =\{74.28 \mathbf{i}+148.56 \mathbf{j}-\mathbf{1} \mathbf{1} \mathbf{1} .42 \mathbf{k}\}+\{-77.17 \mathbf{i}-102.90 \mathbf{j}-77 . \mathbf{1} \mathbf{1} \mathbf{k}\} \\
& =\{-2.896 \mathbf{i}+45.66 \mathbf{j}-188.59 \mathbf{k}\} \mathbf{N}
\end{aligned}
$$

The magnitude of the resultant force is

$$
\begin{aligned}
F_{R}=2\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}+\left(F_{R}\right)_{z}^{2} & =2(-2.896)^{2}+45.66^{2}+(-188.59)^{2} \\
& =194.06 \mathrm{~N}=194 \mathrm{~N}
\end{aligned}
$$

Ans.

And its coordinate direction angles are

$$
\begin{aligned}
& \cos \mathrm{a}= \frac{\left(F_{\underline{R}}\right)_{\underline{x}}}{F_{R}}=\frac{-2.896}{194.06} ; \quad \mathrm{a}=90.86^{\circ}=90.9^{\circ} \\
& \cos \mathrm{b}=\left(F_{R}\right)_{y}=45.66 \\
& F_{R}=\frac{194.06}{} ; \quad \mathrm{b}=76.39^{\circ}=76.4^{\circ} \\
& \underline{\left(F_{\underline{R}}\right)_{\underline{z}}}+\underline{\underline{-188.59}}
\end{aligned}
$$

$\cos \mathrm{g}={ }_{F_{R}}=194.06 ; \quad \mathrm{g}=166.36^{\circ}=166^{\circ}$
Ans.

2-71.
Given the three vectors \mathbf{A}, \mathbf{B}, and \mathbf{D}, show that $\mathbf{A}^{\dagger}(\mathbf{B}+\mathbf{D})=\left(\mathbf{A}^{\dagger} \mathbf{B}\right)+\left(\mathbf{A}^{\dagger} \mathbf{D}\right)$.

SOLUTION

Since the component of $(\mathbf{B}+\mathbf{D})$ is equal to the sum of the components of \mathbf{B} and D, then

$$
\mathbf{A}^{\ddagger}(\mathbf{B}+\mathbf{D})=\mathbf{A}^{\dagger} \mathbf{B}+\mathbf{A}^{\ddagger} \mathbf{D}
$$

(QED)

Also,
$\mathbf{A}^{\dagger}(\mathbf{B}+\mathbf{D})=\left(\mathrm{A}_{\mathrm{x}} \mathbf{i}+\mathrm{A}_{\mathrm{y}} \mathbf{j}+\mathrm{A}_{\mathrm{z}} \mathbf{k}\right)^{\dagger}\left[\left(\mathrm{B}_{\mathrm{x}}+\mathrm{D}_{\mathrm{x}}\right) \mathbf{i}+\left(\mathrm{B}_{\mathrm{y}}+\mathrm{D}_{\mathrm{y}}\right) \mathbf{j}+\left(\mathrm{B}_{\mathrm{z}}+\mathrm{D}_{\mathrm{z}}\right) \mathbf{k}\right]$
$=A_{x}\left(B_{x}+D_{x}\right)+A_{y}\left(B_{y}+D_{y}\right)+A_{z}\left(B_{z}+D_{z}\right)$
$=\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right)+\left(A_{x} D_{x}+A_{y} D_{y}+A_{z} D_{z}\right)$
$=\left(\mathbf{A}^{\dagger} \mathbf{B}\right)+\left(\mathbf{A}^{\dagger} \mathbf{D}\right)$
(QED)

*2-72.
Determine the magnitudes of the components of $F=600 \mathrm{~N}$ acting along and perpendicular to segment $D E$ of the pipe assembly.

SOLUTION

Unit Vectors: The unit vectors $\mathbf{u}_{E B}$ and $\mathbf{u}_{E D}$ must be determined first. From Fig. a,
$\mathbf{u}_{\mathrm{EB}}=\frac{\mathbf{r}_{\mathrm{EB}}}{\mathrm{r}_{\mathrm{EB}}}=\frac{(0-4) \mathbf{i}+(2-5) \mathbf{j}+[0-(-2)] \mathbf{k}}{2(0-4)^{2}+(2-5)^{2}+[0-(-2)]^{2}}=-0.7428 \mathbf{i}-0.5571 \mathbf{j}+0.3714 \mathbf{k}$

$\mathbf{u}_{\mathrm{ED}}=-\mathbf{j}$

Thus, the force vector \mathbf{F} is given by
$\left.\mathbf{F}=F \mathbf{u}_{\mathrm{EB}}=600 \mathrm{~A}-0.7428 \mathbf{i}-0.5571 \mathbf{j}+0.3714 \mathbf{k}\right)=[-445.66 \mathbf{i}-334.25 \mathbf{j}+222.83 \mathbf{k}] \mathrm{N}$

Vector Dot Product: The magnitude of the component of \mathbf{F} parallel to segment $D E$ of the pipe assembly is

$$
\begin{aligned}
\left(\mathrm{F}_{\mathrm{ED}}\right)_{\text {paral }}=\mathbf{F}^{\ddagger} \mathbf{u}_{\mathrm{ED}} & =A-445.66 \mathbf{i}-334.25 \mathbf{j}+222.83 \mathbf{k} B^{\sharp} A-\mathbf{j} B \\
& =(-445.66)(0)+(-334.25)(-1)+(222.83)(0) \\
& =334.25=334 \mathrm{~N}
\end{aligned}
$$

Ans.

The component of \mathbf{F} perpendicular to segment $D E$ of the pipe assembly is

$$
\left(\mathrm{F}_{\mathrm{ED}}\right)_{\mathrm{per}}=\overline{2 \mathrm{~F}^{2}-\left(\mathrm{F}_{\mathrm{ED}}\right)_{\mathrm{paral}}{ }^{2}}=\overline{2600^{2}-334.25^{2}}=498 \quad \text { Ans. }
$$

Ans:

$\left(F_{E D}\right)_{\|]}=334 \mathrm{~N}$
$\left(F_{E D}\right)_{\#}=498 \mathrm{~N}$

2-73.
Determine the angle 0 between $B A$ and $B C$.

