Solution Manual for Statics and Mechanics of Materials 2nd Edition Beer Johnston DeWolf Mazurek 00733981609780073398167

Full link download:
Solution Manual:
https://testbankpack.com/p/solution-manual-for-statics-and-mechanics-of-materials-2nd-edition-beer-johnston-dewolf-mazurek-0073398160-9780073398167/

authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:
$R=1391 \mathrm{kN}, \alpha=47.8^{\circ}$
$\mathbf{R}=1391 \mathrm{~N} \boldsymbol{\sim}^{\boldsymbol{*}} 47.8^{\circ}$

Copyright © McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not
authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=906 \mathrm{lb}, \quad \alpha=26.6^{\circ}
$$

$R=906 \mathrm{lb}$ < 26.6°

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=20.1 \mathrm{kN}, \quad \alpha=21.2^{\circ}
$$

$$
\mathbf{R}=20.1 \mathrm{kN} \square 21.2^{\circ}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:
$R=8.03 \mathrm{kips}, \alpha=3.8^{\circ}$
$\mathbf{R}=8.03 \mathrm{kips} \not \supset 3.8^{\circ} \boldsymbol{\triangleleft}$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a) Using the triangle rule and law of sines:

$$
\begin{aligned}
\frac{\sin \beta}{240 \mathrm{lb}} & =\frac{\sin 60^{\circ}}{300 \mathrm{lb}} \\
\sin \beta & =0.69282 \\
\beta & =43.854^{\circ} \\
\alpha+\beta+60^{\circ} & =180^{\circ} \\
\alpha & =180^{\circ}-60^{\circ}-43.854^{\circ} \\
& =76.146^{\circ}
\end{aligned}
$$

(b) Law of sines:

$$
\frac{F_{b b^{\prime}}}{\sin 76.146^{\circ}}=\frac{300 \mathrm{lb}}{\sin 60^{\circ}}
$$

$$
F_{b b^{\prime}}=336 \mathrm{lb}
$$

PROBLEM 2.6

The $300-\mathrm{lb}$ force is to be resolved into components along lines $a-a^{\prime}$ and $b-b^{\prime}$. (a) Determine the angle α by trigonometry knowing that the component along line $b-b^{\prime}$ is to be 120 lb . (b) What is the corresponding value of the component along $a-a^{\prime}$?

SOLUTION

Using the triangle rule and law of sines:
(a)

$$
\frac{\sin \alpha}{120 \mathrm{lb}}=\frac{\sin 60^{\circ}}{300 \mathrm{lb}}
$$

$$
\sin \alpha=0.34641
$$

$$
\alpha=20.268^{\circ}
$$

(b)

$$
\begin{aligned}
\alpha+\beta+60^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-60^{\circ}-20.268^{\circ} \\
& =99.732^{\circ} \\
\frac{F_{a a^{\prime}}}{\sin 99.732^{\circ}} & =\frac{300 \mathrm{lb}}{\sin 60^{\circ}}
\end{aligned} \quad F_{a a^{\prime}}=341 \mathrm{lb}
$$

PROBLEM 2.7

A trolley that moves along a horizontal beam is acted upon by two forces as shown. (a) Knowing that $\alpha=25^{\circ}$, determine by trigonometry the magnitude of the force \mathbf{P} so that the resultant force exerted on the trolley is vertical. (b) What is the corresponding magnitude of the resultant?

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\frac{1600 \mathrm{~N}}{\sin 25^{\circ}}=\frac{P}{\sin 75^{\circ}}
$$

$$
P=3660 \mathrm{~N} 4
$$

(b)

$$
\begin{aligned}
25^{\circ}+\beta+75^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-75^{\circ} \\
& =80^{\circ} \\
\frac{1600 \mathrm{~N}}{\sin 25^{\circ}} & =\frac{R}{\sin 80^{\circ}} \quad R=3730 \mathrm{~N}
\end{aligned}
$$

SOLUTION

Using the law of sines:

$$
\begin{aligned}
\frac{T_{A C}}{\sin 30^{\circ}} & =\frac{R}{\sin 125^{\circ}}=\frac{2.2 \mathrm{kN}}{\sin 25} \\
T_{A C} & =2.603 \mathrm{kN} \\
R & =4.264 \mathrm{kN}
\end{aligned}
$$

(a)
(b)

$$
\begin{aligned}
T_{A C} & =2.60 \mathrm{kN} \\
R & =4.26 \mathrm{kN}
\end{aligned}
$$

SOLUTION

Using the triangle rule and law of sines:
(a)

$$
\begin{aligned}
\frac{\sin \alpha}{50 \mathrm{~N}} & =\frac{\sin 25^{\circ}}{35 \mathrm{~N}} \\
\sin \alpha & =0.60374 \\
\alpha & =37.138^{\circ}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\alpha+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-37.138^{\circ} \\
& =117.862^{\circ} \\
\frac{R}{\sin 117.862^{\circ}} & =\frac{35 \mathrm{~N}}{\sin 25^{\circ}} \quad R=73.2 \mathrm{~N}
\end{aligned}
$$

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
T_{A C}{ }^{2} & =(3 \mathrm{kN})^{2}+(4.8 \mathrm{kN})^{2}-2(3 \mathrm{kN})(4.8 \mathrm{kN}) \cos 30^{\circ} \\
T_{A C} & =2.6643 \mathrm{kN}
\end{aligned}
$$

Using the law of sines:

$$
\begin{aligned}
\frac{\sin \alpha}{3 \mathrm{kN}} & =\frac{\sin 30^{\circ}}{2.6643 \mathrm{kN}} \\
\alpha & =34.3^{\circ}
\end{aligned}
$$

$$
\mathbf{T}_{A C}=2.66 \mathrm{kN}\left\ulcorner 34.3^{\circ}\right.
$$

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
P^{2} & =(1600 \mathrm{~N})^{2}+(2500 \mathrm{~N})^{2}-2(1600 \mathrm{~N})(2500 \mathrm{~N}) \cos 75^{\circ} \\
P & =2596 \mathrm{~N}
\end{aligned}
$$

Using the law of sines:

$$
\underline{\sin \alpha}=\sin 75^{\circ}
$$

$$
1600 \mathrm{~N} \quad 2596 \mathrm{~N}
$$

$$
\alpha=36.5^{\circ}
$$

P is directed $90^{\circ}-36.5^{\circ}$ or 53.5° below the horizontal. $\mathbf{P}=2600 \mathrm{~N}$ - 53.5°

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.12

For the hook support shown, determine by trigonometry the magnitude and direction of the resultant of the two forces applied to the support.

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
R^{2}= & (200 \mathrm{lb})^{2}+(300 \mathrm{lb})^{2} \\
& -2(200 \mathrm{lb})(300 \mathrm{lb}) \cos \left(45+65^{\circ}\right) \\
R= & 413.57 \mathrm{lb}
\end{aligned}
$$

Using the law of sines:

$$
\begin{aligned}
& \frac{\sin \alpha}{300 \mathrm{lb}}=\frac{\sin \left(45+65^{\circ}\right)}{413.57 \mathrm{lb}} \\
& \quad \alpha=42.972^{\circ} \\
& \beta=90+25-42.972^{\circ} \quad \mathbf{R}=414 \mathrm{lb} \text { ०. }_{\circ} 72.0^{\circ}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

$$
\begin{aligned}
\tan \alpha & =\frac{8}{10} \\
\alpha & =38.66^{\circ} \\
\tan \beta & =\frac{6}{10} \\
\beta & =30.96^{\circ}
\end{aligned}
$$

Using the triangle rule:

$$
\begin{aligned}
38.66^{\circ}+30.96^{\circ}+\psi & =180^{\circ} \\
\psi & =110.38^{\circ}
\end{aligned}
$$

Using the law of cosines:

$$
\begin{aligned}
R^{2} & =(120 \mathrm{lb})^{2}+(40 \mathrm{lb})^{2}-2(120 \mathrm{lb})(40 \mathrm{lb}) \cos 110.38^{\circ} \\
R & =139.08 \mathrm{lb}
\end{aligned}
$$

Using the law of sines:

$$
\begin{aligned}
\frac{\sin \gamma}{40 \mathrm{lb}} & =\frac{\sin 110.38^{\circ}}{139.08 \mathrm{lb}} \\
\gamma & =15.64^{\circ} \\
\phi & =\left(90^{\circ}-\alpha\right)+\gamma \\
\phi & =\left(90^{\circ}-38.66^{\circ}\right)+15.64^{\circ} \\
\phi & =66.98^{\circ} \quad \mathbf{R}=139.1 \mathrm{lb} \quad \bar{\gamma} 67.0^{\circ}
\end{aligned}
$$

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have:

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(50^{\circ}+25^{\circ}\right) \\
& =105^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2} & =(4 \mathrm{kips})^{2}+(6 \mathrm{kips})^{2}-2(4 \mathrm{kips})(6 \mathrm{kips}) \cos 105^{\circ} \\
& =64.423 \mathrm{kips}^{2} \\
R & =8.0264 \mathrm{kips}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{4 \mathrm{kips}}{\sin \left(25^{\circ}+\alpha\right)} & =\frac{8.0264 \mathrm{kips}}{\sin 105^{\circ}} \\
\sin \left(25^{\circ}+\alpha\right) & =0.48137 \\
25^{\circ}+\alpha & =28.775^{\circ} \\
\alpha & =3.775^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=8.03 \mathrm{kips}>3.8^{\circ}
$$

SOLUTION

The smallest force P will be perpendicular to R.
(a) $\quad P=(50 \mathrm{~N}) \sin 25^{\circ}$
(b) $\quad R=(50 \mathrm{~N}) \cos 25^{\circ}$

$$
\begin{gathered}
\mathbf{P}=21.1 \mathrm{~N} \\
R=45.3 \mathrm{~N}
\end{gathered}
$$

PROBLEM 2.16

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

$O A$	$=\sqrt{600)^{2}+(800)^{2}}$
	$=1000 \mathrm{~mm}$
$O B$	$=\left(\sqrt{560)^{2}+(900)^{2}}\right.$
	$=1060 \mathrm{~mm}$
$O C$	$=(480)^{2}+(900)^{2}$
	$=1020 \mathrm{~mm}$

800-N Force:

$$
\begin{aligned}
& F_{x}=+(800 \mathrm{~N}) \frac{800}{1000} \\
& F_{y}=+(800 \mathrm{~N}) \frac{600}{1000}
\end{aligned}
$$

$$
F_{x}=+640 \mathrm{~N}
$$

$$
F_{y}=+480 \mathrm{~N}
$$

424-N Force:

$$
F_{x}=-(424 \mathrm{~N}) \frac{560}{1060}
$$

$$
F_{x}=-224 \mathrm{~N}
$$

$$
F_{y}=-(424 \mathrm{~N}) \frac{900}{1060}
$$

$$
F_{y}=-360 \mathrm{~N}
$$

408-N Force:

$$
\begin{aligned}
& F_{x}=+(408 \mathrm{~N}) \frac{480}{1020} \\
& F_{y}=-(408 \mathrm{~N}) \frac{900}{1020}
\end{aligned}
$$

$$
\begin{gathered}
F_{x}=+192.0 \mathrm{~N} \\
F_{y}=-360 \mathrm{~N}
\end{gathered}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.17

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

29-lb Force:

$$
\begin{aligned}
O A & =\left(\sqrt{84)^{2}+(80)^{2}}\right. \\
& =116 \mathrm{in} . \\
O B & =\left(\sqrt{28)^{2}+(96)^{2}}\right. \\
& =100 \mathrm{in} . \\
O C & =(48)^{2}+(90)^{2} \\
& =102 \mathrm{in} .
\end{aligned}
$$

$$
F_{x}=+21.0 \mathrm{lb}
$$

$$
F_{y}=+(29 \mathrm{lb}) \frac{80}{116}
$$

50-lb Force:

$$
F_{x}=+(29 \mathrm{lb}) \frac{84}{116}
$$

$$
F_{y}=+20.0 \mathrm{lb}
$$

$$
\begin{aligned}
& F_{x}=-(50 \mathrm{lb}) \frac{28}{100} \\
& F_{y}=+(50 \mathrm{lb}) \frac{96}{100}
\end{aligned}
$$

$$
F_{x}=-14.00 \mathrm{lb}
$$

$$
F_{y}=+48.0 \mathrm{lb}
$$

$$
F_{x}=+24.0 \mathrm{lb}
$$

$$
F_{y}=-(51 \mathrm{lb}) \frac{90}{102}
$$

$$
F_{y}=-45.0 \mathrm{lb}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

40-lb Force:	$F_{x}=+(40 \mathrm{lb}) \cos 60^{\circ}$	$F_{x}=20.0 \mathrm{lb}$ <
	$F_{y}=-(40 \mathrm{lb}) \sin 60^{\circ}$	$F_{y}=-34.6 \mathrm{lb}$
50-lb Force:	$F_{x}=-(50 \mathrm{lb}) \sin 50^{\circ}$	$F_{x}=-38.3 \mathrm{lb}$ -
	$F_{y}=-(50 \mathrm{lb}) \cos 50^{\circ}$	$F_{y}=-32.1 \mathrm{lb}$
60-lb Force:	$F_{x}=+(60 \mathrm{lb}) \cos 25^{\circ}$	$F_{x}=54.4 \mathrm{lb}$
	$F_{y}=+(60 \mathrm{lb}) \sin 25^{\circ}$	$F_{y}=25.4 \mathrm{lb}$ <

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

80-N Force:
$F_{x}=+(80 \mathrm{~N}) \cos 40^{\circ}$

$$
\begin{aligned}
& F_{x}=61.3 \mathrm{~N} \\
& F_{y}=51.4 \mathrm{~N}
\end{aligned}
$$

$F_{y}=+(80 \mathrm{~N}) \sin 40^{\circ}$
120-N Force:
$F_{x}=+(120 \mathrm{~N}) \cos 70^{\circ}$
$F_{x}=41.0 \mathrm{~N}$
$F_{y}=+(120 \mathrm{~N}) \sin 70^{\circ}$
$F_{y}=112.8 \mathrm{~N}$
150-N Force:
$F_{x}=-(150 \mathrm{~N}) \cos 35^{\circ}$

$$
\begin{aligned}
& F_{x}=-122.9 \mathrm{~N} \\
& \qquad F_{y}=86.0 \mathrm{~N}
\end{aligned}
$$

SOLUTION

(a)

$$
P \sin 35^{\circ}=300 \mathrm{lb}
$$

$$
P=\frac{300 \mathrm{lb}}{\sin 35^{\circ}}
$$

$$
P=523 \mathrm{lb}
$$

(b) Vertical component

$$
\begin{aligned}
P_{v} & =P \cos 35^{\circ} \\
& =(523 \mathrm{lb}) \cos 35^{\circ}
\end{aligned} P_{v}=428 \mathrm{lb}
$$

SOLUTION

(a)

$$
\begin{aligned}
B C & =(\$ 50 \mathrm{~mm})^{2}+(720 \mathrm{~mm})^{2} \\
& =970 \mathrm{~mm}
\end{aligned}
$$

$$
P_{x}=P^{(}\left(\frac{650}{970}\right)
$$

or

$$
\begin{aligned}
P & =P_{x}\left(\frac{970}{650}\right) \\
& =325 \mathrm{~N}\left(\frac{970}{650}\right) \\
& =485 \mathrm{~N}
\end{aligned}
$$

$$
P=485 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
P_{y} & =P\left(\frac{720}{970}\right) \\
& =485 \mathrm{~N}\left(\frac{720}{970}\right) \\
& =360 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=970 \mathrm{~N}
$$

SOLUTION

(a)
(b)

$$
\begin{aligned}
& =\frac{350 \mathrm{lb}}{\cos 55^{\circ}} \\
& =610.21 \mathrm{lb}
\end{aligned}
$$

$$
P=610 \mathrm{lb} \text { 《 }
$$

$$
\begin{aligned}
P_{x} & =P \sin 55^{\circ} \\
& =(610.21 \mathrm{lb}) \sin 55^{\circ} \\
& =499.85 \mathrm{lb}
\end{aligned}
$$

SOLUTION

(a)

$$
750 \mathrm{~N}=P \sin 20^{\circ}
$$

$$
P=2192.9 \mathrm{~N}
$$

$$
P=2190 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
P_{A B C} & =P \cos 20^{\circ} \\
& =(2192.9 \mathrm{~N}) \cos 20^{\circ} \quad P_{A B C}=2060 \mathrm{~N}
\end{aligned}
$$

PROBLEM 2.24

Determine the resultant of the three forces of Problem 2.16.
PROBLEM 2.16 Determine the x and y components of each of the forces shown.