SOLUTION

Unit Vectors. Here, the coordinates of points A, B and C are $A(0,-2,0) \mathrm{m}$,
 $B(0,0,0) \mathrm{m}$ and $C(3,4,-1) \mathrm{m}$ respectively. Thus, the unit vectors along $B A$ and $B C$ are
$\mathbf{u}_{B A}=-\mathbf{j} \quad \mathbf{u}_{B E}=\frac{(3-0) \mathbf{i}+(4-0) \mathbf{j}+(-1-0) \mathbf{k}}{2(3-0)^{2}+(4-0)^{2}+(-1-0)^{2}}=\frac{3}{2 \overline{26}} \mathbf{i}+\frac{\mathbf{4}}{2 \overline{26}} \mathbf{j}-\frac{1}{2 \overline{26}} \mathbf{k}$
The Angle U Between $\boldsymbol{B A}$ and $\boldsymbol{B C}$.

$$
\begin{aligned}
& \mathbf{u}_{B A} \mathbf{u}_{B C}=(-\mathbf{j}){ }^{\ddagger} \overline{\left(\begin{array}{c}
3 \\
2 \overline{26}
\end{array}\right.} \mathbf{i}+\overline{{ }^{2}} \overline{26} \\
& \mathbf{j}-\overline{1} \\
& \frac{4}{226}\mathbf{k}) \\
&=(-1)(2 \overline{26})=-2 \overline{26}
\end{aligned}
$$

Then
4

$$
0=\cos ^{-1}\left(\mathbf{u}_{B A}^{\dagger} \mathbf{u}_{B C}\right)=\cos ^{-1}(-\underset{26}{ })=141.67^{\circ}=142^{\circ}
$$

Ans.

Ans:
$0=142^{\circ}$

2-74.
Determine the magnitude of the projected component of the 3 kN force acting along axis $B C$ of the pipe.

SOLUTION

Unit Vectors. Here, the coordinates of points B, C and D are $B(0,0,0) \mathrm{m}$,
 $C(3,4,-1) \mathrm{m}$ and $D(8,0,0)$. Thus the unit vectors along $B C$ and $C D$ are

$$
\begin{aligned}
& \mathbf{u}_{B C}=\frac{(3-0) \mathbf{i}+(4-0) \mathbf{j}+(-1-0) \mathbf{k}}{2(3-0)^{2}+(4-0)^{2}+(-1-0)^{2}}=\frac{3}{226} \mathbf{i}+\frac{4}{226} \mathbf{j}-\frac{1}{226} \mathbf{k} \\
& \mathbf{u}_{C D}=\frac{(8-3) \mathbf{i}+(0-4) \mathbf{j}+[0-(-1)] \mathbf{k}}{2(8-3)^{2}+(0-4)^{2}+[0-(-1)]^{2}}=\frac{5}{2 \overline{42}} \mathbf{i}-\overline{2 \overline{42}} \mathbf{j}+\frac{1}{2 \overline{42}} \mathbf{k}
\end{aligned}
$$

Force Vector. For F,

$$
\begin{aligned}
\mathbf{F}=F \mathbf{u}_{C D} & =\frac{3\left(\begin{array}{c}
5 \\
2 \overline{42}
\end{array} \frac{4}{2 \overline{42}} \mathbf{j}+\frac{1}{2 \overline{42}} \mathbf{k}\right)}{} \\
& =\left(\begin{array}{c}
15 \\
2 \overline{42}
\end{array} \mathbf{i}^{12}-\frac{12}{2 \overline{42}} \mathbf{j}+\frac{3}{2 \overline{42}} \mathbf{k}\right) \mathrm{kN}
\end{aligned}
$$

Projected Component of \mathbf{F}. Along $B C$, it is

$$
\begin{aligned}
& =(2 \overline{42})(2 \overline{26})+(-2 \overline{242})(2 \overline{26})+2 \overline{242}(-2 \overline{226} \\
& 6 \\
& =-2 \overline{1092}=-0.1816 \mathrm{kN}=0.182 \mathrm{kN} \\
& \text { Ans. }
\end{aligned}
$$

The negative signs indicate that this component points in the direction opposite to that of $\mathbf{u}_{B C}$.

Abstract

Ans: $\left(F_{B C}\right)=0.182 \mathrm{kN}$

2-75.
Determine the angle 0 between the two cables.

SOLUTION

Unit Vectors. Here, the coordinates of points A, B and C are $A(2,-3,3) \mathrm{m}$,
 $B(0,3,0)$ and $C(-2,3,4) \mathrm{m}$, respectively. Thus, the unit vectors along $A B$ and $A C$ are
$\mathbf{u}_{A B}=\frac{(0-2) \mathbf{i}+[3-(-3)] \mathbf{j}+(0-3) \mathbf{k}}{2(0-2)^{2}+[3-(-3)]^{2}+(0-3)^{2}}=-{ }_{7}^{2} \mathbf{i}+{ }_{7}^{6} \mathbf{j}-{ }_{7}^{3} \mathbf{k}$
$\mathbf{u}_{A C}=\frac{(-2-2) \mathbf{i}+[3-(-3)] \mathbf{j}+(4-3) \mathbf{k}}{\frac{2(-2-2)^{2}+[3-(-3)]^{2}+(4-}{3)^{2}}}=-\frac{4}{253} \mathbf{i}+\frac{6}{25 \overline{3}} \mathbf{j}+\frac{1}{253} \mathbf{k}$
The Angle U Between $A B$ and $A C$.

$$
\begin{aligned}
& \begin{array}{llllll}
2 & 6 & 3 & 4 & 6 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{2}{-7}\left(-\begin{array}{c}
4 \\
253
\end{array}\right)+{ }_{7}^{6}\binom{6}{253}+\left(-\frac{3}{7}\right)\binom{1}{253} \\
& ={ }_{725}^{41}
\end{aligned}
$$

Then

$$
0=\cos ^{-1}\left(\mathbf{u}_{A B}^{\dagger} \mathbf{u}_{A C}\right)=\cos ^{-1}\binom{41}{725 \overline{3}}=36.43^{\circ}=36.4^{\circ}
$$

Ans.
$0=36.4^{\circ}$
*2-76.
Determine the magnitude of the projection of the force \mathbf{F}_{1} along cable $A C$.