SOLUTION

Components of the forces were determined in Problem 2.16:

Force	x Comp. (N)	y Comp. (N)
800 lb	+640	+480
424 lb	-224	-360
408 lb	+192	-360

$$
\begin{aligned}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(608 \mathrm{lb}) \mathbf{i}+(-240 \mathrm{lb}) \mathbf{j} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} \\
& =\frac{240}{608} \\
\alpha & =21.541^{\circ}
\end{aligned}
$$

$$
R=\frac{240 \mathrm{~N}}{\sin \left(21.541^{\circ}\right)}
$$

$$
=653.65 \mathrm{~N}
$$

$\mathbf{R}=654 \mathrm{~N}$ © 21.5°

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.25

Determine the resultant of the three forces of Problem 2.17.
PROBLEM 2.17 Determine the x and y components of each of the forces shown.

SOLUTION

Components of the forces were determined in Problem 2.17:

Force	x Comp. (lb)	y Comp. (lb)
29 lb	+21.0	+20.0
50 lb	-14.00	+48.0
51 lb	+24.0	-45.0

$$
\begin{array}{rlrl}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(31.0 \mathrm{lb}) \mathbf{i}+(23.0 \mathrm{lb}) \mathbf{j} \\
\tan \alpha & =\frac{R_{y}}{R_{x}} & R_{y}=23.0 \vec{j} \\
& =\frac{23.0}{31.0} \\
\alpha & =36.573^{\circ} \\
R & =\frac{23.0 \mathrm{lb}}{\sin \left(36.573^{\circ}\right)} & \\
& =38.601 \mathrm{lb} & \mathbf{R}=38.6 \mathrm{lb} \mathbb{R} 36.6^{\circ}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.26

Determine the resultant of the three forces of Problem 2.18.

PROBLEM 2.18 Determine the x and y components of each of the forces shown.

SOLUTION

Force	x Comp. (lb)	y Comp. (lb)
40 lb	+20.00	-34.64
50 lb	-38.30	-32.14
60 lb	+54.38	+25.36
	$R_{x}=+36.08$	$R_{y}=-41.42$

$$
\mathbf{R}=R_{x} \mathbf{i}+R_{y} \mathbf{j}
$$

$$
=(+36.08 \mathrm{lb}) \mathbf{i}+(-41.42 \mathrm{lb}) \mathbf{j}
$$

$$
\tan \alpha=\frac{R_{y}}{R_{x}}
$$

$$
\tan \alpha=\frac{41.42 \mathrm{lb}}{36.08 \mathrm{lb}}
$$

$$
\tan \alpha=1.14800
$$

$$
\alpha=48.942^{\circ}
$$

$$
R=\frac{41.42 \mathrm{lb}}{\sin 48.942^{\circ}}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Components of the forces were determined in Problem 2.19:

Force	x Comp. (N)	y Comp. (N)
80 N	+61.3	+51.4
120 N	+41.0	+112.8
150 N	-122.9	+86.0

$$
\begin{array}{rlrl}
\mathbf{R} & =R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
& =(-20.6 \mathrm{~N}) \mathbf{i}+(250.2 \mathrm{~N}) \mathbf{j} & & R \\
\tan \alpha & =\frac{R_{y}}{R_{x}} & & \underline{R}_{y}=250.2 \underline{j} \\
\tan \alpha & =\frac{250.2 \mathrm{~N}}{20.6 \mathrm{~N}} & & \underline{R}_{x}=-20.6 \underline{c^{\prime}} \\
\tan \alpha & =12.1456 \\
\alpha & =85.293^{\circ} & \mathbf{R}=251 \mathrm{~N} \triangle 85.3^{\circ} \\
R & =\frac{250.2 \mathrm{~N}}{\sin 85.293^{\circ}} & &
\end{array}
$$

PROBLEM 2.28

For the collar loaded as shown, determine (a) the required value of α if the resultant of the three forces shown is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
R_{x} & =\Sigma F_{x} \\
& =(100 \mathrm{~N}) \cos \alpha+(150 \mathrm{~N}) \cos \left(\alpha+30^{\circ}\right)-(200 \mathrm{~N}) \cos \alpha \\
R_{x} & =-(100 \mathrm{~N}) \cos \alpha+(150 \mathrm{~N}) \cos \left(\alpha+30^{\circ}\right) \tag{1}\\
R_{y} & =\Sigma F_{y} \\
& =-(100 \mathrm{~N}) \sin \alpha-(150 \mathrm{~N}) \sin \left(\alpha+30^{\circ}\right)-(200 \mathrm{~N}) \sin \alpha \\
R_{y} & =-(300 \mathrm{~N}) \sin \alpha-(150 \mathrm{~N}) \sin \left(\alpha+30^{\circ}\right) \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$. We make $R_{x}=0$ in Eq. (1):

$$
\begin{aligned}
-100 \cos \alpha+150 \cos \left(\alpha+30^{\circ}\right) & =0 \\
-100 \cos \alpha+150\left(\cos \alpha \cos 30^{\circ}-\sin \alpha \sin 30^{\circ}\right) & =0 \\
29.904 \cos \alpha & =75 \sin \alpha \\
\tan \alpha & =\frac{29.904}{75} \\
& =0.39872 \\
\alpha & =21.738^{\circ}
\end{aligned}
$$

$$
\alpha=21.7^{\circ}
$$

(b) Substituting for α in Eq. (2):

$$
\begin{aligned}
R_{y} & =-300 \sin 21.738^{\circ}-150 \sin 51.738^{\circ} \\
& =-228.89 \mathrm{~N}
\end{aligned}
$$

$$
R=\left|R_{y}\right|=228.89 \mathrm{~N} \quad R=229 \mathrm{~N}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.29

A hoist trolley is subjected to the three forces shown. Knowing that $\alpha=40^{\circ}$, determine (a) the required magnitude of the force \mathbf{P} if the resultant of the three forces is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
& R_{x}=+\Sigma F_{x}=P+(200 \mathrm{lb}) \sin 40^{\circ}-(400 \mathrm{lb}) \cos 40^{\circ} \\
& R_{x}=P-177.860 \mathrm{lb} \tag{1}\\
& R_{y}=+\Sigma F_{y}=(200 \mathrm{lb}) \cos 40^{\circ}+(400 \mathrm{lb}) \sin 40^{\circ} \\
& R_{y}=410.32 \mathrm{lb} \tag{2}
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$.

Set

$$
\begin{aligned}
& R_{x}=0 \text { in Eq. } \\
& 0=P-177.860 \mathrm{lb}
\end{aligned}
$$

$$
P=177.860 \mathrm{lb} \quad P=177.9 \mathrm{lb}
$$

(b) Since \mathbf{R} is to be vertical:

$$
R=R_{y}=410 \mathrm{lb} \quad R=410 \mathrm{lb}
$$

PROBLEM 2.30

A hoist trolley is subjected to the three forces shown. Knowing that $P=250 \mathrm{lb}$, determine (a) the required value of α if the resultant of the three forces is to be vertical, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
& R_{x}=\xrightarrow{+} \Sigma F_{x}=250 \mathrm{lb}+(200 \mathrm{lb}) \sin \alpha-(400 \mathrm{lb}) \cos \alpha \\
& R_{x}=250 \mathrm{lb}+(200 \mathrm{lb}) \sin \alpha-(400 \mathrm{lb}) \cos \alpha \tag{1}
\end{align*}
$$

(a) For \mathbf{R} to be vertical, we must have $R_{x}=0$.

Set

$$
\begin{aligned}
R_{x} & =0 \text { in Eq. (1) } \\
0 & =250 \mathrm{lb}+(200 \mathrm{lb}) \sin \alpha-(400 \mathrm{lb}) \cos \alpha
\end{aligned}
$$

$$
(400 \mathrm{lb}) \cos \alpha=(200 \mathrm{lb}) \sin \alpha+250 \mathrm{lb}
$$

$$
2 \cos \alpha=\sin \alpha+1.25
$$

$$
4 \cos ^{2} \alpha=\sin ^{2} \alpha+2.5 \sin \alpha+1.5625
$$

$$
4\left(1-\sin ^{2} \alpha\right)=\sin ^{2} \alpha+2.5 \sin \alpha+1.5625
$$

$$
0=5 \sin ^{2} \alpha+2.5 \sin \alpha-2.4375
$$

Using the quadratic formula to solve for the roots gives

$$
\sin \alpha=0.49162
$$

or $\quad \alpha=29.447^{\circ} \quad \alpha=29.4^{\circ}$
(b) Since \mathbf{R} is to be vertical:

$$
R=R_{y}=(200 \mathrm{lb}) \cos 29.447^{\circ}+(400 \mathrm{lb}) \sin 29.447^{\circ} \quad \mathbf{R}=371 \mathrm{lb}
$$

PROBLEM 2.31

For the post loaded as shown, determine (a) the required tension in rope $A C$ if the resultant of the three forces exerted at point C is to be horizontal, (b) the corresponding magnitude of the resultant.

SOLUTION

$$
\begin{align*}
& R_{x}=\Sigma F_{x}^{=}-\frac{960}{1460}{ }_{A C}+\frac{24}{25}(500 \mathrm{~N})+\frac{4}{5}(200 \mathrm{~N}) \\
& R_{x}=-{\frac{48}{73} T_{A C}+640 \mathrm{~N}}_{R_{y}=\Sigma F_{y}-\frac{1100}{T}_{1460}^{A C}}+\frac{7}{25}(500 \mathrm{~N})-\frac{3}{5}(200 \mathrm{~N}) \tag{1}\\
& R_{y}=-\frac{55}{73} T_{A C}+20 \mathrm{~N}
\end{align*}
$$

(a) For \mathbf{R} to be horizontal, we must have $R_{y}=0$.

Set $R=0$ in Eq. (2):

$$
-\frac{55}{73} T_{A C}+20 \mathrm{~N}=0
$$

$$
T_{A C}=26.545 \mathrm{~N}
$$

$$
T_{A C}=26.5 \mathrm{~N}
$$

(b) Substituting for $T_{A C}$ into Eq. (1) gives

$$
\begin{aligned}
R_{x} & =-\frac{48}{73}(26.545 \mathrm{~N})+640 \mathrm{~N} \\
R_{x} & =622.55 \mathrm{~N} \\
R & =R_{x}=623 \mathrm{~N}
\end{aligned}
$$

$$
R=623 \mathrm{~N}
$$

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{T_{A C}}{\sin 60^{\circ}}=\frac{T_{B C}}{\sin 35^{\circ}}=\frac{6 \mathrm{kN}}{\sin 85^{\circ}}
$$

(a)
(b)

$$
\begin{aligned}
T_{A C}=\frac{6 \mathrm{kN}}{\sin 85^{\circ}}\left(\sin 60^{\circ}\right) & T_{A C}=5.22 \mathrm{kN} \triangleleft \\
T_{B C}=\frac{6 \mathrm{kN}}{\sin 85^{\circ}}\left(\sin 35^{\circ}\right) & T_{B C}=3.45 \mathrm{kN} \triangleleft
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:
$\frac{T_{A C}}{\sin 60^{\circ}}=\frac{T_{B C}}{\sin 40^{\circ}}=\frac{400 \mathrm{lb}}{\sin 80^{\circ}}$
(a)
(b)

$$
\begin{array}{ll}
T_{A C}=\frac{400 \mathrm{lb}}{\sin 80^{\circ}}\left(\sin 60^{\circ}\right) & T_{A C}=352 \mathrm{lb} \\
T_{B C}=\frac{400 \mathrm{lb}}{\sin 80^{\circ}}\left(\sin 40^{\circ}\right) & T_{B C}=261 \mathrm{lb}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.34

Two cables are tied together at C and are loaded as shown. Determine the tension (a) in cable $A C,(b)$ in cable $B C$.

SOLUTION

Free-Body Diagram

Force Triangle

$$
\begin{aligned}
W & =\mathrm{mg} \\
& =(200 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1962 \mathrm{~N}
\end{aligned}
$$

Law of sines:

$$
\frac{T_{A C}}{\sin 15^{\circ}}=\frac{T_{B C}}{\sin 105^{\circ}}=\frac{1962 \mathrm{~N}}{\sin 60^{\circ}}
$$

(a)
(b)

$$
T_{A C}=\frac{(1962 \mathrm{~N}) \sin 15^{\circ}}{\sin 60^{\circ}}
$$

$$
T_{A C}=586 \mathrm{~N}
$$

$$
T_{B C}=\frac{(1962 \mathrm{~N}) \sin 105^{\circ}}{\sin 60^{\circ}}
$$

$$
T_{B C}=2190 \mathrm{~N} \hookrightarrow
$$

SOLUTION

Free Body Diagram at C :

$$
\begin{gathered}
\Sigma \mathbf{F}_{x}=0: \quad-\frac{12 \mathrm{ft}}{12.5 \mathrm{ft}} T_{A C}+\frac{7.5 \mathrm{ft}}{8.5 \mathrm{ft}} T_{B C}=0 \\
T_{B C}=1.08800 T_{A C} \\
\Sigma \mathbf{F}_{y}=0: \quad \frac{3.5 \mathrm{ft}}{12 \mathrm{ft}} T_{A C}+\frac{4 \mathrm{ft}}{8.5 \mathrm{ft}} T_{B C}-396 \mathrm{lb}=0 \\
\frac{3.5 \mathrm{ft}}{12.5 \mathrm{ft}} T_{A C}+\frac{4 \mathrm{ft}}{8.5 \mathrm{ft}}\left(1.088000 T_{A C}\right)-396 \mathrm{lb}=0 \\
(0.28000+0.51200) T_{A C}=396 \mathrm{lb}
\end{gathered}
$$

(a)

$$
T_{A C}=500.0 \mathrm{lb}
$$

$$
T_{A C}=500 \mathrm{lb}
$$

(b)

$$
T_{B C}=(1.08800)(500.0 \mathrm{lb})
$$

b)

$$
T_{B C}=544 \mathrm{lb}
$$

SOLUTION

Free-Body Diagram

Law of sines:

$$
\frac{T_{A C}}{\sin 35^{\circ}}=\frac{T_{B C}}{\sin 75^{\circ}}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}}
$$

(a)
(b)

$$
T_{A C}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}} \sin 35^{\circ}
$$

$$
T_{A C}=305 \mathrm{~N}
$$

$$
T_{B C}=\frac{500 \mathrm{~N}}{\sin 70^{\circ}} \sin 75^{\circ}
$$

$$
T_{B C}=514 \mathrm{~N}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$
\begin{aligned}
& T_{C}=5.87 \mathrm{kips} \measuredangle \\
& T_{D}=9.14 \mathrm{kips}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Substituting for T_{D} into Eq. (1) gives:

$$
\begin{aligned}
T_{B}-6 \mathrm{kips}-(14.0015 \mathrm{kips}) \cos 40^{\circ} & =0 \\
T_{B} & =16.7258 \mathrm{kips}
\end{aligned}
$$

$$
T_{B}=16.73 \mathrm{kips}
$$

$$
T_{D}=14.00 \mathrm{kips}
$$

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0 \\
& \dagger \Sigma F_{y}=0 \\
& T_{B}-6 \mathrm{kips}-T_{D} \cos 40^{\circ}=0 \\
& T_{D} \sin 40^{\circ}-9 \text { kips }=0 \\
& T_{D}=\frac{9 \mathrm{kips}}{\sin 40^{\circ}} \\
& T_{D}=14.0015 \mathrm{kips}
\end{aligned}
$$

SOLUTION

Free-Body Diagram

$\xrightarrow{+} \Sigma F_{x}=0-T_{C A} \sin 30 \cdot+T_{C B} \sin 30 \cdot-P \cos 45^{\circ}-200 \mathrm{~N}=0$
For $P=200 \mathrm{~N}$ we have,

$$
-0.5 T_{C A}+0.5 T_{C B}+212.13-200=0
$$

$+\dagger \Sigma F_{y}=0$
$T_{C A} \cos 30^{\circ}-T_{C B} \cos 30 \cdot-P \sin 45=0$

$$
0.86603 T_{C A}+0.86603 T_{C B}-212.13=0
$$

Solving equations (1) and (2) simultaneously gives,

$$
\begin{gathered}
T_{C A}=134.6 \mathrm{~N} \\
T_{C B}=110.4 \mathrm{~N}
\end{gathered}
$$

SOLUTION

Free-Body Diagram
Resolving the forces into x - and y-directions:

$$
\mathbf{R}=\mathbf{P}+\mathbf{Q}+\mathbf{F}_{A}+\mathbf{F}_{B}=0
$$

Substituting components:

$$
\begin{aligned}
\mathbf{R}= & -(500 \mathrm{lb}) \mathbf{j}+\left[(650 \mathrm{lb}) \cos 50^{\circ}\right] \mathbf{i} \\
& -\left[(650 \mathrm{lb}) \sin 50^{\circ}\right] \mathbf{j} \\
& +F_{B} \mathbf{i}-\left(F_{A} \cos 50^{\circ}\right) \mathbf{i}+\left(F_{A} \sin 50^{\circ}\right) \mathbf{j}=0
\end{aligned}
$$

In the y-direction (one unknown force):

$$
-500 \mathrm{lb}-(650 \mathrm{lb}) \sin 50^{\circ}+F_{A} \sin 50^{\circ}=0
$$

Thus,

$$
\begin{aligned}
F_{A} & =\frac{500 \mathrm{lb}+(650 \mathrm{lb}) \sin 50^{\circ}}{\sin 50^{\circ}} \\
& =1302.70 \mathrm{lb}
\end{aligned}
$$

$$
F_{A}=1303 \mathrm{lb}
$$

In the x-direction:
$(650 \mathrm{lb}) \cos 50^{\circ}+F_{B}-F_{A} \cos 50^{\circ}=0$
Thus,

$$
\begin{aligned}
F_{B} & =F_{A} \cos 50^{\circ}-(650 \mathrm{lb}) \cos 50^{\circ} \\
& =(1302.70 \mathrm{lb}) \cos 50^{\circ}-(650 \mathrm{lb}) \cos 50^{\circ} \\
& =419.55 \mathrm{lb}
\end{aligned}
$$

$$
F_{B}=420 \mathrm{lb}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

$$
\begin{align*}
& +5 F_{x}=0: T_{A C B} \cos 10^{\circ}-T_{A C B} \cos 30^{\circ}-T_{C D} \cos 30^{\circ}=0 \\
& +T_{C D}=0.137158 T_{A C B} \\
& +5 F_{y}=0: T_{A C B} \sin 10^{\circ}+T_{A C B} \sin 30^{\circ}+T_{C D} \sin 30^{\circ}-200=0 \\
& 0.67365 T_{A C B}+0.5 T_{C D}=200 \tag{1}
\end{align*}
$$

(a) Substitute (1) into (2): $0.67365 T_{A C B}+0.5\left(0.137158 T_{A C B}\right)=200$

$$
T_{A C B}=269.46 \mathrm{lb}
$$

$$
T_{A C B}=269 \mathrm{lb}
$$

(b) From (1):

$$
T_{C D}=0.137158(269.46 \mathrm{lb})
$$

$$
T_{C D}=37.0 \mathrm{lb}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a) $\quad W=216 \mathrm{lb}$
(b) $T_{A C B}=304 \mathrm{lb}$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.43

For the cables of prob. 2.32, find the value of α for which the tension is as small as possible (a) in cable $b c,(b)$ in both cables simultaneously. In each case determine the tension in each cable.

SOLUTION

Free-Body Diagram

Force Triangle

(a) For a minimum tension in cable $B C$, set angle between cables to 90 degrees.

By inspection,

$$
\begin{aligned}
& T_{A C}=(6 \mathrm{kN}) \cos 35 \\
& T_{B C}=(6 \mathrm{kN}) \sin 35
\end{aligned}
$$

$$
T_{A C}=4.91 \mathrm{kN}
$$

$$
T_{B C}=3.44 \mathrm{kN}
$$

(b) For equal tension in both cables, the force triangle will be an isosceles.

Therefore, by inspection,

$$
T_{A C}=T_{B C}=(1 / 2) \frac{6 \mathrm{kN}}{\cos 35^{\circ}} \quad T_{A C}=T_{B C}=3.66 \mathrm{kN}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Free-Body Diagram

Force Triangle

(a) Law of cosines

$$
P^{2}=(600)^{2}+(750)^{2}-2(600)(750) \cos \left(25^{\circ}+45^{\circ}\right)
$$

$$
P=784.02 \mathrm{~N} \quad P=784 \mathrm{~N}
$$

(b) Law of sines

$$
\begin{aligned}
\frac{\sin \beta}{600 \mathrm{~N}} & =\frac{\sin \left(25^{\circ}+45^{\circ}\right)}{784.02 \mathrm{~N}} \\
\beta & =46.0^{\circ} \quad \therefore \alpha=46.0^{\circ}+25^{\circ} \quad \alpha=71.0^{\circ}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Free-Body Diagram: C

Force triangle is isosceles with
(a) $\quad P=2(800 \mathrm{~N}) \cos 47.5^{\circ}=1081 \mathrm{~N}$

Since $P>0$, the solution is correct.
(b)
$\alpha=180^{\circ}-50^{\circ}-47.5^{\circ}=82.5^{\circ}$
$P=1081 \mathrm{~N}$ 4
$2 \beta=180^{\circ}-85^{\circ}$
$\beta=47.5^{\circ}$
$\alpha=82.5^{\circ}$ 4

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Free-Body Diagram

$$
\begin{aligned}
P^{2} & =(1200 \mathrm{~N})^{2}+(600 \mathrm{~N})^{2}-2(1200 \mathrm{~N})(600 \mathrm{~N}) \cos 85^{\circ} \\
P & =1294 \mathrm{~N}
\end{aligned}
$$

Since $P .1200 \mathrm{~N}$, the solution is correct.

$$
P=1294 \mathrm{~N} \text { 4 }
$$

(b) Law of sines:

$$
\begin{aligned}
\frac{\sin \beta}{1200 \mathrm{~N}} & =\frac{\sin 85^{\circ}}{1294 \mathrm{~N}} \\
\beta & =67.5^{\circ} \\
\alpha & =180^{\circ}-50^{\circ}-67.5^{\circ}
\end{aligned} \quad \alpha=62.5^{\circ}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

$$
\Sigma F_{x}=0:-T_{B C}-Q \cos 60^{\circ}+75 \mathrm{lb}=0
$$

$T_{B C}=75 \mathrm{lb}-Q \cos 60^{\circ}$
$\Sigma F_{y}=0: T_{A C}-Q \sin 60^{\circ}=0$
$T_{A C}=Q \sin 60^{\circ}$
Requirement: $\quad T_{A C}=60 \mathrm{lb}$
From Eq. (2): $\quad Q \sin 60^{\circ}=60 \mathrm{lb}$

$$
Q=69.3 \mathrm{lb}
$$

Requirement: $\quad T_{B C}=60 \mathrm{lb}:$
From Eq. (1): $75 \mathrm{lb}-Q \cos 60^{\circ}=60 \mathrm{lb}$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a) Free Body: Collar A

Force Triangle

$$
\frac{P}{4.5}=\frac{50 \mathrm{lb}}{20.5} \quad P=10.98 \mathrm{lb}
$$

Force Triangle

$$
\frac{P}{15}=\frac{50 \mathrm{lb}}{25} \quad P=30.0 \mathrm{lb}
$$

PROBLEM 2.49

Collar A is connected as shown to a $50-\mathrm{lb}$ load and can slide on a frictionless horizontal rod. Determine the distance x for which the collar is in equilibrium when $P=48 \mathrm{lb}$.

SOLUTION

Free Body: Collar A

Force Triangle

$$
\begin{aligned}
N^{2} & =(50)^{2}-(48)^{2}=196 \\
N & =14.00 \mathrm{lb}
\end{aligned}
$$

Similar Triangles

$$
\frac{x}{20 \mathrm{in} .}=\frac{48 \mathrm{lb}}{14 \mathrm{lb}}
$$

$$
x=68.6 \mathrm{in} .
$$

PROBLEM 2.50

A movable bin and its contents have a combined weight of 2.8 kN . Determine the shortest chain sling $A C B$ that can be used to lift the loaded bin if the tension in the chain is not to exceed 5 kN .

SOLUTION

Free-Body Diagram

Isosceles Force Triangle

Law of sines: $\quad \sin \alpha=\frac{\frac{1}{2}(2.8 \mathrm{kN})}{T_{A C}}$

$$
\begin{gathered}
T_{A C}=5 \mathrm{kN} \\
\sin \alpha=\frac{\frac{1}{2}(2.8 \mathrm{kN})}{5 \mathrm{kN}}
\end{gathered}
$$

$$
\alpha=16.2602^{\circ}
$$

From Eq. (1): $\tan 16.2602^{\circ}=\frac{h}{0.6} \mathrm{~m} \quad \therefore h=0.175000 \mathrm{~m}$
Half-length of chain $=A C=(Q .6 \mathrm{~m})^{2}+(0.175 \mathrm{~m})^{2}$

$$
=0.625 \mathrm{~m}
$$

Total length:

$$
=2 \times 0.625 \mathrm{~m}
$$

$$
1.250 \mathrm{~m}
$$

Copyright \odot McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
and-pulley arrangements as shown. Determine for each arrangement the tension in the rope. (Hint: The tension in the rope is the same on each side of a simple pulley. This can be
A 600-lb crate is supported by several rope-

(b)

(c)

(d)

(c)
proved by the methods of Ch. 4.)

PROBLEM 2.51

 proved\qquad

SOLUTION

Free-Body Diagram of Pulley

(a)

$$
\begin{aligned}
+\dagger \Sigma F_{y}=0: 2 T-(600 \mathrm{lb}) & =0 \\
& T=\frac{1}{2}(600 \mathrm{lb})
\end{aligned}
$$

SOLUTION

Free-Body Diagram of Pulley and Crate

(b)

$$
\begin{aligned}
+\dagger \Sigma F_{y}=0: 3 T-(600 \mathrm{lb}) & =0 \\
T & =\frac{1}{3}(600 \mathrm{lb})
\end{aligned}
$$

$$
T=200 \mathrm{lb} \measuredangle
$$

(d)

$\begin{aligned}+\dagger \Sigma F_{y}=0: 4 T-(600 \mathrm{lb}) & =0 \\ & T={ }_{\frac{1}{4}}^{1}(600 \mathrm{lb})\end{aligned}$

$$
T=150.0 \mathrm{lb}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Free-Body Diagram: Pulley A

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x} & =0:-2 P\left(\frac{5}{\sqrt{28 I}}\right)+P \cos \alpha=0 \\
\cos \alpha & =0.59655 \\
\alpha & = \pm 53.377^{\circ}
\end{aligned}
$$

For $\alpha=+53.377^{\circ}$:
$+\sum_{y}^{\dagger \Sigma F_{y}=0: 2 P\left(\frac{16)}{(\sqrt{281}}\right)} \sin 53.377^{\circ}-1962 \mathrm{~N}=0$

$$
\mathbf{P}=724 \mathrm{~N}<53.4^{\circ}
$$

For $\alpha=-53.377^{\circ}$:
$+\dagger_{y} \Sigma F_{y}=0: 2 P^{(16)+P}(\sqrt{\sqrt{281}}) \sin \left(-53.377^{\circ}\right)-1962 \mathrm{~N}=0$

$$
\mathbf{P}=1773<53.4^{\circ}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.54

A load \mathbf{Q} is applied to the pulley C, which can roll on the cable $A C B$. The pulley is held in the position shown by a second cable $C A D$, which passes over the pulley A and supports a load \mathbf{P}. Knowing that $P=750 \mathrm{~N}$, determine (a) the tension in cable $A C B,(b)$ the magnitude of $\operatorname{load} \mathbf{Q}$.

SOLUTION

Free-Body Diagram: Pulley C

(a) $\xrightarrow{+} \Sigma F_{x}=0: T_{A C B}\left(\cos 25^{\circ}-\cos 55^{\circ}\right)-(750 \mathrm{~N}) \cos 55^{\circ}=0$

Hence: $\quad T_{A C B}=1292.88 \mathrm{~N}$

$$
T_{A C B}=1293 \mathrm{~N}
$$

(b) $\quad+\dagger \Sigma F_{y}=0: T_{A C B}\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0$

$$
(1292.88 \mathrm{~N})\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+(750 \mathrm{~N}) \sin 55^{\circ}-Q=0
$$

or

$$
Q=2219.8 \mathrm{~N} \quad Q=2220 \mathrm{~N}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.55

An $1800-\mathrm{N}$ load \mathbf{Q} is applied to the pulley C, which can roll on the cable $A C B$. The pulley is held in the position shown by a second cable $C A D$, which passes over the pulley A and supports a load \mathbf{P}. Determine (a) the tension in cable $A C B$, (b) the magnitude of load \mathbf{P}.

SOLUTION

Free-Body Diagram: Pulley C

$$
\xrightarrow{+} \Sigma F_{x}=0: T_{A C B}\left(\cos 25^{\circ}-\cos 55^{\circ}\right)-P \cos 55^{\circ}=0
$$

or

$$
P=0.58010 T_{A C B}(1)
$$

$$
+\dagger \Sigma F_{y}=0: T_{A C B}\left(\sin 25^{\circ}+\sin 55^{\circ}\right)+P \sin 55^{\circ}-1800 \mathrm{~N}=0
$$

or

$$
1.24177 T_{A C B}+0.81915 P=1800 \mathrm{~N}(2)
$$

(a) Substitute Equation (1) into Equation (2):

$$
1.24177 T_{A C B}+0.81915\left(0.58010 T_{A C B}\right)=1800 \mathrm{~N}
$$

Hence:

$$
T_{A C B}=1048.37 \mathrm{~N}
$$

$$
T_{A C B}=1048 \mathrm{~N} 4
$$

(b) $\quad \operatorname{Using}(1), \quad P=0.58010(1048.37 \mathrm{~N})=608.16 \mathrm{~N}$

$$
P=608 \mathrm{~N} \text { 4 }
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

$$
\begin{aligned}
F_{h} & =F \cos 65^{\circ} \\
& =(900 \mathrm{~N}) \cos 65^{\circ} \\
F_{h} & =380.36 \mathrm{~N}
\end{aligned}
$$

(a)
$F_{x}=F_{h} \sin 20^{\circ}$

$$
=(380.36 \mathrm{~N}) \sin 20^{\circ}
$$

$F_{x}=-130.091 \mathrm{~N}$,
$F_{x}=-130.1 \mathrm{~N}$
$F_{y}=F \sin 65^{\circ}$
$=(900 \mathrm{~N}) \sin 65^{\circ}$
$F_{y}=+815.68 \mathrm{~N}$,
$F_{z}=F_{h} \cos 20^{\circ}$

$$
=(380.36 \mathrm{~N}) \cos 20^{\circ}
$$

$$
F_{z}=+357.42 \mathrm{~N}
$$

$$
F_{z}=+357 \mathrm{~N}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-130.091 \mathrm{~N}}{900 \mathrm{~N}} & \theta_{x}=98.3^{\circ} . \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{+815.68 \mathrm{~N}}{900 \mathrm{~N}} & \theta_{y}=25.0^{\circ} . \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{+357.42 \mathrm{~N}}{900 \mathrm{~N}} & \theta_{z}=66.6^{\circ} .
\end{array}
$$

SOLUTION

$$
\begin{aligned}
F_{h} & =F \sin 35^{\circ} \\
& =(750 \mathrm{~N}) \sin 35^{\circ} \\
F_{h} & =430.18 \mathrm{~N}
\end{aligned}
$$

(a)
$F_{x}=F_{h} \cos 25^{\circ}$

$$
=(430.18 \mathrm{~N}) \cos 25^{\circ}
$$

$F_{x}=+389.88 \mathrm{~N}$,

$$
F_{x}=+390 \mathrm{~N}
$$

$F_{y}=F \cos 35^{\circ}$ $=(750 \mathrm{~N}) \cos 35^{\circ}$
$F_{y}=+614.36 \mathrm{~N}$,
$F_{z}=F_{h} \sin 25^{\circ}$
$=(430.18 \mathrm{~N}) \sin 25^{\circ}$

$$
\begin{gathered}
F_{y}=+614 \mathrm{~N} \\
F_{z}=+181.8 \mathrm{~N}
\end{gathered}
$$