SOLUTION

Unit Vectors. Here, the coordinates of points A, B and C are $A(2,-3,3) \mathrm{m}, B(0,3,0)$ and $C(-2,3,4) \mathrm{m}$, respectively. Thus, the unit vectors along $A B$ and $A C$ are

$$
\begin{gathered}
\mathbf{u}_{A B}=\frac{(0-2) \mathbf{i}+[3-(-3)] \mathbf{j}+(0-3) \mathbf{k}}{2(0-2)^{2}+[3-(-3)]^{2}+(0-3)^{2}}=-{ }_{7}^{2} \mathbf{i}+{ }_{7}^{6} \mathbf{j}-{ }_{7}^{3} \mathbf{k} \\
\mathbf{u}_{A C}=\frac{(-2-2) \mathbf{i}+[3-(-3)] \mathbf{j}+(4-3) \mathbf{k}}{\frac{2 \overline{(-2-2)^{2}+[3-(-3)]^{2}+(4-}}{3)^{2}}}=-\frac{4}{2 \overline{53}} \mathbf{i}+\frac{6}{25 \overline{3}} \mathbf{j}+\frac{1}{2 \overline{53}} \mathbf{k}
\end{gathered}
$$

Force Vector, For \mathbf{F}_{1},

$$
\mathbf{F}_{1}=\mathbf{F}_{1} \mathbf{u}_{A B}=70\left(-\frac{2}{7} \mathbf{i}+{ }_{7}^{6} \mathbf{j}-\frac{3}{7} \mathbf{k}\right)=\{-20 \mathbf{i}+60 \mathbf{j}-3 \mathbf{O} \mathbf{k}\} \mathrm{N}
$$

Projected Component of $\mathbf{F}_{\mathbf{1}}$. Along $A C$, it is

$$
\begin{aligned}
& \left(F_{1}\right)_{A C}=\mathbf{F}_{1}^{\ddagger} \mathbf{u}_{A C}=(-20 \mathbf{i}+60 \mathbf{j}-30 \mathbf{k})^{\ddagger}\left(-\frac{4}{2 \overline{53}} \mathbf{i}+\begin{array}{c}
6 \\
25 \overline{3} \\
\mathbf{j}
\end{array}+\frac{1}{253} \mathbf{k}\right) \\
& 4 \\
& 6 \\
& 1 \\
& =(-20)(-2 \overline{53})+60(2 \overline{53})+(-30)(2 \overline{53}) \\
& =56.32 \mathrm{~N}=56.3 \mathrm{~N}
\end{aligned}
$$

Ans.
The positive sign indicates that this component points in the same direction as $\mathbf{u}_{A C}$.

> Ans:
> $\left(F_{1}\right)_{A C}=56.3 \mathrm{~N}$

2-77.

Determine the angle 0 between the pole and the wire $A B$.

SOLUTION

Position Vector:

$$
\begin{aligned}
\mathbf{r}_{\mathrm{AC}} & =5-3 \mathbf{j} 6 \mathrm{ft} \\
\mathbf{r}_{\mathrm{AB}} & =512-02 \mathbf{i}+12-32 \mathbf{j}+1-2-02 \mathbf{k} 6 \mathrm{ft} \\
& =52 \mathbf{i}-1 \mathbf{j}-2 \mathbf{k} 6 \mathrm{ft}
\end{aligned}
$$

The magnitudes of the position vectors are

$$
\mathrm{r}_{\mathrm{AC}}=3.00 \mathrm{ft} \quad \mathrm{r}_{\mathrm{AB}}=22^{2}+1-12^{2}+1-22^{2}=3.00 \mathrm{ft}
$$

The Angles Between Two Vectors U: The dot product of two vectors must be determined first.

$$
\begin{aligned}
\mathbf{r}_{\mathrm{AC}}{ }^{\dagger} \mathbf{r}_{\mathrm{AB}} & =1-3 \mathbf{j} 2^{\dagger} 12 \mathbf{i}-1 \mathbf{j}-2 \mathbf{k} 2 \\
& =0122+1-321-12+01-22 \\
& =3
\end{aligned}
$$

Then,

$$
\left.\mathrm{u}=\cos ^{-1} \frac{\mathbf{r}_{\mathrm{AO}}{ }^{\dagger} \mathbf{r}_{\mathrm{AB}}}{\left(\mathbf{r}_{\mathrm{AO}} \mathbf{r}_{\mathrm{AB}}\right.}\right)=\cos ^{-1} \frac{3}{\left[\begin{array}{r}
3.00 \\
\\
(\mathrm{l}, 00
\end{array}\right]}=70.5^{\circ}
$$

Ans.

2-78.

SOLUTION

Unit Vectors: The unit vectors \mathbf{u}_{OA} and \mathbf{u}_{u} must be determined first. From Fig. a,

$$
\begin{aligned}
& \mathbf{u}_{\mathrm{OA}}=\frac{\mathbf{r}_{\mathrm{OA}}}{\mathrm{r}_{\mathrm{OA}}}=\frac{(-2-0) \mathbf{i}+(4-0) \mathbf{j}+(4-0) \mathbf{k}}{3(-2-0)^{2}+(4-0)^{2}+(4-0)^{2}}=-\frac{1}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k} \\
& \mathbf{u}_{\mathbf{u}}=\sin 30^{\circ} \mathbf{i}+\cos 30^{\circ} \mathbf{j}
\end{aligned}
$$

Thus, the force vectors \mathbf{F} is given by

$$
\mathbf{F}=\mathrm{F} \mathbf{u}_{\mathrm{OA}}=600 \mathrm{a}-\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+{ }_{3}^{2} \mathbf{k} \mathbf{b}=5-200 \mathbf{i}+400 \mathbf{j}+400 \mathbf{k} 6 \mathrm{~N}
$$

Vector Dot Product: The magnitude of the projected component of \mathbf{F} along the u axis is

$$
\begin{aligned}
\mathbf{F}_{u}=\mathbf{F}^{\dagger} \mathbf{u}_{u} & =(-200 \mathbf{i}+400 \mathbf{j}+400 \mathbf{k})^{\frac{\eta}{i}}\left(\sin 30^{\circ} \mathbf{i}+\cos 30^{\circ} \mathbf{j}\right) \\
& =(-200)\left(\sin 30^{\circ}\right)+400\left(\cos 30^{\circ}\right)+400(0) \\
& =246 \mathrm{~N}
\end{aligned}
$$

Ans.