$F_{z}=+181.802 \mathrm{~N}$
$\cos \theta_{x}=\frac{\underline{F}_{x}}{F}=\frac{+389.88 \mathrm{~N}}{750 \mathrm{~N}}$

$$
\theta_{x}=58.7^{\circ}
$$

$$
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{+614.36 \mathrm{~N}}{750 \mathrm{~N}}
$$

$$
\theta_{y}=35.0^{\circ}
$$

$$
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{+181.802 \mathrm{~N}}{750 \mathrm{~N}}
$$

$$
\theta_{z}=76.0^{\circ}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a)
$F_{x}=(120 \mathrm{lb}) \cos 60^{\circ} \cos 20^{\circ}$
$F_{x}=56.382 \mathrm{lb} \quad F_{x}=+56.4 \mathrm{lb}$
$F_{y}=-(120 \mathrm{lb}) \sin 60^{\circ}$
$F_{y}=-103.923 \mathrm{lb} \quad F_{y}=-103.9 \mathrm{lb}$
$F_{z}=-(120 \mathrm{lb}) \cos 60^{\circ} \sin 20^{\circ}$
$F_{z}=-20.521 \mathrm{lb}$
$\cos \theta_{x}=\frac{F_{x}}{F} \frac{56.382 \mathrm{lb}}{120 \mathrm{lb}}$

$$
F_{z}=-20.5 \mathrm{lb}
$$

(b)
$\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-103.923 \mathrm{lb}}{120 \mathrm{lb}}$
$\theta_{y}=150.0^{\circ}$ 《
$\cos \theta_{z}=\frac{F_{z}}{F}=\frac{-20.52 \mathrm{lb}}{120 \mathrm{lb}}$
$\theta_{z}=99.8^{\circ}$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a)

$$
\begin{array}{rlrl}
F_{x} & =(85 \mathrm{lb}) \sin 36^{\circ} \sin 48^{\circ} & \\
& =37.129 \mathrm{lb} & & F_{x}=37.1 \mathrm{lb} \\
F_{y} & =-(85 \mathrm{lb}) \cos 36^{\circ} & & \\
& =-68.766 \mathrm{lb} & F_{y}=-68.8 \mathrm{lb} \\
F_{z} & =(85 \mathrm{lb}) \sin 36^{\circ} \cos 48^{\circ} & & \\
& =33.431 \mathrm{lb} & F_{z}=33.4 \mathrm{lb}
\end{array}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{\underline{x}}}{F}=\frac{37.129 \mathrm{lb}}{85 \mathrm{lb}} & \theta_{x}=64.1^{\circ} 4 \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-68.766 \mathrm{lb}}{85 \mathrm{lb}} & \theta_{y}=144.0^{\circ} \\
\cos \theta_{z}=\frac{F_{\underline{z}}}{F}=\frac{33.431 \mathrm{lb}}{85 \mathrm{lb}} & \theta_{z}=66.8^{\circ}
\end{array}
$$

PROBLEM 2.60

A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N , determine (a) the x, y, and z components of that force, (b) the values of the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)

SOLUTION

Recoil force

$$
\begin{gathered}
F=400 \mathrm{~N} \\
\therefore F_{H}=(400 \mathrm{~N}) \cos 40^{\circ} \\
=306.42 \mathrm{~N}
\end{gathered}
$$

(a)

$$
F_{y}=-257 \mathrm{~N} \text { 4 }
$$

$$
=+251.00 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
F_{x} & =-F_{H} \sin 35^{\circ} \\
& =-(306.42 \mathrm{~N}) \sin 35^{\circ} \\
& =-175.755 \mathrm{~N} \quad F_{x}=-175.8 \mathrm{~N} 4
\end{aligned}
$$

$$
F_{y}=-F \sin 40^{\circ}
$$

$$
=-(400 \mathrm{~N}) \sin 40^{\circ}
$$

$$
=-257.12 \mathrm{~N}
$$

$$
F_{z}=+F_{H} \cos 35^{\circ}
$$

$$
=+(306.42 \mathrm{~N}) \cos 35^{\circ}
$$

$$
F_{z}=+251 \mathrm{~N} \text { 4 }
$$

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{-175.755 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{x=116.1^{\circ} \leftharpoonup}^{\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-257.12 \mathrm{~N}}{400 \mathrm{~N}}} \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{251.00 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{y}=130.0^{\circ} \text { « }
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.61

Solve Problem 2.60, assuming that point A is located 15° north of west and that the barrel of the gun forms an angle of 25° with the horizontal.

PROBLEM 2.60 A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N , determine (a) the x, y, and z components of that force, (b) the values of the angles θ_{x}, θ_{y}, and θ_{z} defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)

SOLUTION

Recoil force

$$
F=400 \mathrm{~N}
$$

(a)

$$
F_{z}=+F_{H} \sin 15^{\circ}
$$

$$
=+(362.52 \mathrm{~N}) \sin 15^{\circ}
$$

$$
=+93.827 \mathrm{~N} \quad F_{z}=+93.8 \mathrm{~N}
$$

(b)

$$
\begin{array}{ll}
\cos \theta_{x}=\frac{F_{x}}{F}=\frac{+350.17 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{x}=28.9^{\circ} \leftharpoonup \\
\cos \theta_{y}=\frac{F_{y}}{F}=\frac{-169.047 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{y}=115.0^{\circ} 4 \\
\cos \theta_{z}=\frac{F_{z}}{F}=\frac{+93.827 \mathrm{~N}}{400 \mathrm{~N}} & \theta_{z}=76.4^{\circ}<
\end{array}
$$

$$
\begin{array}{rlr}
F_{x} & =+F_{H} \cos 15^{\circ} & \\
& =+(362.52 \mathrm{~N}) \cos 15^{\circ} & \\
& =+350.17 \mathrm{~N} & \\
F_{y} & =-F \sin 25^{\circ} & \\
& =-(400 \mathrm{~N}) \sin 25^{\circ} & \\
& =-169.047 \mathrm{~N} & F_{y}=-169.0 \mathrm{~N} \triangleleft
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.62

Determine the magnitude and direction of the force $\mathbf{F}=(690 \mathrm{lb}) \mathbf{i}+(300 \mathrm{lb}) \mathbf{j}-(580 \mathrm{lb}) \mathbf{k}$.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{F} & =(690 \mathrm{lb}) \mathbf{i}+(300 \mathrm{lb}) \mathbf{j}-(580 \mathrm{lb}) \mathbf{k} & & \\
F & =\sqrt[F]{{ }^{2}+F^{2}{ }_{y}+F_{z}^{2}} & & \\
& =(690 \mathrm{lb})^{2}+(300 \mathrm{lb})^{2}+(-580 \mathrm{lb})^{2} & F & =950 \mathrm{lb} \leftharpoonup \\
& =950 \mathrm{lb} & \theta_{x}=43.4^{\circ} \leftharpoonup \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{690 \mathrm{lb}}{950 \mathrm{lb}} & & \theta_{y}=71.6^{\circ} \leftharpoonup \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{300 \mathrm{lb}}{950 \mathrm{lb}} & \theta_{z}=127.6^{\circ} \leftharpoonup \\
\cos \theta_{z} & =\frac{F_{z}}{F}=\frac{-580 \mathrm{lb}}{950 \mathrm{lb}} &
\end{array}
$$

PROBLEM 2.63

Determine the magnitude and direction of the force $\mathbf{F}=(650 \mathrm{~N}) \mathbf{i}-(320 \mathrm{~N}) \mathbf{j}+(760 \mathrm{~N}) \mathbf{k}$.

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{F} & =(650 \mathrm{~N}) \mathbf{i}-(320 \mathrm{~N}) \mathbf{j}+(760 \mathrm{~N}) \mathbf{k} & \\
F & =\sqrt{{ }^{2}{ }_{x}+F^{2}{ }_{y}+F_{z}^{2}} & & \\
& =\sqrt{650 \mathrm{~N})^{2}+(-320 \mathrm{~N})^{2}+(760 \mathrm{~N})^{2}} & F & =1050 \mathrm{~N} \longleftarrow \\
\cos \theta_{x} & =\frac{F_{x}}{F}=\frac{650 \mathrm{~N}}{1050 \mathrm{~N}} & \theta_{x}=51.8^{\circ} \longleftarrow \\
\cos \theta_{y} & =\frac{F_{y}}{F}=\frac{-320 \mathrm{~N}}{1050 \mathrm{~N}} & \theta_{y}=107.7^{\circ} \longleftarrow \\
\cos \theta_{z} & =\frac{F_{z}}{F}=\frac{760 \mathrm{~N}}{1050 \mathrm{~N}} & \theta_{z}=43.6^{\circ} \longleftarrow
\end{array}
$$

PROBLEM 2.64

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{x}=69.3^{\circ}$ and $\theta_{z}=57.9^{\circ}$. Knowing that the y component of the force is -174.0 lb , determine (a) the angle $\theta_{y},(b)$ the other components and the magnitude of the force.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2}\left(69.3^{\circ}\right)+\cos ^{2} \theta_{y}+\cos ^{2}\left(57.9^{\circ}\right) & =1 \\
\cos \theta_{y} & = \pm 0.7699
\end{aligned}
$$

(a) Since $F_{y}<0$, we choose $\cos \theta_{y}=-0.7699$ $\therefore \theta_{y}=140.3^{\circ}$
(b)

$$
\begin{array}{cc}
F_{y}=F \cos \theta y & \\
-174.0 \mathrm{lb}=F(-0.7699) & F=226 \mathrm{lb} \\
F=226.0 \mathrm{lb} & F_{x}=79.9 \mathrm{lb} \\
F_{x}=F \cos \theta_{x}=(226.0 \mathrm{lb}) \cos 69.3^{\circ} & F_{z}=120.1 \mathrm{lb}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.65

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{x}=70.9^{\circ}$ and $\theta_{y}=144.9^{\circ}$. Knowing that the z component of the force is -52.0 lb , determine (a) the angle $\theta_{z},(b)$ the other components and the magnitude of the force.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2} 70.9+\cos ^{2} 144.9^{\circ}+\cos ^{2} \theta_{z}^{\circ} & =1 \\
\cos \theta_{z} & = \pm 0.47282
\end{aligned}
$$

(a) Since $F_{z}<0$, we choose $\cos \theta_{z}=-0.47282$ $\therefore \theta_{z}=118.2^{\circ}$ 4
(b)

$$
\begin{array}{rlrl}
F_{z} & =F \cos \theta_{z} & \\
-52.0 l b & =F(-0.47282) & \\
F & =110.0 \mathrm{lb} & F=110.0 \mathrm{lb} \triangleleft \\
F_{x} & =F \cos \theta_{x}=(110.0 \mathrm{lb}) \cos 70.9^{\circ} & F_{x}=36.0 \mathrm{lb} \triangleleft \\
F_{y} & =F \cos \theta_{y}=(110.0 \mathrm{lb}) \cos 144.9^{\circ} & F_{y}=-90.0 \mathrm{lb} \triangleleft
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.66

A force acts at the origin of a coordinate system in a direction defined by the angles $\theta_{y}=55^{\circ}$ and $\theta_{z}=45^{\circ}$. Knowing that the x component of the force is -500 lb , determine (a) the angle θ_{x}, (b) the other components and the magnitude of the force.

SOLUTION

(a) We have

$$
\left(\cos \theta_{x}\right)^{2}+\left(\cos \theta_{y}\right)^{2}+\left(\cos \theta_{z}\right)^{2}=1 \Rightarrow\left(\cos \theta_{y}\right)^{2}=1-\left(\cos \theta_{y}\right)^{2}-\left(\cos \theta_{z}\right)^{2}
$$

Since $F_{x}<0$ we must have $\cos \theta_{x}, 0$
Thus, taking the negative square root, from above, we have:

$$
\cos \theta_{x}=-\sqrt[1]{-(\cos 55)^{2}-(\cos 45)^{2}}=0.41353 \quad \theta_{x}=114.4^{\circ} 4
$$

(b) Then:

$$
F=\frac{F_{x}}{\cos \theta_{x}}=\frac{500 \mathrm{lb}}{0.41353}=1209.10 \mathrm{lb} \quad F=1209 \mathrm{lb}
$$

and

$$
\begin{array}{ll}
F_{y}=F \cos \theta_{y}=(1209.10 \mathrm{lb}) \cos 55^{\circ} & F_{y}=694 \mathrm{lb} \\
F_{z}=F \cos \theta_{z}=(1209.10 \mathrm{lb}) \cos 45^{\circ} & F_{z}=855 \mathrm{lb}
\end{array}
$$

PROBLEM 2.67

A force \mathbf{F} of magnitude 1200 N acts at the origin of a coordinate system. Knowing that $\theta_{x}=65^{\circ}, \theta_{y}=40^{\circ}$, and $F_{z}>0$, determine (a) the components of the force, (b) the angle θ_{z}.

SOLUTION

$$
\begin{aligned}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z} & =1 \\
\cos ^{2} 65+\cos ^{2} 40^{\circ}+\cos ^{2} \theta_{z}^{\circ} & =1 \\
\cos \theta_{z} & = \pm 0.48432
\end{aligned}
$$

(b) Since $F_{z}>0$, we choose $\cos \theta_{z}=0.48432$, or $\theta_{z}=61.032$
(a)

$$
\begin{array}{ll}
F=1200 \mathrm{~N} & \\
& F_{x}=F \cos \theta_{x}=(1200 \mathrm{~N}) \cos 65^{\circ} \\
& F_{y}=F \cos \theta_{y}=(1200 \mathrm{~N}) \cos 40^{\circ} \\
F_{z} & =F \cos \theta_{z}=(1200 \mathrm{~N}) \cos 61.032^{\circ}
\end{array} F_{y}=919 \mathrm{~N} \longleftarrow 4
$$

SOLUTION

We have:

$$
\overrightarrow{B A}=+(320 \mathrm{~mm}) \mathbf{i}+(480 \mathrm{~mm}) \mathbf{j}-(360 \mathrm{~mm}) \mathbf{k} \quad B A=680 \mathrm{~mm}
$$

Thus:

$$
\begin{array}{r}
\mathrm{F}_{B}=T_{B A} \lambda_{B A}=T_{B A} \frac{-\overrightarrow{B A}}{B A}=T_{B A}\left(\frac{8}{17}+\frac{12}{17} \mathbf{j}-\frac{9}{17}\right) \\
\left(\frac{8}{17} T_{B A}\right) \mathbf{i}+\left(\frac{12}{17} T_{B A}\right) \mathbf{j}-\left(\frac{9}{17} T_{B A}\right) \mathbf{k}=0
\end{array}
$$

Setting $T_{B A}=408 \mathrm{~N}$ yields,

$$
F_{x}=+192.0 \mathrm{~N}, F_{y}=+288 \mathrm{~N}, F_{z}=-216 \mathrm{~N} \boldsymbol{4}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

We have:

$$
\overrightarrow{D A}=-(250 \mathrm{~mm}) \mathbf{i}+(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} \quad D A=650 \mathrm{~mm}
$$

Thus:

$$
\begin{gathered}
\mathrm{F}_{D}=T_{D A} \lambda_{D A}=T_{D A} \frac{-\overrightarrow{D A}}{D A}=T_{D A}\left(-\frac{5}{13} \mathbf{i}+\frac{48}{65} \mathbf{j}+\frac{36}{65} \mathbf{k}\right) \\
-\left(\frac{5}{13} T_{D A}\right) \mathbf{i}+\left(\frac{48}{65} T_{D A}\right) \mathbf{j}+\left(\frac{36}{65} T_{D A}\right) \mathbf{k}=0
\end{gathered}
$$

Setting $T_{D A}=429 \mathrm{~N}$ yields,

$$
F_{x}=-165.0 \mathrm{~N}, F_{y}=+317 \mathrm{~N}, F_{z}=+238 \mathrm{~N} \text { 【 }
$$

SOLUTION

Cable AB:

$$
A B=74.216 \mathrm{ft} \quad A C=85.590 \mathrm{ft}
$$

$$
\lambda_{A B}=\frac{\overrightarrow{A B}}{A B}=\frac{(-46.765 \mathrm{ft}) \mathbf{i}+(45 \mathrm{ft}) \mathbf{j}+(36 \mathrm{ft}) \mathbf{k}}{74.216 \mathrm{ft}}
$$

$$
\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=\frac{-46.765 \mathbf{i}+45 \mathbf{j}+36 \mathbf{k}}{74.216}
$$

$$
\begin{aligned}
& \left(T_{A B}\right)_{x}=-1.260 \mathrm{kips} \\
& \left(T_{A B}\right)_{y}=+1.213 \mathrm{kips} \\
& \left(T_{A B}\right)_{z}=+0.970 \mathrm{kips}
\end{aligned}
$$

PROBLEM 2.71

In order to move a wrecked truck, two cables are attached at A and pulled by winches B and C as shown. Knowing that the tension in cable $A C$ is 1.5 kips , determine the components of the force exerted at A by the cable.

SOLUTION

Cable $A B$:

$$
\begin{aligned}
& \lambda_{A C}=\frac{\stackrel{-\mathbb{C}}{C}}{A \overline{\bar{C}}} \frac{(-46.765 \mathrm{ft}) \mathbf{i}+(55.8 \mathrm{ft}) \mathbf{j}+(-45 \mathrm{ft}) \mathbf{k}}{85.590 \mathrm{ft}} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{C}=(1.5 \mathrm{kips}) \frac{-46.765 \mathbf{i}+55.8 \mathbf{j}-45 \mathbf{k}}{85.590}
\end{aligned}
$$

$$
\begin{aligned}
& \left(T_{A C}\right)_{x}=-0.820 \mathrm{kips} \\
& \left(T_{A C}\right)_{y}=+0.978 \mathrm{kips} \\
& \left(T_{A C}\right)_{z}=-0.789 \mathrm{kips}
\end{aligned}
$$

SOLUTION

$$
\begin{array}{rlrl}
\mathbf{P} & =(300 \mathrm{~N})\left[-\cos 30^{\circ} \sin 15^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}+\cos 30^{\circ} \cos 15^{\circ} \mathbf{k}\right] & & \\
& =-(67.243 \mathrm{~N}) \mathbf{i}+(150 \mathrm{~N}) \mathbf{j}+(250.95 \mathrm{~N}) \mathbf{k} & & \\
\mathbf{Q} & =(400 \mathrm{~N})\left[\cos 50^{\circ} \cos 20^{\circ} \mathbf{i}+\sin 50^{\circ} \mathbf{j}-\cos 50^{\circ} \sin 20^{\circ} \mathbf{k}\right] & & \\
& =(400 \mathrm{~N})[0.60402 \mathbf{i}+0.76604 \mathbf{j}-0.21985] & & \\
& =(241.61 \mathrm{~N}) \mathbf{i}+(306.42 \mathrm{~N}) \mathbf{j}-(87.939 \mathrm{~N}) \mathbf{k} & \\
\mathbf{R} & =\mathbf{P}+\mathbf{Q} & & \\
& =(174.367 \mathrm{~N}) \mathbf{i}+(456.42 \mathrm{~N}) \mathbf{j}+(163.011 \mathrm{~N}) \mathbf{k} & & \\
R & =(174.367 \mathrm{~N})^{2}+(456.42 \mathrm{~N})^{2}+(163.011 \mathrm{~N})^{2} & \theta_{x}=70.2^{\circ} \measuredangle \\
& =515.07 \mathrm{~N} & & \theta_{y}=27.6^{\circ} \\
\cos \theta_{x} & =\frac{R_{x}=}{R} \frac{174.367 \mathrm{~N}=0.33853}{515.07 \mathrm{~N}} & & \theta_{z}=71.5^{\circ} \\
\cos \theta_{y} & =\frac{R_{y}=456.42 \mathrm{~N}=0.88613}{R} \frac{415.07 \mathrm{~N}}{5} & \\
\cos \theta_{z} & =\frac{R_{z}=}{R} \frac{163.011 \mathrm{~N}=0.31648}{515.07 \mathrm{~N}} &
\end{array}
$$

PROBLEM 2.73

Find the magnitude and direction of the resultant of the two forces shown knowing that $P=300 \mathrm{~N}$ and $Q=400 \mathrm{~N}$.

SOLUTION

$$
\begin{aligned}
& \mathbf{P}=(400 \mathrm{~N})\left[-\cos 30^{\circ} \sin 15^{\circ} \mathbf{i}+\sin 30^{\circ} \mathbf{j}+\cos 30^{\circ} \cos 15^{\circ} \mathbf{k}\right] \\
& =-(89.678 \mathrm{~N}) \mathbf{i}+(200 \mathrm{~N}) \mathbf{j}+(334.61 \mathrm{~N}) \mathbf{k} \\
& \mathbf{Q}=(300 \mathrm{~N})\left[\cos 50^{\circ} \cos 20^{\circ} \mathbf{i}+\sin 50^{\circ} \mathbf{j}-\cos 50^{\circ} \sin 20^{\circ} \mathbf{k}\right] \\
& =(181.21 \mathrm{~N}) \mathbf{i}+(229.81 \mathrm{~N}) \mathbf{j}-(65.954 \mathrm{~N}) \mathbf{k} \\
& \mathbf{R}=\mathbf{P}+\mathbf{Q} \\
& =(91.532 \mathrm{~N}) \mathbf{i}+(429.81 \mathrm{~N}) \mathbf{j}+(268.66 \mathrm{~N}) \mathbf{k} \\
& R=(91.532 \mathrm{~N})^{2}+(429.81 \mathrm{~N})^{2}+(268.66 \mathrm{~N})^{2} \\
& =515.07 \mathrm{~N} \\
& \cos \theta_{x}=\frac{R_{x_{x}}=}{R} \frac{91.532 \mathrm{~N}}{515.07 \mathrm{~N}}=0.177708 \\
& \theta_{x}=79.8^{\circ} \text { 《 } \\
& \cos \theta_{y}=\frac{R_{y}}{R}=\frac{429.81 \mathrm{~N}}{515.07 \mathrm{~N}}=0.83447 \\
& \theta_{y}=33.4^{\circ} \\
& \cos \theta_{z}=\frac{R_{z^{\prime}}}{R} \frac{268.66 \mathrm{~N}}{515.07 \mathrm{~N}}=0.52160 \\
& \theta_{z}=58.6^{\circ}
\end{aligned}
$$

PROBLEM 2.74

Knowing that the tension is 425 lb in cable $A B$ and 510 lb in cable $A C$, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables.

SOLUTION

$$
\begin{aligned}
& --\bar{A} B=(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
& A B=(40 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}=85 \mathrm{in} . \\
& --I C=(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
& A C=\left(\sqrt{00 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=125 \mathrm{in} .\right.
\end{aligned}
$$

$$
\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{--\bar{A} B}{A B}=(425 \mathrm{lb})\left[\frac{(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{85 \mathrm{in} .}\right]
$$

$$
\mathbf{T}_{A B}=(200 \mathrm{lb}) \mathbf{i}-(225 \mathrm{lb}) \mathbf{j}+(300 \mathrm{lb}) \mathbf{k}
$$

$$
\mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{-\overline{A C}}{A C}=(510 \mathrm{lb})\left[\frac{(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{125 \mathrm{in} .}\right]
$$

$$
\mathbf{T}_{A C}=(408 \mathrm{lb}) \mathbf{i}-(183.6 \mathrm{lb}) \mathbf{j}+(244.8 \mathrm{lb}) \mathbf{k}
$$

$$
\mathbf{R}=\mathbf{T}_{A B}+\mathbf{T}_{A C}=(608) \mathbf{i}-(408.6 \mathrm{lb}) \mathbf{j}+(544.8 \mathrm{lb}) \mathbf{k}
$$

Then:

$$
R=912.92 \mathrm{lb}
$$

$$
R=913 \mathrm{lb}
$$

and

$$
\begin{array}{ll}
\cos \theta_{\bar{x}}=\frac{608 \mathrm{lb}}{912.92 \mathrm{lb}}=0.66599 & \theta_{x}=48.2^{\circ} \\
\cos \theta_{y}=\frac{408.6 \mathrm{lb}}{912.92 \mathrm{lb}}-0.44757 & \theta_{y}=116.6^{\circ} \\
\cos \theta_{z}=\frac{544.8 \mathrm{lb}}{912.92 \mathrm{lb}}=0.59677 & \theta_{z}=53.4^{\circ}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.75

Knowing that the tension is 510 lb in cable $A B$ and 425 lb in cable $A C$, determine the magnitude and direction of the resultant of the forces exerted at A by the two cables.

SOLUTION

Then:

$$
R=912.92 \mathrm{lb}
$$

$$
R=913 \mathrm{lb}
$$

and

$$
\begin{array}{ll}
\cos \theta_{\bar{x}}=\frac{580 \mathrm{lb}}{912.92 \mathrm{lb}}=0.63532 & \theta_{x}=50.6^{\circ} . \\
\cos \theta_{y}=\frac{-423 \mathrm{lb}}{912.92 \mathrm{lb}}=-0.46335 & \theta_{y}=117.6^{\circ} . \\
\cos \theta_{z}=\frac{564 \mathrm{lb}}{912.92 \mathrm{lb}}=0.61780 & \theta_{z}=51.8^{\circ} .
\end{array}
$$

$$
\begin{aligned}
& \stackrel{-}{A} B=(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
& A B=(40 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}=85 \mathrm{in} . \\
& -H C=(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k} \\
& A C=\left(\sqrt{00 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}}=125 \mathrm{in} .\right. \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{--\mathrm{A} B}{A B}=(510 \mathrm{lb})\left[\frac{(40 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{85 \mathrm{in} .}\right] \\
& \mathbf{T}_{A B}=(240 \mathrm{lb}) \mathbf{i}-(270 \mathrm{lb}) \mathbf{j}+(360 \mathrm{lb}) \mathbf{k} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{--[I C}{A C}=(425 \mathrm{lb})\left[\frac{(100 \mathrm{in} .) \mathbf{i}-(45 \mathrm{in} .) \mathbf{j}+(60 \mathrm{in} .) \mathbf{k}}{125 \mathrm{in} .}\right] \\
& \mathbf{T}_{A C}=(340 \mathrm{lb}) \mathbf{i}-(153 \mathrm{lb}) \mathbf{j}+(204 \mathrm{lb}) \mathbf{k} \\
& \mathbf{R}=\mathbf{T}_{A B}+\mathbf{T}_{A C}=(580 \mathrm{lb}) \mathbf{i}-(423 \mathrm{lb}) \mathbf{j}+(564 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

SOLUTION

$$
\begin{aligned}
& \overrightarrow{B D}=-(480 \mathrm{~mm}) \mathbf{i}+(510 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \\
& B D=(480 \mathrm{~mm})^{2}+(510 \mathrm{~mm})^{2}+(320 \mathrm{~mm})^{2}=770 \mathrm{~mm} \\
& \mathbf{F}_{B D}=T_{B D} \lambda_{B D}=T_{B D} \frac{--\vec{D}}{B D} \\
& =\frac{(385 \mathrm{~N})}{(770 \mathrm{~mm})}[-(480 \mathrm{~mm}) \mathbf{i}+(510 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k}] \\
& =-(240 \mathrm{~N}) \mathbf{i}+(255 \mathrm{~N}) \mathbf{j}-(160 \mathrm{~N}) \mathbf{k} \\
& \overrightarrow{B E}=-(270 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}-(600 \mathrm{~mm}) \mathbf{k} \\
& B E=(270 \mathrm{~mm})^{2}+(400 \mathrm{~mm})^{2}+(600 \mathrm{~mm})^{2}=770 \mathrm{~mm} \\
& \mathbf{F}_{B E}=T_{B E} \lambda_{B E}=T_{B E} \frac{--\vec{B}}{B E} \\
& =\frac{(385 \mathrm{~N})}{(770 \mathrm{~mm})}[-(270 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}-(600 \mathrm{~mm}) \mathbf{k}] \\
& =-(135 \mathrm{~N}) \mathbf{i}+(200 \mathrm{~N}) \mathbf{j}-(300 \mathrm{~N}) \mathbf{k} \\
& \mathbf{R}=\mathbf{F}_{B D}+\mathbf{F}_{B E}=-(375 \mathrm{~N}) \mathbf{i}+(455 \mathrm{~N}) \mathbf{j}-(460 \mathrm{~N}) \mathbf{k} \\
& R=\sqrt{(375 \mathrm{~N})^{2}+(455 \mathrm{~N})^{2}+(460 \mathrm{~N})^{2}}=747.83 \mathrm{~N} \quad R=748 \mathrm{~N} \\
& \cos \theta_{x}=\frac{-375 \mathrm{~N}}{747.83 \mathrm{~N}} \quad \theta_{x}=120.1^{\circ} \\
& \cos \theta_{y}=\frac{455 \mathrm{~N}}{747.83 \mathrm{~N}} \quad \theta_{y}=52.5^{\circ} \\
& \cos \theta_{z}=\frac{-460 \mathrm{~N}}{747.83 \mathrm{~N}} \quad \theta_{z}=128.0^{\circ}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

We have:

$$
\begin{array}{ll}
--\mathbb{I}=-(320 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A B=680 \mathrm{~mm} \\
A B=(450 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A C=750 \mathrm{~mm} \\
--\mathbb{A C}=(50 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}-(360 \mathrm{~mm}) \mathbf{k} & A D=650 \mathrm{~mm} \\
A D=(250
\end{array}
$$

Thus:

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{-\bar{A} B}{A B}=\frac{T_{A B}}{680}(-320 \mathbf{i}-480 \mathbf{j}+360 \mathbf{k}) \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{A C}{A C}=\frac{54}{750}(450 \mathbf{i}-480 \mathbf{j}+360 \mathbf{k}) \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{-\overline{A D}}{A D}=\frac{T_{A D}}{650}(250 \mathbf{i}-480 \mathbf{j}-360 \mathbf{k})
\end{aligned}
$$

Substituting into the Eq. $\mathbf{R}=\Sigma \mathbf{F}$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
& \mathbf{R}=\left(-\frac{320}{680} T_{A B}+32.40+\frac{250}{650} T_{A D}\right) \mathbf{i} \\
& +\left(\left\lvert\,-\frac{480}{680} T_{A B}-34.560-\frac{480}{650} T_{A D}\right.\right) \mathbf{j} \\
& +\left(\frac{360}{680} T_{A B}+25.920-\frac{360}{650} T_{A D}\right) \mathbf{k}
\end{aligned}
$$

SOLUTION (Continued)

Since \mathbf{R} is vertical, the coefficients of \mathbf{i} and \mathbf{k} are zero:

$$
\begin{align*}
& \text { i: } \quad-\frac{320}{680} T_{A B}+32.40+\frac{250}{650} T_{A D}=0 \tag{1}\\
& \text { k: } \quad \quad \frac{360}{680} T_{A B}+25.920-\frac{360}{650} T_{A D}=0 \tag{2}
\end{align*}
$$

Multiply (1) by 3.6 and (2) by 2.5 then add:

$$
\begin{aligned}
& -\frac{252}{680} T_{A B}+181.440=0 \\
& T_{A B}=489.60 \mathrm{~N}
\end{aligned}
$$

$$
T_{A B}=490 \mathrm{~N}
$$

Substitute into (2) and solve for $T_{A D}$:

$$
\begin{aligned}
\frac{360}{680}(489.60 \mathrm{~N})+25.920-\frac{360}{650} T_{A D} & =0 \\
T_{A D} & =514.80 \mathrm{~N}
\end{aligned}
$$

$$
T_{A D}=515 \mathrm{~N}
$$

SOLUTION

Cable $A B$:

$$
T_{A B}=183 \mathrm{lb}
$$

$$
\begin{aligned}
& \mathbf{T}_{A B}=T_{A B A B}=T_{A B} \frac{\overrightarrow{A B}}{A B}=(183 \mathrm{lb}) \frac{(-48 \mathrm{in} .) \mathbf{i}+(29 \mathrm{in} .) \mathbf{j}+(24 \mathrm{in} .) \mathbf{k}}{61 \mathrm{in} .} \\
& \mathbf{T}_{A B}=-(144 \mathrm{lb}) \mathbf{i}+(87 \mathrm{lb}) \mathbf{j}+(72 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Cable AC:

$$
\begin{aligned}
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{--\overrightarrow{A C}}{A C}=T_{A C} \frac{(-48 \mathrm{in} .) \mathbf{i}+(25 \mathrm{in} .) \mathbf{j}+(-36 \mathrm{in} .) \mathbf{k}}{65 \mathrm{in} .} \\
& \mathbf{T}_{A C}=-\frac{48}{65} T_{A C} \mathbf{i}+\frac{25}{65} T_{A C} \mathbf{j}-\frac{36}{65} T_{A C} \mathbf{k}
\end{aligned}
$$

Load P :

$$
\mathbf{P}=P \mathbf{j}
$$

For resultant to be directed along $O A$, i.e., x-axis

$$
R_{z}=0: \Sigma F=(72 \mathrm{lb})-{ }_{z}^{36} \frac{T^{\prime}}{65}=0 \quad T_{A C}=130.0 \mathrm{lb}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

See Problem 2.78. Since resultant must be directed along $O A$, i.e., the x-axis, we write

$$
R_{y}=0: \Sigma F=(87 \mathrm{lb})+{ }_{y}^{25} \frac{T}{65} \quad A C-P=0
$$

$T_{A C}=130.0 \mathrm{lb}$ from Problem 2.97.