Ans:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\mathbf{F}_{u}=246 \mathrm{~N}
$$

2-79.

Determine the magnitude of the projected component of the $100-\mathrm{lb}$ force acting along the axis $B C$ of the pipe.

SOLUTION

$$
\mathrm{F}_{p}=10.5 \mathrm{lb}
$$

$$
\begin{aligned}
& \mathrm{g}_{B C}=5 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}} 6 \mathrm{ft} \\
& \wedge \wedge \wedge \\
& F=100 \frac{5-6 i+8 j+2 k 6}{2(-6)^{2}+8^{2}+2^{2}} \\
& =5-58.83 \hat{i}+78.45 \hat{j}+19.61 \mathrm{k} 6 \mathrm{lb} \\
& \mathrm{~F}_{p}=\mathrm{F} \quad \mathrm{~m}_{B C}=\frac{\mathrm{F}}{\mathrm{~F}}{ }^{-\mathrm{F}_{B C}}=\overline{-78.45}=-10.48 \\
& \left|{ }^{\text {F }}{ }_{B C}\right|
\end{aligned}
$$

Ans.

*2-80.

Determine the angle 0 between pipe segments $B A$ and $B C$.

SOLUTION

${ }^{-1} B C=56 \hat{i}+4 \hat{\mathrm{j}}-2 \hat{6}$
$\frac{1}{5}$
$B A=5-3 \mathrm{i} 6 \mathrm{ft}$
要
$0=\cos ^{-1}\left(\frac{B C}{\left.\left|\frac{B A}{B_{B C}}\right|| |_{B A} \right\rvert\,}\right)=\cos ^{-1}\left(\frac{-18}{22.45}\right)$
$0=143^{\circ}$

Ans.

Ans:

$0=143^{\circ}$

2-81.

Determine the angle 0 between the two cables.

SOLUTION

$$
\begin{aligned}
0 & =\cos ^{-1}\left(\overline{\mathbf{r}_{A C}^{\dagger} \mathbf{r}_{A B}}\right) \\
& =\cos ^{-1}{ }^{\mathrm{r}_{A C}{ }^{r_{A B}}(2 \mathbf{i}-8 \mathbf{j}+10 \mathbf{k})^{\dagger}(-6 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k})} \\
& =\cos ^{-1}\binom{12}{96.99} \\
0 & =82.9^{\circ}
\end{aligned}
$$

x

Ans.

Ans:
$0=82.9^{\circ}$

2-82.

Determine the projected component of the force acting in the direction of cable $A C$. Express the result as a Cartesian vector.

SOLUTION

$$
\begin{aligned}
& \mathbf{r}_{A C}=\{2 \mathbf{i}-8 \mathbf{j}+10 \mathbf{k}\} \mathrm{ft} \\
& \mathbf{r}_{A B}=\{-6 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k}\} \mathrm{ft} \\
& \mathbf{F}_{A B}=12\left({\underset{A B}{(r})}_{r_{A B}}=12\left(-\frac{6}{7.483} \mathbf{i}+\frac{2}{7.483} \mathbf{j}+\frac{4}{7.483} \mathbf{k}\right)\right.
\end{aligned}
$$

\qquad
\qquad
\qquad
$\mathbf{F}_{A B}=\{-9.621 \mathbf{i}+3.207 \mathbf{j}+6.414 \mathbf{k}\} \mathrm{lb}$
$\mathbf{u}_{A C}=\begin{gathered}2 \\ 12.961 \\ \mathbf{i} \\ 12.961 \\ \mathbf{j}+\underset{12.961}{10} \\ k\end{gathered}$
Proj $F_{A B}=\mathbf{F}_{A B}{ }^{\dagger} \mathbf{u}_{A C}=-9.621\binom{2}{12.961}+3.207\binom{8}{12.961}+6.414\binom{10}{12.961}$
$=1.4846$ \qquad
\qquad
\qquad
$\operatorname{Proj} \mathbf{F}_{A B}=F_{A B} \mathbf{u}_{A C}$
$\operatorname{Proj} \mathbf{F}_{A B}=(1.4846){ }_{\mathrm{c}}^{\mathrm{c}}{ }_{12.962}^{2} \mathbf{i}-\underset{12.962}{8} \mathbf{j}+\underset{12.962}{10} \mathbf{k d}$
Proj $\mathbf{F}_{A B}=\{0.229 \mathbf{i}-0.916 \mathbf{j}+1.15 \mathbf{k}\} \mathrm{lb}$

Ans.

Ans:

$\operatorname{Proj} \mathbf{F}_{A B}=\{0.229 \mathbf{i}-0.916 \mathbf{j}+1.15 \mathbf{k}\} \mathrm{lb}$

2-83.
Determine the angles 0 and \mathbf{f} between the flag pole and the cables $A B$ and $A C$.