Then

$$
(87 \mathrm{lb})+\frac{25}{65}(130.0 \mathrm{lb})-P=0 \quad P=137.0 \mathrm{lb}
$$

SOLUTION

Free-Body Diagram at A:

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D} \text {, and } \mathbf{W}
$$

where $\mathbf{W}=W \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{aligned}
& \stackrel{H}{A B}=-(450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j} \\
& A B=750 \mathrm{~mm} \\
& A C=+(600 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \\
& -\bar{A} D=+(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} \\
& A C=680 \mathrm{~mm} \\
& A D=860 \mathrm{~mm} \\
& \mathbf{T}_{A B}=\lambda_{A B} T_{A B}=T_{A B} \frac{\bar{A} B}{A B}=T_{A B} \frac{(-450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}}{750 \mathrm{~mm}} \\
& \left.=\left(-\frac{45}{75} \mathbf{i}+\frac{60}{75} \mathbf{j}\right)\right)_{A B} \\
& \mathbf{T}_{A C}=\lambda_{A C} T_{A C}=T_{A C} \frac{--\bar{A} C}{A C}=T_{A C} \frac{(600 \mathrm{~mm}) \mathbf{i}-(320 \mathrm{~mm}) \mathbf{j}}{680 \mathrm{~mm}} \\
& =\left(\frac{60}{68} \mathbf{j}-\frac{32}{68} \mathbf{k}\right) T_{A C} \\
& \mathbf{T}_{A D}=\lambda_{A D} T_{A D}=T_{A D} \frac{-\bar{A}}{A D}=T_{A D} \frac{(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k}}{860 \mathrm{~mm}} \\
& =\left(\frac{50}{86} \mathbf{i}+\frac{60}{86} \mathbf{j}+\frac{36}{86} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

SOLUTION (Continued)

Equilibrium condition:

$$
\Sigma F=0: \therefore \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{W}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$; factoring \mathbf{i}, \mathbf{j}, and \mathbf{k}; and equating each of the coefficients to zero gives the following equations:

From i:

$$
\begin{equation*}
-\frac{45}{75} T_{A B}+\frac{50}{86} T_{A D}=0 \tag{1}
\end{equation*}
$$

From $\mathbf{j}: \quad \frac{60}{75} T_{A B}+\frac{60}{68} T_{A C}+\frac{60}{86} T_{A D}-W=0$

From \mathbf{k} :

$$
\begin{equation*}
-\frac{32}{68} T_{A C}+\frac{36}{86} T_{A D}=0 \tag{3}
\end{equation*}
$$

Setting $T_{A B}=6 \mathrm{kN}$ in (1) and (2), and solving the resulting set of equations gives

$$
\begin{aligned}
& T_{A C}=6.1920 \mathrm{kN} \\
& T_{A C}=5.5080 \mathrm{kN}
\end{aligned}
$$

$$
W=13.98 \mathrm{kN}
$$

SOLUTION

Free-Body Diagram at A:

The forces applied at A are:
$\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D}$, and \mathbf{W}
where $\mathbf{W}=W \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{array}{ll}
--\mathrm{II} B=-(450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j} & A B=750 \mathrm{~mm} \\
--\mathbb{-}=+(600 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} & A C=680 \mathrm{~mm} \\
A C=-(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A D=860 \mathrm{~mm}
\end{array}
$$

$$
\begin{aligned}
\mathbf{T}_{A B}=\lambda_{A B} T_{A B}=T_{A B} \frac{-\bar{A} \mathrm{I}}{A B} & =T_{A B} \frac{(-450 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}}{750 \mathrm{~mm}} \\
& =\left(-\frac{45}{75} \mathbf{i}+\frac{60}{75} \mathbf{j}\right) f_{A B}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{T}_{A C}=\lambda_{A C} T_{A C}=T_{A C} \frac{-\bar{A} \mathrm{I} C}{A C} & =T_{A C} \frac{(600 \mathrm{~mm}) \mathbf{i}-(320 \mathrm{~mm}) \mathbf{j}}{680 \mathrm{~mm}} \\
& =\left(\frac{60}{68} \mathbf{j}-\frac{32}{68} \mathbf{k}\right) T_{A C} \\
\mathbf{T}_{A D}=\lambda_{A D} T_{A D}=T_{A D} \frac{-\bar{A} \frac{I}{A D}}{A D} & =T_{A D} \frac{(500 \mathrm{~mm}) \mathbf{i}+(600 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k}}{860 \mathrm{~mm}} \\
& =\left(\frac{50}{86} \mathbf{i}+\frac{60}{86} \mathbf{j}+\frac{36}{86} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

PROBLEM 2.81 (Continued)

Equilibrium condition:

$$
\Sigma F=0: \therefore \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{W}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$; factoring \mathbf{i}, \mathbf{j}, and \mathbf{k}; and equating each of the coefficients to zero gives the following equations:

Fromi

$$
-\frac{45}{75} T_{A B}+\frac{50}{86} T_{A D}=0
$$

From \mathbf{j} :

$$
\frac{60}{75} T_{A B}+\frac{60}{68} T_{A C}+\frac{60}{86} T_{A D}-W=0
$$

From \mathbf{k} :

$$
-\frac{32}{68} T_{A C}+\frac{36}{86} T_{A D}=0
$$

Setting $T_{A D}=4.3 \mathrm{kN}$ into the above equations gives

$$
\begin{aligned}
& T_{A B}=4.1667 \mathrm{kN} \\
& T_{A C}=3.8250 \mathrm{kN} \quad W=9.71 \mathrm{kN}
\end{aligned}
$$

SOLUTION

The forces applied at A are:
$\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D}$, and \mathbf{P}
where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{array}{ll}
--\mathbb{I U}=-(4.20 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j} & A B=7.00 \mathrm{~m} \\
-\bar{A} \mathbb{H}=(2.40 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j}+(4.20 \mathrm{~m}) \mathbf{k} & A C=7.40 \mathrm{~m} \\
-\overline{A D}=-(5.60 \mathrm{~m}) \mathbf{j}-(3.30 \mathrm{~m}) \mathbf{k} & A D=6.50 \mathrm{~m} \\
\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{-H B}{A B}=(-0.6 \mathbf{i}-0.8 \mathbf{j}) T_{A B} \\
\mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{-\overrightarrow{A C}}{A C}=(0.32432-0.75676 \mathbf{j}+0.56757 \mathbf{k}) T_{A C} \\
\mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{A D}{A D}=(-0.86154 \mathbf{j}-0.50769 \mathbf{k}) T_{A D}
\end{array}
$$

PROBLEM 2.82 (Continued)

Equilibrium condition

$$
\Sigma F=0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{gathered}
\left(-0.6 T_{A B}+0.32432 T_{A C}\right) \mathbf{i}+\left(-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P\right) \mathbf{j} \\
+\left(0.56757 T_{A C}-0.50769 T_{A D}\right) \mathbf{k}=0
\end{gathered}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{array}{r}
-0.6 T_{A B}+0.32432 T_{A C}=0 \\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P=0 \\
0.56757 T_{A C}-0.50769 T_{A D}=0 \tag{3}
\end{array}
$$

From Eq. (1)

$$
T_{A B}=0.54053 T_{A C}
$$

From Eq. (3)

$$
T_{A D}=1.11795 T_{A C}
$$

Substituting for $T_{A B}$ and $T_{A D}$ in terms of $T_{A C}$ into Eq. (2) gives:

$$
\begin{aligned}
&-0.8\left(0.54053 T_{A C}\right)-0.75676 T_{A C}-0.86154\left(1.11795 T_{A C}\right)+P=0 \\
& 2.1523 T_{A C}=P ; \quad P=800 \mathrm{~N} \\
& T_{A C}=\frac{800 \mathrm{~N}}{2.1523} \\
&=371.69 \mathrm{~N}
\end{aligned}
$$

Substituting into expressions for $T_{A B}$ and $T_{A D}$ gives:

$$
\begin{aligned}
& T_{A B}=0.54053(371.69 \mathrm{~N}) \\
& T_{A D}=1.11795(371.69 \mathrm{~N})
\end{aligned}
$$

$$
T_{A B}=201 \mathrm{~N}, T_{A C}=372 \mathrm{~N}, T_{A D}=416 \mathrm{~N}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D} \text { and } \mathbf{W}
$$

where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{aligned}
& -\bar{A} B=-(36 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A B=75 \mathrm{in} . \\
& -H C=(60 \mathrm{in} .) \mathbf{j}+(32 \mathrm{in} .) \mathbf{k} \\
& A C=68 \mathrm{in} . \\
& -H D=(40 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(27 \mathrm{in} .) \mathbf{k} \\
& A D=77 \mathrm{in} .
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{-\bar{A} B}{A B} \\
& =(-0.48 \mathbf{i}+0.8 \mathbf{j}-0.36 \mathbf{k}) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{--\bar{A} C}{A C} \\
& =(0.88235 \mathbf{j}+0.47059 \mathbf{k}) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{--\bar{A} D}{A D} \\
& =(0.51948 \mathbf{i}+0.77922 \mathbf{j}-0.35065 \mathbf{k}) T_{A D}
\end{aligned}
$$

Equilibrium Condition with $\quad \mathbf{W}=-W \mathbf{j}$

$$
\Sigma F=0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}-W \mathbf{j}=0
$$

PROBLEM 2.83 (Continued)

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{gathered}
\left(-0.48 T_{A B}+0.51948 T_{A D}\right) \mathbf{i}+\left(0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W\right) \mathbf{j} \\
+\left(-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}\right) \mathbf{k}=0 \\
-0.48 T_{A B}+0.51948 T_{A D}=0 \\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W=0 \\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}=0
\end{gathered}
$$

Substituting $T_{A D}=616 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations ${ }_{A B}$ usig $87 . g n Y$ Yntional algorithms, gives:

$$
T_{A C}=969.00 \mathrm{lb} W=1868 \mathrm{lb}
$$

SOLUTION

See Problem 2.83 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{array}{r}
-0.48 T_{A B}+0.51948 T_{A D}=0 \\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W=0 \\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}=0 \tag{3}
\end{array}
$$

Substituting $T_{A C}=544 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives:

$$
\begin{aligned}
& T_{A B}=374.27 \mathrm{lb} \\
& T_{A D}=345.82 \mathrm{lb}
\end{aligned} \quad W=1049 \mathrm{lb}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

See Problem 2.83 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{array}{r}
-0.48 T_{A B}+0.51948 T_{A D}=0 \\
0.8 T_{A B}+0.88235 T_{A C}+0.77922 T_{A D}-W=0 \\
-0.36 T_{A B}+0.47059 T_{A C}-0.35065 T_{A D}=0 \tag{3}
\end{array}
$$

Substituting $W=1600 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives

$$
\begin{aligned}
T_{A B} & =571 \mathrm{lb} \\
T_{A C} & =830 \mathrm{lb} \\
T_{A D} & =528 \mathrm{lb}
\end{aligned}
$$

PROBLEM 2.86

Three wires are connected at point D, which is located 18 in. below the T-shaped pipe support $A B C$. Determine the tension in each wire when a $180-\mathrm{lb}$ cylinder is suspended from point D as shown.

SOLUTION

Free-Body Diagram of Point D :

The forces applied at D are:

$$
\mathbf{T}_{D A}, \mathbf{T}_{D B}, \mathbf{T}_{D C} \text { and } \mathbf{W}
$$

where $\mathbf{W}=-180.0 \mathrm{lbj}$. To express the other forces in terms of the unit vectors \mathbf{i}, \mathbf{j}, \mathbf{k}, we write

$$
\begin{aligned}
& -\bar{D} A=(18 \mathrm{in} .) \mathbf{j}+(22 \mathrm{in} .) \mathbf{k} \\
& D A=28.425 \mathrm{in} . \\
& -\mathbb{B}=-(24 \mathrm{in} .) \mathbf{i}+(18 \mathrm{in} .) \mathbf{j}-(16 \mathrm{in} .) \mathbf{k} \\
& D B=34.0 \mathrm{in} . \\
& ---\mathbb{D} C=(24 \mathrm{in} .) \mathbf{i}+(18 \mathrm{in} .) \mathbf{j}-(16 \mathrm{in} .) \mathbf{k} \\
& D C=34.0 \mathrm{in} .
\end{aligned}
$$

SOLUTION (Continued)

$$
\begin{aligned}
\mathbf{T}_{D A} & =T_{D a} \lambda_{D A}=T_{D a} \frac{---\mathbb{D}}{D A} \\
& =(0.63324 \mathbf{j}+0.77397 \mathbf{k}) T_{D A} \\
\mathbf{T}_{D B} & =T_{D B} \lambda_{D B}=T_{D B} \frac{-U B}{D B} \\
& =(-0.70588 \mathbf{i}+0.52941 \mathbf{j}-0.47059 \mathbf{k}) T_{D B} \\
\mathbf{T}_{D C} & =T_{D C} \lambda_{D C}=T_{D C} \frac{D C}{D C} \\
& =(0.70588 \mathbf{i}+0.52941 \mathbf{j}-0.47059 \mathbf{k}) T_{D C}
\end{aligned}
$$

and

Equilibrium Condition with

$$
\mathbf{W}=-W \mathbf{j}
$$

$$
\Sigma F=0: \mathbf{T}_{D A}+\mathbf{T}_{D B}+\mathbf{T}_{D C}-W \mathbf{j}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{D A}, \mathbf{T}_{D B}$, and $\mathbf{T}_{D C}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{array}{r}
\left(-0.70588 T_{D B}+0.70588 T_{D C}\right) \mathbf{i} \\
\left(0.63324 T_{D A}+0.52941 T_{D B}+0.52941 T_{D C}-W\right) \mathbf{j} \\
\left(0.77397 T_{D A}-0.47059 T_{D B}-0.47059 T_{D C}\right) \mathbf{k}
\end{array}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{array}{r}
-0.70588 T_{D B}+0.70588 T_{D C}=0 \\
0.63324 T_{D A}+0.52941 T_{D B}+0.52941 T_{D C}-W=0 \\
0.77397 T_{D A}-0.47059 T_{D B}-0.47059 T_{D C}=0 \tag{3}
\end{array}
$$

Substituting $W=180 \mathrm{lb}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms gives,

$$
\begin{aligned}
T_{D A} & =119.7 \mathrm{lb} \\
T_{D B} & =98.4 \mathrm{lb} \\
T_{D C} & =98.4 \mathrm{lb}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

By Symmetry $T_{D B}=T_{D C}$

Free-Body Diagram of Point D :

The forces applied at D are:
$\mathbf{T}_{D B}, \mathbf{T}_{D C}, \mathbf{T}_{D A}$, and \mathbf{P}
where $\mathbf{P}=P \mathbf{j}=(36 \mathrm{lb}) \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{aligned}
& --\bar{D} A=(16 \mathrm{in} .) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j} \quad D A=28.844 \mathrm{in} . \\
& D B=-(8 \mathrm{in} .) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j}+(6 \mathrm{in} .) \mathbf{k} \quad D B=26.0 \mathrm{in} . \\
& \stackrel{-U}{D C}=-(8 \mathrm{in}) \mathbf{i}-(24 \mathrm{in} .) \mathbf{j}-(6 \mathrm{in} .) \mathbf{k} \quad D C=26.0 \mathrm{in} . \\
& \mathbf{T}_{D A}=T_{D A} \lambda_{D A}=T_{D A} \frac{--\| A}{D A}=(0.55471 \mathbf{i}-0.83206 \mathbf{j}) T_{D A} \\
& \mathbf{T}_{D B}=T_{D B} \lambda_{D B}=T_{D B} \frac{-\overline{D B}}{D B}=(-0.30769 \mathbf{i}-0.92308 \mathbf{j}+0.23077 \mathbf{k}) T_{D B} \\
& \mathbf{T}_{D C}=T_{D C} \lambda_{D C}=T_{D C} \frac{\overline{D C}}{D C}=(-0.30769 \mathbf{i}-0.92308 \mathbf{j}-0.23077 \mathbf{k}) T_{D C}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION (Continued)

Equilibrium condition:

$$
\Sigma F=0: \mathbf{T}_{D A}+\mathbf{T}_{D B}+\mathbf{T}_{D C}+(36 \mathrm{lb}) \mathbf{j}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{D A}, \mathbf{T}_{D B}$, and $\mathbf{T}_{D C}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{aligned}
\left(0.55471 T_{D A}-0.30769 T_{D B}-\right. & \left.0.30769 T_{D C}\right) \mathbf{i}+\left(-0.83206 T_{D A}-0.92308 T_{D B}-0.92308 T_{D C}+36 \mathrm{lb}\right) \mathbf{j} \\
& +\left(0.23077 T_{D B}-0.23077 T_{D C}\right) \mathbf{k}=0
\end{aligned}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{array}{r}
0.55471 T_{D A}-0.30769 T_{D B}-0.30769 T_{D C}=0 \\
-0.83206 T_{D A}-0.92308 T_{D B}-0.92308 T_{D C}+36 \mathrm{lb}=0 \\
0.23077 T_{D B}-0.23077 T_{D C}=0 \tag{3}
\end{array}
$$

Equation (3) confirms that $T_{D B}=T_{D C}$. Solving simultaneously gives,

$$
T_{D A}=14.42 \mathrm{lb} ; \quad T_{D B}=T_{D C}=13.00 \mathrm{lb}
$$

PROBLEM 2.88

A rectangular plate is supported by three cables as shown. Knowing that the tension in cable $A C$ is 60 N , determine the weight of the plate.