SOLUTION

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{AC}}=\{-2 \mathbf{i}-4 \mathbf{j}+1 \mathbf{k}\} \mathrm{m} ; \quad \mathrm{r}_{\mathrm{AC}}=4.58 \mathrm{~m} \\
& \mathbf{r}_{\mathrm{AB}}=\{1.5 \mathbf{i}-4 \mathbf{j}+3 \mathbf{k}\} \mathrm{m} ; \quad \mathrm{r}_{\mathrm{AB}}=5.22 \mathrm{~m} \\
& \mathbf{r}_{\mathrm{AO}}=\{-4 \mathbf{j}-\mathbf{3} \mathbf{k}\} \mathrm{m} ; \quad \mathrm{r}_{\mathrm{AO}}=5.00 \\
& m \mathbf{r}_{\mathrm{AB}}{ }^{\dagger} \mathbf{r}_{\mathrm{AO}}=(1.5)(0)+(-4)(-4)+(3)(-3)= \\
& 7 \\
& u=\cos ^{-1} \underline{\underline{\mathbf{r}}} \underline{\underline{A B}} \underline{\mathbf{r}_{A O}} \\
& \mathrm{r}_{\mathrm{AB}} \mathrm{r}_{\mathrm{AO}} \leq \\
& =\cos ^{-1} \phi \frac{7}{5.22(5.00)} \leq=74.4^{\circ} \\
& \mathbf{r}_{\mathrm{AC}}{ }^{\dagger} \mathbf{r}_{\mathrm{AO}}=(-2)(0)+(-4)(-4)+(1)(-3)=13 \\
& \underline{\mathbf{r}}_{\underline{A C}} \underline{\underline{r}}_{\underline{A O}} \\
& \mathbf{f}=\cos ^{-1} \mathrm{a}_{\mathrm{r}_{\mathrm{AC}} \mathrm{r}_{\mathrm{AO}}} \mathrm{~b} \\
& =\cos ^{-1} \mathrm{a} \frac{13}{4.58(5.00)} \mathrm{b}=55.4^{\circ}
\end{aligned}
$$

Ans.

Ans.

Ans:
$0=74.4^{\circ}$
$\mathbf{f}=55.4^{\circ}$
*2-84.
Determine the magnitudes of the components of \mathbf{F} acting along and perpendicular to segment $B C$ of the pipe assembly.

SOLUTION

$$
\mathbf{u}_{C B}=\frac{\mathbf{r}_{C B}}{\mathbf{r}_{C B}}=\frac{(3-7) \mathbf{i}+(4-6) \mathbf{j}+[0-(-4)] \mathbf{k}}{3(3-7)^{2}+(4-6)^{2}+[0-(-4)]^{2}}=-\frac{2}{3} \mathbf{i}-\frac{1}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}
$$

Vector Dot Product: The magnitude of the projected component of \mathbf{F} parallel to segment $B C$ of the pipe assembly is

$$
\begin{aligned}
\left(\mathrm{F}_{\mathrm{BC}}\right)_{\mathrm{pa}} & =\mathbf{F}^{\dagger} \mathbf{u}_{C B}=(30 \mathbf{i}-45 \mathbf{j}+50 \mathbf{k})^{\ddagger} \phi-\frac{3}{-3} \mathbf{i}-{ }_{-3}^{1} \mathbf{j}+{ }_{-}^{2} \mathbf{k} \leq \\
& =(30) \phi-{ }_{3}^{2} \leq+(-45) \phi-{ }_{3}^{1} \leq+50 \phi_{3}^{2} \leq \\
& =28.33 \mathrm{lb}=28.3 \mathrm{lb}
\end{aligned}
$$

Ans.

The magnitude of \mathbf{F} is $\mathbf{F}=3 \overline{30^{2}+(-45)^{2}+50^{2}}=25425 \mathrm{lb}$. Thus, the magnitude of the component of \mathbf{F} perpendicular to segment $B C$ of the pipe assembly can be determined from

$$
\begin{aligned}
&\left(\mathrm{F}_{\mathrm{BC}}\right)_{\mathrm{per}}=3 \overline{\mathrm{~F}}^{2}-\left(\mathrm{F}_{\mathrm{BC}}\right)_{\mathrm{pa}}^{2}=25425- \\
& 28.33^{2}
\end{aligned}
$$

Ans.

Ans:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& \left(F_{B C}\right)_{[]}=28.3 \mathrm{lb} \\
& \left(F_{B C}\right)_{\#}=68.0 \mathrm{lb}
\end{aligned}
$$

2-85.

Determine the magnitude of the projected component of \mathbf{F} along line $A C$. Express this component as a Cartesian vector.

SOLUTION

$\begin{aligned} & \mathbf{u}_{A C}=(7-0) \mathbf{i}+(6-0) \mathbf{j}+(-4-0) \mathbf{k} \\ & \mathbf{O} .3980 \mathbf{k}\end{aligned}=0.6965 \mathbf{i}+0.5970 \mathbf{j}-$
$3(7-0)^{2}+(6-0)^{2}+(-4-0)^{2}$

Vector Dot Product: The magnitude of the projected component of \mathbf{F} along line $A C$ is

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{F}_{\mathrm{AC}}=\mathbf{F}^{\ddagger} \mathbf{u}_{A C}=(30 \mathbf{i}-45 \mathbf{j}+50 \mathbf{k})^{\ddagger}(0.6965 \mathbf{i}+0.5970 \mathbf{j}- \\
\quad \text { O. } 398 \text { Ok })
\end{array} \\
& =(30)(0.6965)+(-45)(0.5970)+50(-0.3980) \\
& =25.87 \mathrm{lb}
\end{aligned}
$$

Ans.
Thus, \mathbf{F}_{AC} expressed in Cartesian vector form is

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{AC}}=F_{A C} \mathbf{u}_{A C}=-25.87(0.6965 \mathbf{i}+0.5970 \mathbf{j}- \\
& \text { O. } 398 \mathrm{O} \mathbf{k})
\end{aligned}
$$

$$
=\{-18.0 \mathbf{i}-15.4 \mathbf{j}+10.3 \mathbf{k}\} \mathbf{l b}
$$

(a)

Ans:

$F_{A C}=25.87 \mathrm{lb}$
$F_{A C}=\{-18.0 \mathbf{i}-15.4 \mathbf{j}+10.3 \mathbf{k}\} \mathrm{lb}$

2-86.
Determine the angle 0 between the pipe segments $B A$ and $B C$.