SOLUTION

We note that the weight of the plate is equal in magnitude to the force \mathbf{P} exerted by the support on Point A.

Free Body \boldsymbol{A} :

$$
\Sigma F=0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0
$$

We have:

$$
\begin{array}{ll}
---\amalg & \\
\underline{A} B_{\perp}=-(320 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A B=680 \mathrm{~mm} \\
\underset{A}{A} C_{\perp}=(450 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}+(360 \mathrm{~mm}) \mathbf{k} & A C=750 \mathrm{~mm} \\
A D=(250 \mathrm{~mm}) \mathbf{i}-(480 \mathrm{~mm}) \mathbf{j}-(360 \mathrm{~mm}) \mathbf{k} & A D=650 \mathrm{~mm}
\end{array}
$$

Thus:

$$
\begin{aligned}
& \left.\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{--\bar{A} B}{A B}=\left(-\frac{8}{17}-\frac{12}{17} \mathbf{j}+\frac{9}{17}\right)_{T}\right)_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{-H C}{A C}=(0.6 \mathbf{i}-0.64 \mathbf{j}+0.48 \mathbf{k}) T_{A C} \\
& \mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{--I D}{A D}=\left(\frac{5}{13}-\frac{9.6}{13} \mathbf{j}-\frac{7.2}{13} \mathbf{k}\right) T_{A D}
\end{aligned}
$$

Substituting into the Eq. $\Sigma F=0$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
& \left(-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T{ }_{A D}\right) \mathbf{i} \\
& +\left(-\frac{12}{17} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P\right) \mathbf{j} \\
& +\left(\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D}\right) \mathbf{k}=0
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION (Continued)

Setting the coefficient of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to zero:

$$
\begin{align*}
& \text { i: } \quad-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D}=0 \tag{1}\\
& \text { j: } \quad \tag{2}
\end{align*} \quad-\frac{12}{7} T_{A B}-0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P=0 .
$$

Making $T_{A C}=60 \mathrm{~N}$ in (1) and (3):

$$
\begin{align*}
& -\frac{8}{17} T_{A B}+36 \mathrm{~N}+\frac{5}{13} T_{A D}=0 \tag{1'}\\
& \frac{9}{17} T_{A B}+28.8 \mathrm{~N}-\frac{7.2}{13} T_{A D}=0 \tag{3'}
\end{align*}
$$

Multiply (1^{\prime}) by $9,\left(3^{\prime}\right)$ by 8 , and add:

$$
554.4 \mathrm{~N}-\frac{12.6}{13} T_{A D}=0 \quad T_{A D}=572.0 \mathrm{~N}
$$

Substitute into (1^{\prime}) and solve for $T_{A B}$:

$$
T_{A B}=\frac{17}{8}\left(36+\frac{5}{13} \times 572\right) \quad T_{A B}=544.0 \mathrm{~N}
$$

Substitute for the tensions in Eq. (2) and solve for P :

$$
P=\frac{12}{17}(544 \mathrm{~N})+0.64(60 \mathrm{~N})+\frac{9.6}{13}(572 \mathrm{~N})
$$

$$
=844.8 \mathrm{~N} \quad \text { Weight of plate }=P=845 \mathrm{~N}
$$

SOLUTION

See Problem 2.88 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D} & =0 \tag{1}\\
-\frac{12}{17} T_{A B}+0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P & =0 \tag{2}\\
\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D} & =0 \tag{3}
\end{align*}
$$

Making $T_{A D}=520 \mathrm{~N}$ in Eqs. (1) and (3):

$$
\begin{align*}
&-\frac{8}{17} T_{A B}+0.6 T_{A C}+200 \mathrm{~N}=0 \tag{1'}\\
& \frac{9}{17} T_{A B}+0.48 T_{A C}-288 \mathrm{~N}=0 \tag{3'}
\end{align*}
$$

Multiply (1') by $9,\left(3^{\prime}\right)$ by 8 , and add:

$$
9.24 T_{A C}-504 \mathrm{~N}=0 T_{A C}=54.5455 \mathrm{~N}
$$

Substitute into (1^{\prime}) and solve for $T_{A B}$:

$$
T_{A B}=\frac{17}{8}(0.6 \times 54.5455+200) \quad T_{A B}=494.545 \mathrm{~N}
$$

Substitute for the tensions in Eq. (2) and solve for P :

$$
\begin{aligned}
P & =\frac{12}{17}(494.545 \mathrm{~N})+0.64(54.5455 \mathrm{~N})+\frac{9.6}{13}(520 \mathrm{~N}) \\
& =768.00 \mathrm{~N}
\end{aligned}
$$

$$
\text { Weight of plate }=P=768 \mathrm{~N}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.90

In trying to move across a slippery icy surface, a $175-\mathrm{lb}$ man uses two ropes $A B$ and $A C$. Knowing that the force exerted on the man by the icy surface is perpendicular to that surface, determine the tension in each rope.

SOLUTION

Free-Body Diagram at A

$$
I_{A B}
$$

$$
\begin{aligned}
\mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{--\operatorname{AC}}{A C} & =T_{A C} \frac{(-30 \mathrm{ft}) \mathbf{i}+(20 \mathrm{ft}) \mathbf{j}-(12 \mathrm{ft}) \mathbf{k}}{38 \mathrm{ft}} \\
& =T_{A C}\left(-\frac{15}{19} \mathbf{i}+\frac{10}{19} \mathbf{j}-\frac{6}{19} \mathbf{k}\right) \\
\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{\bar{A} B}{A B} & =T_{A B} \frac{(-30 \mathrm{ft}) \mathbf{i}+(24 \mathrm{ft}) \mathbf{j}+(32 \mathrm{ft}) \mathbf{k}}{50 \mathrm{ft}} \\
& =T_{A B}\left(-\frac{15}{25} \mathbf{i}+\frac{12}{25} \mathbf{j}+\frac{16}{25} \mathbf{k}\right)
\end{aligned}
$$

Equilibrium condition: $\Sigma \mathbf{F}=0$

$$
\mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{N}+\mathbf{W}=0
$$

SOLUTION (Continued)

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{N}$, and \mathbf{W}; factoring \mathbf{i}, \mathbf{j}, and \mathbf{k}; and equating each of the coefficients to zero gives the following equations:

From i:

$$
\begin{equation*}
-\frac{15}{25} T_{A B}-\frac{15}{19} T_{A C}+\frac{16}{34} N=0 \tag{1}
\end{equation*}
$$

From $\mathbf{j}: \quad \frac{12}{25} T_{A B}+\frac{10}{19} T_{A C}+\frac{30}{34} N-(175 \mathrm{lb})=0$

From k:

$$
\begin{equation*}
\frac{16}{25} T_{A B}-\frac{6}{19}_{A C}=0 \tag{2}
\end{equation*}
$$

Solving the resulting set of equations gives:

$$
T_{A B}=30.8 \mathrm{lb} ; T_{A C}=62.5 \mathrm{lb}
$$

SOLUTION

Refer to Problem 2.90 for the figure and analysis leading to the following set of equations, Equation (3) being modified to include the additional force $\mathbf{P}=(-45 \mathrm{lb}) \mathbf{k}$.

$$
\begin{align*}
-\frac{15}{25} T_{A B}-\frac{15}{19} T_{A C}+\frac{16}{34} N & =0 \tag{1}\\
\frac{12}{25} T_{A B}+\frac{10}{19} T_{A C}+\frac{30}{34} N-(175 \mathrm{lb}) & =0 \tag{2}\\
\frac{16}{25} T_{A B}-\frac{6}{19} T_{A C}-(45 \mathrm{lb}) & =0 \tag{3}
\end{align*}
$$

Solving the resulting set of equations simultaneously gives:

$$
\begin{aligned}
T_{A B} & =81.3 \mathrm{lb} \\
T_{A C} & =22.2 \mathrm{lb}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

$$
\begin{aligned}
& \Sigma \mathbf{F}_{A}=0: \quad \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+\mathbf{P}=0 \quad \text { where } \quad \mathbf{P}=P \mathbf{i} \\
& -\stackrel{-1}{A B}=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
& \bar{A} C=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} \quad A C=1040 \mathrm{~mm} \\
& -\vec{A} D=-(960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k} \quad A D=1220 \mathrm{~mm} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{-\bar{A} B}{A B}=T_{A B}\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{--\bar{A} C}{A C}=T_{A C}\left(-\frac{12}{13} \mathbf{i} \frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) \\
& \mathbf{T}_{A D}=T_{A D} \text { ÂD }=\frac{305 \mathrm{~N}}{1220 \mathrm{~mm}}[(-960 \mathrm{~mm}) \mathbf{i}+(720 \mathrm{~mm}) \mathbf{j}-(220 \mathrm{~mm}) \mathbf{k}] \\
& =-(240 \mathrm{~N}) \mathbf{i}+(180 \mathrm{~N}) \mathbf{j}-(55 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and setting each coefficient equal to ϕ gives:

$$
\begin{align*}
& \mathbf{i}: P=\frac{48}{53}{ }_{A B}+\frac{12}{13} T_{A C}+240 \mathrm{~N} \tag{1}\\
& \mathbf{j}: \quad \frac{12}{53} T_{A B}+\frac{3}{13} T_{A C}=180 \mathrm{~N} \tag{2}\\
& \mathbf{k}: \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}=55 \mathrm{~N} \tag{3}
\end{align*}
$$

Solving the system of linear equations using conventional algorithms gives:

$$
\begin{array}{ll}
T_{A B}=446.71 \mathrm{~N} & P=960 \mathrm{~N} \\
T_{A C}=341.71 \mathrm{~N}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

We assume that $T_{A D}=0$ and write $\quad \Sigma \mathbf{F}_{A}=0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+Q \mathbf{j}+(1200 \mathrm{~N}) \mathbf{i}=0$

$$
\begin{aligned}
& A B=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}+(380 \mathrm{~mm}) \mathbf{k} \quad A B=1060 \mathrm{~mm} \\
& A C=-(960 \mathrm{~mm}) \mathbf{i}-(240 \mathrm{~mm}) \mathbf{j}-(320 \mathrm{~mm}) \mathbf{k} A C=1040 \mathrm{~mm} \\
& \mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{--\mathbb{A}}{A B}=\left(-\frac{48}{53} \mathbf{i}-\frac{12}{53} \mathbf{j}+\frac{19}{53} \mathbf{k}\right) T_{A B} \\
& \mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{--\overline{A C}}{A C}=\left(-\frac{12}{13} \mathbf{i}-\frac{3}{13} \mathbf{j}-\frac{4}{13} \mathbf{k}\right) T_{A C}
\end{aligned}
$$

Substituting into $\Sigma \mathbf{F}_{A}=0$, factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and setting each coefficient equal to ϕ gives:

$$
\begin{align*}
& \mathbf{i}: \quad-\frac{48}{53} T_{A B}-\frac{12}{13} T_{A C}+1200 \mathrm{~N}=0 \tag{1}\\
& \mathbf{j}: \quad-\frac{12}{53} T_{A B}-\frac{3}{13} T_{A C}+Q=0 \tag{2}\\
& \mathbf{k}: \quad \frac{19}{53} T_{A B}-\frac{4}{13} T_{A C}=0 \tag{3}
\end{align*}
$$

Solving the resulting system of linear equations using conventional algorithms gives:

$$
\begin{aligned}
T_{A B} & =605.71 \mathrm{~N} \\
T_{A C} & =705.71 \mathrm{~N} \\
Q & =300.00 \mathrm{~N}
\end{aligned}
$$

$$
0 \leq Q<300 \mathrm{~N} \leftharpoonup
$$

Note: This solution assumes that Q is directed upward as shown $(Q \geq 0)$, if negative values of Q are considered, cable $A D$ remains taut, but $A C$ becomes slack for $Q=-460 \mathrm{~N}$.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

$$
\begin{aligned}
\mathbf{T}_{A B} & =T \lambda_{A B} \\
& =T \frac{\overline{A B}}{A B} \\
& =T \frac{(-130 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(160 \mathrm{~mm}) \mathbf{k}}{450 \mathrm{~mm}} \\
& =T\left(-\frac{13}{45} \mathbf{i}+\frac{40}{45} \mathbf{j}+\frac{16}{45} \mathbf{k}\right) \\
\mathbf{T}_{A C} & =T \lambda_{A C} \\
& =T \frac{\bar{C}}{A C} \\
& =T \underline{(-150 \mathrm{~mm}) \mathbf{i}+(400 \mathrm{~mm}) \mathbf{j}+(-240 \mathrm{~mm}) \mathbf{k}} \\
& =T\left(-\frac{15}{49} \mathbf{i}+\frac{40}{49} \mathbf{j}-\frac{24}{49} \mathbf{k}\right) \\
\Sigma & =0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{Q}+\mathbf{P}+\mathbf{W}=0
\end{aligned}
$$

$$
\text { Free-Body } A \text { : }
$$

$$
\underline{I}_{A B}=T \quad T_{A C}=\underline{T}
$$

Setting coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to zero:

$$
\begin{array}{ll}
\mathbf{i}:-\frac{13}{45} T-\frac{15}{49} T+P=0 & 0.59501 T=P \\
\mathbf{j}:+\frac{40}{45}+\frac{40}{49}-W=0 & 1.70521 T=W \\
\text { k : }+\frac{16}{45} T-\frac{24}{49} T+Q=0 & 0.134240 T=Q \tag{3}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.94 (Continued)

Data:

$$
\begin{array}{rlr}
W=376 \mathrm{~N} & 1.70521 T=376 \mathrm{~N} & T=220.50 \mathrm{~N} \\
0.59501(220.50 \mathrm{~N})=P & & P=131.2 \mathrm{~N} \triangleleft \\
0.134240(220.50 \mathrm{~N})=Q & & Q=29.6 \mathrm{~N}
\end{array}
$$

SOLUTION

Refer to Problem 2.94 for the figure and analysis resulting in Equations (1), (2), and (3) for P, W, and Q in terms of T below. Setting $P=164 \mathrm{~N}$ we have:
Eq. (1):
$0.59501 T=164 \mathrm{~N}$

$$
T=275.63 \mathrm{~N}
$$

Eq. (2):
$1.70521(275.63 \mathrm{~N})=W$
$W=470 \mathrm{~N}$ 4
Eq. (3):
$0.134240(275.63 \mathrm{~N})=Q$
$Q=37.0 \mathrm{~N} 4$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.96

Cable $B A C$ passes through a frictionless ring A and is attached to fixed supports at B and C, while cables $A D$ and $A E$ are both tied to the ring and are attached, respectively, to supports at D and E. Knowing that a $200-\mathrm{lb}$ vertical $\operatorname{load} \mathbf{P}$ is applied to ring A, determine the tension in each of the three cables.