SOLUTION

Position Vectors: The position vectors \mathbf{r}_{BA} and \mathbf{r}_{BC} must be determined first. From Fig. a,

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{BA}}=(0-3) \mathbf{i}+(0-4) \mathbf{j}+(0-0) \mathbf{k}=\{-3 \mathbf{i}-4 \mathbf{j}\} \mathrm{ft} \\
& \mathbf{r}_{\mathrm{BC}}=(7-3) \mathbf{i}+(6-4) \mathbf{j}+(-4-0) \mathbf{k}=\{4 \mathbf{i}+\mathbf{2} \mathbf{j}-\mathbf{4} \mathbf{k}\} \mathrm{ft}
\end{aligned}
$$

The magnitude of \mathbf{r}_{BA} and \mathbf{r}_{BC} are

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{BA}}=3 \overline{(-3)^{2}+(-4)^{2}}=5 \mathrm{ft} \\
& \mathbf{r}_{\mathrm{BC}}=3 \overline{4^{2}+2^{2}+(-4)^{2}}=6 \mathrm{ft}
\end{aligned}
$$

Vector Dot Product:

$$
\begin{aligned}
\mathrm{r}_{\mathrm{BA}}{ }^{\dagger} \mathbf{r}_{\mathrm{BC}} & =(-3 \mathbf{i}-4 \mathbf{j})^{\ddagger}(4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}) \\
& =(-3)(4)+(-4)(2)+0(-4) \\
& =-20 \mathrm{ft}^{2}
\end{aligned}
$$

(a)

Thus,

$$
\begin{gathered}
\mathrm{u}=\cos ^{-1} \mathrm{a}-\underline{\mathbf{r}_{\mathrm{BA}}}-\underline{\mathbf{r}}_{B C} \mathrm{~b}=\cos ^{-1} \mathrm{c} \frac{-20}{d}=132^{\circ} \\
\mathbf{r}_{\mathrm{BA}} \mathbf{r}_{B C}
\end{gathered}
$$

Ans.

Ans:

$0=132^{\circ}$

2-87.
If the force $F=100 \mathrm{~N}$ lies in the plane $D B E C$, which is parallel to the $x-z$ plane, and makes an angle of 10° with the extended line $D B$ as shown, determine the angle that \mathbf{F} makes with the diagonal $A B$ of the crate.

SOLUTION

Use the x, y, z axes.

$$
-0.5 \mathbf{i}+0.2 \mathbf{j}+0.2 \mathbf{k}
$$

$$
\mathbf{u}_{A B}=(\quad 0.57446)
$$

$$
=-0.8704 \mathbf{i}+0.3482 \mathbf{j}+0.3482 \mathbf{k}
$$

$$
\mathbf{F}=-100 \cos 10^{\circ} \mathbf{i}+100 \sin 10^{\circ} \mathbf{k}
$$

$$
0=\cos ^{-1}\left(\frac{\mathbf{F}^{-}-\underline{A B}}{F}\right)
$$

$=\cos ^{-1}\left(\frac{-100\left(\cos 10^{\circ}\right)(-0.8704)+0+100 \sin 10^{\circ}(0.3482)}{100(1)}\right)$
$=\cos ^{-1}(0.9176)=23.4^{\circ}$

Ans.

Ans:
$0=23.4^{\circ}$

*2-88.

Determine the masiatitudesofotheremonpentenef the force
 of the crate.

SOLUTION

Force and Unit Vector: The force vector \mathbf{F} and unit vector $\mathbf{u}_{A B}$ must be determined first. From Fig. a,

$$
\begin{aligned}
\mathbf{F} & =90\left(-\cos 60^{\circ} \sin 45^{\circ} \mathbf{i}+\cos 60^{\circ} \cos 45^{\circ} \mathbf{j}+\sin 60^{\circ} \mathbf{k}\right) \\
& =\{-31.82 \mathbf{i}+31.82 \mathbf{j}+77.94 \mathbf{k}\} \mathrm{lb} \\
\mathbf{u}_{A B} & =\frac{\mathbf{r}_{A B}}{\mathbf{r}_{\mathrm{AB}}}=\frac{(0-1.5) \mathbf{i}+(3-0) \mathbf{j}+(1-0) \mathbf{k}}{3(0-1.5)^{2}+(3-0)^{2}+(1-0)^{2}}=-\frac{3}{7} \mathbf{i}-\frac{6}{7} \mathbf{j}+\frac{2}{7} \mathbf{k}
\end{aligned}
$$

Vector Dot Product: The magnitude of the projected component of \mathbf{F} parallel to the diagonal $A B$ is

$$
\begin{aligned}
{\left[(\mathrm{F})_{\mathrm{AB}}\right]_{\mathrm{pa}} } & =\mathbf{F}^{\ddagger} \mathbf{u}_{A B}=(-31.82 \mathbf{i}+31.82 \mathbf{j}+77.94 \mathbf{k})^{\ddagger}{ }^{\phi}{ }^{\phi}-\frac{7}{\underline{7}} \mathbf{i}+{ }_{\underline{7}}^{6} \mathbf{j}+{ }_{\underline{7}}^{2} \mathbf{k} \leq \\
& =(-31.82) \phi-{ }_{7}^{3} \leq+31.82 \not \phi_{7}^{6} \leq+77.94 ф_{7}^{2} \leq \\
& =63.18 \mathrm{lb}=63.2 \mathrm{lb}
\end{aligned}
$$

Ans.

The magnitude of the component \mathbf{F} perpendicular to the diagonal $A B$ is

$$
\begin{array}{r}
{\left[(\mathrm{F})_{\mathrm{AB}}\right]_{\mathrm{per}}=3 \overline{\mathrm{~F}}^{2}-\left[(\mathrm{F})_{\mathrm{AB}}\right]_{\mathrm{pa}}^{2}=2 \overline{90^{2}-} \frac{-}{\mathbf{6 3 . 1}}} \\
\mathbf{8}^{2}
\end{array}=64.1 \mathrm{lb}
$$

```
Ans:
\(3(F)_{A B} 4_{\|]}=63.2 \mathrm{lb}\)
\(3(F)_{A B} 4_{\#}=64.1 \mathrm{lb}\)
```


2-89.

Determine the magnitudes of the projected components of the force acting along the x and y axes.

SOLUTION

Force Vector: The force vector \mathbf{F} must be determined first. From Fig. a,

$$
\begin{aligned}
\mathbf{F} & =-300 \sin 30^{\circ} \sin 30^{\circ} \mathbf{i}+300 \cos 30^{\circ} \mathbf{j}+300 \sin 30^{\circ} \cos 30^{\circ} \mathbf{k} \\
& =[-75 \mathbf{i}+259.81 \mathbf{j}+129.90 \mathbf{k}] \mathrm{N}
\end{aligned}
$$

Vector Dot Product: The magnitudes of the projected component of \mathbf{F} along the x and y axes are

$$
\begin{aligned}
\mathrm{F}_{\mathrm{x}} & =\mathbf{F}^{\ddagger} \mathbf{i}=A-75 \mathbf{i}+259.81 \mathbf{j}+129.90 \mathbf{k}^{\ddagger} \mathbf{i} \\
& =-75(1)+259.81(0)+129.90(0) \\
& =-75 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{y}} & =\mathbf{F}^{\ddagger} \mathbf{j}=A-75 \mathbf{i}+259.81 \mathbf{j}+129.90 \mathbf{k}^{\ddagger} \mathbf{j} \\
& =-75(0)+259.81(1)+129.90(0) \\
& =260 \mathrm{~N}
\end{aligned}
$$

The negative sign indicates that \mathbf{F}_{x} is directed towards the negative x axis. Thus

$$
\mathrm{F}_{\mathrm{x}}=75 \mathrm{~N}, \quad \mathrm{~F}_{\mathrm{y}}=260 \mathrm{~N}
$$

Ans.
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
\begin{aligned}
& F_{x}=75 \mathrm{~N} \\
& F_{y}=260 \mathrm{~N}
\end{aligned}
$$

2-90.

Determine the magnitude of the projected component of the force acting along line $O A$.

SOLUTION

Force and Unit Vector: The force vector \mathbf{F} and unit vector $\mathbf{u}_{O A}$ must be determined first. From Fig. a,
$\mathbf{F}=\left(-300 \sin 30^{\circ} \sin 30^{\circ} \mathbf{i}+300 \cos 30^{\circ} \mathbf{j}+300 \sin 30^{\circ} \cos 30^{\circ} \mathbf{k}\right)$
$=\{-75 \mathbf{i}+259.81 \mathbf{j}+129.90 \mathbf{k}\} \mathrm{N}$
$\mathbf{u}_{\mathrm{OA}}=\frac{\mathbf{r}_{\mathrm{OA}}}{\mathrm{r}_{\mathrm{OA}}}=\frac{(-0.45-0) \mathbf{i}+(0.3-0) \mathbf{j}+(0.2598-0) \mathbf{k}}{2(-0.45-0)^{2}+(0.3-0)^{2}+(0.2598-0)^{2}}=-0.75 \mathbf{i}+0.5 \mathbf{j}+0.4330 \mathbf{k}$

Vector Dot Product: The magnitude of the projected component of \mathbf{F} along line $O A$ is

$$
\begin{aligned}
\mathrm{F}_{\mathrm{OA}}=\mathbf{F}^{\ddagger} \mathbf{u}_{\mathrm{OA}} & =A-75 \mathbf{i}+259.81 \mathbf{j}+129.90 \mathbf{k} B-0.75 \mathbf{i}+0.5 \mathbf{j}+0.4330 \mathbf{k} B \\
& =(-75)(-0.75)+259.81(0.5)+129.90(0.4330) \\
& =242 \mathrm{~N}
\end{aligned}
$$

Ans.

Ans:
 $F_{O A}=242 \mathrm{~N}$

2-91.
Two cables exert forces on the pipe. Determine the magnitude of the projected component of \mathbf{F}_{1} along the line of action of \mathbf{F}_{2}.

SOLUTION

Force Vector:

$$
\begin{aligned}
\mathbf{u}_{F_{1}} & =\cos 30^{\circ} \sin 30^{\circ} \mathbf{i}+\cos 30^{\circ} \cos 30^{\circ} \mathbf{j}-\sin 30^{\circ} \mathbf{k} \\
& =0.4330 \mathbf{i}+0.75 \mathbf{j}-0.5 \mathbf{k} \\
\mathbf{F}_{1}=F_{R} \mathbf{u}_{F_{1}} & =30(0.4330 \mathbf{i}+0.75 \mathbf{j}-0.5 \mathbf{k}) \mathrm{lb} \\
& =\{12.990 \mathbf{i}+22.5 \mathbf{j}-\mathbf{1 5 . O \mathbf { k } \} \mathrm { lb }}
\end{aligned}
$$

Unit Vector: One can obtain the angle $\mathrm{a}=135^{\circ}$ for \mathbf{F}_{2} using Eq. 2-8. $\cos ^{2} \mathrm{a}+\cos ^{2} \mathrm{~b}+\cos ^{2} \mathrm{~g}=1$, with $\mathrm{b}=60^{\circ}$ and $\mathrm{g}=60^{\circ}$. The unit vector along the line of action of \mathbf{F}_{2} is

$$
\mathbf{u}_{F_{2}}=\cos 135^{\circ} \mathbf{i}+\cos 60^{\circ} \mathbf{j}+\cos 60^{\circ} \mathbf{k}=-0.7071 \mathbf{i}+0.5 \mathbf{j}+0.5 \mathbf{k}
$$

Projected Component of \mathbf{F}_{1} Along the Line of Action of F_{2} :

$$
\begin{aligned}
\left(F_{1}\right)_{F_{2}}=\mathbf{F}_{1}{ }^{\dagger} \mathbf{u}_{F_{2}} & =(12.990 \mathbf{i}+22.5 \mathbf{j}-15.0 \mathbf{k})^{\dagger}(-0.7071 \mathbf{i}+0.5 \mathbf{j}+0.5 \mathbf{k}) \\
& =(12.990)(-0.7071)+(22.5)(0.5)+(-15.0)(0.5) \\
& =-5.44 \mathrm{lb}
\end{aligned}
$$

Negative sign indicates that the projected component of $\left(\mathrm{F}_{1}\right)_{\mathrm{F}_{2}}$ acts in the opposite sense of direction to that of $\mathbf{u}_{\mathrm{F}_{2}}$.
The magnitude is $\left(\mathrm{F}_{1}\right)_{\mathrm{F}_{2}}=5.44 \mathrm{lb}$
Ans.

Ans:
The magnitude is $\left(F_{1}\right)_{F_{2}}=5.44 \mathrm{lb}$
*2-92.
Determine the angle 0 between the two forces.

SOLUTION

Unit Vectors:

$$
\begin{aligned}
\mathbf{u}_{\mathrm{F}_{1}} & =\cos 30^{\circ} \sin 30^{\circ} \mathbf{i}+\cos 30^{\circ} \cos 30^{\circ} \mathbf{j}-\sin 30^{\circ} \mathbf{k} \\
& =0.4330 \mathbf{i}+0.75 \mathbf{j}-0.5 \mathbf{k} \\
\mathbf{u}_{\mathrm{F}_{2}} & =\cos 135^{\circ} \mathbf{i}+\cos 60^{\circ} \mathbf{j}+\cos 60^{\circ} \mathbf{k} \\
& =-0.7071 \mathbf{i}+0.5 \mathbf{j}+0.5 \mathbf{k}
\end{aligned}
$$

The Angles Between Two Vectors u:

$$
\begin{aligned}
\mathbf{u}_{\mathrm{F}_{1}}{ }^{\dagger} \mathbf{u}_{\mathrm{F}_{2}} & =(0.4330 \mathbf{i}+0.75 \mathbf{j}-0.5 \mathbf{k})^{\ddagger}(-0.7071 \mathbf{i}+0.5 \mathbf{j}+0.5 \mathbf{k}) \\
& =0.4330(-0.7071)+0.75(0.5)+(-0.5)(0.5) \\
& =-0.1812
\end{aligned}
$$

Then,

$$
\mathrm{u}=\cos ^{-1} A \mathbf{u}_{\mathrm{F}}{ }^{\dagger} \mathbf{u}_{\mathrm{F}} \mathrm{~B}=\cos ^{-1}(-0.1812)=100^{\circ}
$$

Ans.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$
0=100^{\circ}
$$

*R2-4.

The cable exerts a force of 250 lb on the crane boom as shown. Express this force as a Cartesian vector.

SOLUTION

Cartesian Vector Notation: With $\mathrm{a}=30^{\circ}$ and $\mathrm{b}=70^{\circ}$, the third coordinate direction angle g can be determined using Eq. 2-8.

$$
\begin{gathered}
\cos ^{2} a+\cos ^{2} b+\cos ^{2} y=1 \\
\cos ^{2} 30^{\circ}+\cos ^{2} 70^{\circ}+\cos ^{2} y=1
\end{gathered}
$$

$$
\cos y=; 0.3647
$$

$$
\mathrm{y}=68.61^{\circ} \text { or } 111.39^{\circ}
$$

By inspection, $\mathrm{y}=111.39^{\circ}$ since the force \mathbf{F} is directed in negative octant.

$$
\begin{aligned}
\mathbf{F}= & 2505 \cos 30^{\circ} \mathbf{i}+\cos 70^{\circ} \mathbf{j}+\cos 111.39^{\circ} 6 \mathrm{lb} \\
= & 217 \mathbf{i}+85.5 \mathbf{j}-91.2 \mathbf{k} \mathrm{lb} \\
& \{
\end{aligned}
$$

Ans.

Ans:

*R2-8.

Determine the projection of the force \mathbf{F} along the pole.

SOLUTION

$\operatorname{Proj} \mathbf{F}=\mathbf{F}^{\ddagger} \mathbf{u}_{\mathrm{a}}=12 \mathbf{i}+4 \mathbf{j}+10 \mathbf{k} 2^{\ddagger} \mathrm{a}_{3}^{2} \mathbf{i}+{ }_{3}^{2} \mathbf{j}-{ }_{3}^{1} \mathbf{k} \mathbf{b}$
Proj $\mathrm{F}=0.667 \mathrm{kN}$

Ans:
$F=0.667 \mathrm{kN}$

[^0]: Ans:
 $F_{R}=497 \mathrm{~N}$
 $\mathbf{f}=155^{\circ}$

[^1]: Ans:
 $F=960 \mathrm{~N}$
 $\mathrm{u}=45.2^{\circ}$

[^2]: Ans:
 $F_{B}=1.61 \mathrm{kN}$
 $0=38.3^{\circ}$

[^3]: Ans:
 $F_{R}=1.96 \mathrm{kN}$
 $0=4.12^{\circ}$

[^4]: $\mathrm{a}=88.3^{\circ}$
 $\mathrm{b}=20.6^{\circ}$
 $\mathrm{g}=69.5^{\circ}$

[^5]: Ans:
 $\mathbf{F}_{1}=\{72.0 \mathbf{i}+54.0 \mathbf{k}\} \mathrm{N}$ $\mathbf{F}_{2}=\{53.0 \mathbf{i}+53.0 \mathbf{j}+130 \mathbf{k}\} \mathrm{N}$ $\mathbf{F}_{3}=\{200 \mathbf{k}\}$

[^6]: Ans:
 $\mathbf{F}_{R}=\{90 \mathbf{i}-113 \mathbf{j}+42 \mathbf{k}\} \mathrm{lb}$

[^7]: Ans:
 $F_{R}=1.17 \mathrm{kN}$
 $\mathrm{a}=66.9^{\circ}$
 $\mathrm{b}=92.0^{\circ}$
 $\mathrm{g}=157^{\circ}$

[^8]: Ans:
 $F_{R}=1.17 \mathrm{kN}$
 $\mathrm{a}=68.0^{\circ}$
 $\mathrm{b}=96.8^{\circ}$
 $\mathrm{g}=157^{\circ}$

[^9]: Ans:
 $\mathbf{F}_{B A}=\{-109 \mathbf{i}+131 \mathbf{j}+306 \mathbf{k}\} \mathrm{lb}$
 $\mathbf{F}_{C A}=\{103 \mathbf{i}+103 \mathbf{j}+479 \mathbf{k}\} \mathbf{l b}$
 $\mathbf{F}_{D A}=\{-52.1 \mathbf{i}-156 \mathbf{j}+365 \mathbf{k}\} \mathrm{lb}$