SOLUTION

Free Body Diagram at \boldsymbol{A} :

Since $T_{B A C}=$ tension in cable $B A C$, it follows that

$$
T_{A B}
$$

$$
\begin{gathered}
T_{A B}=T_{A C}=T_{B A C} \\
\left.\mathbf{T}_{A B}=T_{B A C} \lambda_{A B}=T_{B A C} \frac{(-17.5 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}}{62.5 \mathrm{in} .}=T_{B A C}\left(\frac{-17.5}{62.5} \mathbf{i}+\frac{60}{62.5}\right)^{\prime}\right) \\
\mathbf{T}_{A C}=T_{B A C} \lambda_{A C}=T_{B A C} \frac{(60 \mathrm{in} .) \mathbf{i}+(25 \mathrm{in} .) \mathbf{k}}{65 \mathrm{in} .}=T_{B A C}\left(\frac{60}{65} \mathbf{j}+\frac{25}{65} \mathbf{k}\right) \\
\mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{(80 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{i}}{100 \mathrm{in} .}=T_{A D}\left(\frac{4}{5} \mathbf{i}+\left.\frac{3}{5} \mathbf{j}\right|_{j}\right. \\
\mathbf{T}_{A E}=T_{A E} \lambda_{A E}=T_{A E} \frac{(60 \mathrm{in} .) \mathbf{j}-(45 \mathrm{in} .) \mathbf{k}}{75 \mathrm{in} .}=T_{A E}\left(\frac{4}{5} \mathbf{j}-\frac{3}{5} \mathbf{k}\right)
\end{gathered}
$$

SOLUTION Continued

Substituting into $\Sigma \mathbf{F}_{A}=0$, setting $\mathbf{P}=(-200 \mathrm{lb}) \mathbf{j}$, and setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ equal to ϕ, we obtain the following three equilibrium equations:

From

$$
\begin{equation*}
\text { i: } \quad-\frac{17.5}{62.5} T_{B A C}+\frac{4}{5} T_{A D}=0 \tag{1}
\end{equation*}
$$

From $\quad \mathbf{j}:\left(\frac{60+}{62.5} \frac{60)_{T}}{65}\right){ }_{B A C}+\frac{3}{5} T_{A D}+\frac{4}{5} T_{A E}-200 \mathrm{lb}=0$
From

$$
\begin{equation*}
\mathbf{k}: \frac{25}{65} T_{B A C}-\frac{3}{5} T_{A E}=0 \tag{2}
\end{equation*}
$$

Solving the system of linear equations using conventional algorithms gives:

$$
T_{B A C}=76.7 \mathrm{lb} ; T_{A D}=26.9 \mathrm{lb} ; T_{A E}=49.2 \mathrm{lb}
$$

PROBLEM 2.97

Knowing that the tension in cable $A E$ of Prob. 2.96 is 75 lb , determine (a) the magnitude of the load $\mathbf{P},(b)$ the tension in cables $B A C$ and $A D$.

PROBLEM 2.96 Cable $B A C$ passes through a frictionless ring A and is attached to fixed supports at B and C, while cables $A D$ and $A E$ are both tied to the ring and are attached, respectively, to supports at D and E. Knowing that a $200-\mathrm{lb}$ vertical load \mathbf{P} is applied to ring A, determine the tension in each of the three cables.

SOLUTION

Refer to the solution to Problem 2.96 for the figure and analysis leading to the following set of equilibrium equations, Equation (2) being modified to include $P \mathbf{j}$ as an unknown quantity:

$$
\begin{align*}
& -\frac{17.5}{62.5} T_{B A C}+\frac{4}{5} T_{A D}=0 \\
& \left(\frac{60}{62.5}+\frac{60}{65}\right)_{B A C}+\frac{3}{5} T_{A D}+\frac{4}{5} T_{A E}-P=0 \\
& \frac{25}{65} T_{B A C}-\frac{3}{5} T_{A E}=0 \tag{3}
\end{align*}
$$

Substituting for $T_{A E}=75 \mathrm{lb}$ and solving simultaneously gives:
(a)
$P=305 \mathrm{lb}$
(b) $\quad T_{B A C}=117.0 \mathrm{lb} ; T_{A D}=40.9 \mathrm{lb}$

SOLUTION Continued

Then from the specifications of the problem, $y=155 \mathrm{~mm}=0.155 \mathrm{~m}$

$$
\begin{aligned}
z^{2} & =0.23563 \mathrm{~m}^{2}-(0.155 \mathrm{~m})^{2} \\
z & =0.46 \mathrm{~m}
\end{aligned}
$$

and
(a)

$$
\begin{aligned}
T_{A B} & =\frac{341 \mathrm{~N}}{0.155(1.90476)} \\
& =1155.00 \mathrm{~N}
\end{aligned}
$$

or

$$
T_{A B}=1155 \mathrm{~N}
$$

and
(b)

$$
\begin{aligned}
Q & =\frac{341 \mathrm{~N}(0.46 \mathrm{~m})(0.866)}{(0.155 \mathrm{~m})} \\
& =(1012.00 \mathrm{~N})
\end{aligned}
$$

or

PROBLEM 2.98

A container of weight W is suspended from ring A, to which cables $A C$ and $A E$ are attached. A force \mathbf{P} is applied to the end F of a third cable that passes over a pulley at B and through ring A and that is attached to a support at D. Knowing that $W=1000 \mathrm{~N}$, determine the magnitude of P. (Hint: The tension is the same in all portions of cable $F B A D$.)

SOLUTION

The (vector) force in each cable can be written as the product of the (scalar) force and the unit vector along the cable. That is, with
and
and

$$
\begin{aligned}
\overrightarrow{A B} & =-(0.78 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0 \mathrm{~m}) \mathbf{k} \\
A B & =\sqrt{(-0.78 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}+(0)^{2}} \\
& =1.78 \mathrm{~m} \\
\mathbf{T}_{A B} & =T \lambda_{A B}=T_{A B} \frac{--\overrightarrow{A B}}{A B} \\
& =\frac{T_{A B}}{1.78 \mathrm{~m}}[-(0.78 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0 \mathrm{~m}) \mathbf{k}] \\
\mathbf{T}_{A B} & =T_{A B}(-0.4382 \mathbf{i}+0.8989 \mathbf{j}+0 \mathbf{k}) \\
\overrightarrow{A C} & (0) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(1.2 \mathrm{~m}) \mathbf{k} \\
A C & =(\sqrt{\mathrm{m}})^{2}+(1.6 \mathrm{~m})^{2}+(1.2 \mathrm{~m})^{2}=2 \mathrm{~m} \\
\mathbf{T}_{A C} & =T \lambda_{A C}=T_{A C} \frac{---\overrightarrow{A C}}{A C}=\frac{T_{A C}}{2 \mathrm{~m}}[(0) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(1.2 \mathrm{~m}) \mathbf{k}] \\
\mathbf{T}_{A C} & =T_{A C}(0.8 \mathbf{j}+0.6 \mathbf{k}) \\
\overrightarrow{A D} & =(1.3 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0.4 \mathrm{~m}) \mathbf{k} \\
A D & =\left(\sqrt{1.3 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}+(0.4 \mathrm{~m})^{2}=} 2.1 \mathrm{~m}\right. \\
\mathbf{T}_{A D} & =T \lambda_{A D}=T_{A D} \frac{--\overrightarrow{A D}}{A D}=\frac{T}{2 D}[(1.3 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}+(0.4 \mathrm{~m}) \mathbf{k}] \\
\mathbf{T}_{A D} & =T_{A D}(0.6190 \mathbf{i}+0.7619 \mathbf{j}+0.1905 \mathbf{k})
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION Continued

Finally,

$$
\begin{aligned}
\overrightarrow{A E} & -(0.4 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}-(0.86 \mathrm{~m}) \mathbf{k} \\
A E & =\sqrt{(-0.4 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}+(-0.86 \mathrm{~m})^{2}}=1.86 \mathrm{~m} \\
\mathbf{T}_{A E} & =T \lambda_{A E}=T_{A E} \frac{--\overrightarrow{A E}}{A E} \\
& =\frac{T_{A E}}{1.86 \mathrm{~m}}[-(0.4 \mathrm{~m}) \mathbf{i}+(1.6 \mathrm{~m}) \mathbf{j}-(0.86 \mathrm{~m}) \mathbf{k}] \\
\mathbf{T}_{A E} & =T_{A E}(-0.2151 \mathbf{i}+0.8602 \mathbf{j}-0.4624 \mathbf{k})
\end{aligned}
$$

With the weight of the container

$$
\begin{aligned}
& \mathbf{W}=-W \mathbf{j}, \text { at } A \text { wehave: } \\
& \Sigma \mathbf{F}=0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}-W \mathbf{j}=0
\end{aligned}
$$

Equating the factors of \mathbf{i}, \mathbf{j}, and \mathbf{k} to zero, we obtain the following linear algebraic equations:

$$
\begin{array}{r}
-0.4382 T_{A B}+0.6190 T_{A D}-0.2151 T_{A E}=0 \\
0.8989 T_{A B}+0.8 T_{A C}+0.7619 T_{A D}+0.8602 T_{A E}-W=0 \\
0.6 T_{A C}+0.1905 T_{A D}-0.4624 T_{A E}=0 \tag{3}
\end{array}
$$

Knowing that $W=1000 \mathrm{~N}$ and that because of the pulley system at $B T_{A B}=T_{A D}=P, \quad$ where P is the externally applied (unknown) force, we can solve the system of linear Equations (1), (2) and (3) uniquely for P.

$$
P=378 \mathrm{~N}
$$

SOLUTION

From the geometry of the chute:

$$
\begin{aligned}
\mathbf{N} & \left.=\frac{N}{\sqrt{5}} 2 \mathbf{j}+\mathbf{k}\right) \\
& =N(0.8944 \mathbf{j}+0.4472 \mathbf{k})
\end{aligned}
$$

The force in each rope can be written as the product of the magnitude of the force and the unit vector along the cable. Thus, with

$$
\begin{aligned}
\overrightarrow{A B} & =(40 \mathrm{in} .) \mathbf{i}+(70 \mathrm{in} .) \mathbf{j}-(40 \mathrm{in} .) \mathbf{k} \\
A B & =\sqrt{40 \mathrm{in} .)^{2}+(70 \mathrm{in} .)^{2}+(40 \mathrm{in} .)^{2}} \\
& =90 \mathrm{in.} \\
\mathbf{T}_{A B} & =T \lambda_{A B}=T_{A B} \frac{-\overrightarrow{A B}}{A B} \\
& =\frac{T_{A B}}{90}[(-40 \mathrm{in} .) \mathbf{i}+(70 \mathrm{in} .) \mathbf{j}-(40 \mathrm{in} .) \mathbf{k}] \\
\mathbf{T}_{A B} & =T_{A B}\left(-\frac{4}{9} \mathbf{i}+\frac{7}{9} \mathbf{j}-\frac{4}{9} \mathbf{k}\right)
\end{aligned}
$$

and

$$
\overrightarrow{A C}=(45 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(40 \mathrm{in} .) \mathbf{k}
$$

$$
A C=(45 \mathrm{in} .)^{2}+(60 \mathrm{in} .)^{2}+(40 \mathrm{in} .)^{2}=85 \mathrm{in} .
$$

$$
\mathbf{T}_{A C}=T \lambda_{A C}=T_{A C} \frac{\overrightarrow{A C}}{A C}
$$

$$
=\frac{T_{A C}}{85 \mathrm{in} .}[(45 \mathrm{in} .) \mathbf{i}+(60 \mathrm{in} .) \mathbf{j}-(40 \mathrm{in} .) \mathbf{k}]
$$

$$
\mathbf{T}_{A C}=T_{A C}\left(\frac{9}{17}+\frac{12}{17} \mathbf{j}-\frac{8}{17}\right)
$$

Then:

$$
\Sigma \mathbf{F}=0: \mathbf{N}+\mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{W}=0
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION Continued

With $W=200 \mathrm{lb}$, and equating the factors of \mathbf{i}, \mathbf{j}, and \mathbf{k} to zero, we obtain the linear algebraic equations:

$$
\begin{align*}
& \text { i: } \quad-\frac{4}{9} T_{A B}+\frac{9}{17} T{ }_{A C}=0 \tag{1}\\
& \text { j: } \quad \frac{7}{9} T_{A B}+\frac{12}{17} T_{A C}+\frac{2}{\sqrt{5}} 200 \mathrm{lb}=0 \tag{2}\\
& \text { k: } \quad-\frac{4}{9} T{ }_{A B}-\frac{8}{17} T{ }_{A C}+\frac{1}{\sqrt{5}}=0 \tag{3}
\end{align*}
$$

Using conventional methods for solving linear algebraic equations we obtain:

$$
\begin{gathered}
T_{A B}=65.6 \mathrm{lb} \\
T_{A C}=55.1 \mathrm{lb}
\end{gathered}
$$

SOLUTION

Free-Body Diagrams of Collars:

A:

B:

$$
\lambda_{A B}=\frac{\overrightarrow{A B}}{A B}=\frac{-x \mathbf{i}-(20 \mathrm{in} .) \mathbf{j}+z \mathbf{k}}{25 \mathrm{in} .}
$$

Collar A:

$$
\Sigma \mathbf{F}=0: P \mathbf{i}+N_{y} \mathbf{j}+N_{z} \mathbf{k}+T_{A B} \lambda_{A B}=0
$$

Substitute for $\lambda_{A B}$ and set coefficient of \mathbf{i} equal to zero:

$$
\begin{equation*}
P-\frac{T_{A B} x}{25 \mathrm{in} .}=0 \tag{1}
\end{equation*}
$$

Collar B:

$$
\Sigma \mathbf{F}=0: \quad(60 \mathrm{lb}) \mathbf{k}+N_{x}^{\prime} \mathbf{i}+N_{y}^{\prime} \mathbf{j}-T_{A B} \lambda_{A B}=0
$$

Substitute for $\lambda_{A B}$ and set coefficient of \mathbf{k} equal to zero:

$$
\begin{equation*}
60 \mathrm{lb}-\frac{T_{A B} z}{25 \mathrm{in} .}=0 \tag{2}
\end{equation*}
$$

(a)

$$
\begin{array}{r}
x=9 \text { in. } \quad(9 \mathrm{in} .)^{2}+(20 \mathrm{in} .)^{2}+z^{2}=(25 \mathrm{in} .)^{2} \\
z=12 \mathrm{in} .
\end{array}
$$

From Eq. (2):
$\frac{60 \mathrm{lb}-T_{A B}}{25} \frac{(12 \mathrm{in} .)}{}$

$$
P=\frac{(125.0 \mathrm{lb})(9 \mathrm{in} .)}{25 \mathrm{in} .}
$$

$$
P=45.0 \mathrm{lb} \measuredangle
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

See Problem 2.100 for the diagrams and analysis leading to Equations (1) and (2) below:

$$
\begin{array}{r}
P=\frac{T_{A B} x}{25 \mathrm{in.}}=0 \\
60 \mathrm{lb}-\frac{T_{A B} z}{25 \mathrm{in.}}=0 \tag{2}
\end{array}
$$

For $P=120 \mathrm{lb}$, Eq. (1) yields

$$
\begin{align*}
T_{A B} x & =(25 \mathrm{in} .)(20 \mathrm{lb}) \tag{1'}\\
T_{A B} z & =(25 \mathrm{in} .)(60 \mathrm{lb}) \tag{2'}\\
\frac{x}{z} & =2
\end{align*}
$$

From Eq. (2):

Dividing Eq. (1') by (2'),

$$
\begin{equation*}
x^{2}+z^{2}+(20 \mathrm{in} .)^{2}=(25 \mathrm{in} .)^{2} \tag{4}
\end{equation*}
$$

Solving (3) and (4) simultaneously,

From Eq. (3):

$$
\begin{aligned}
4 z^{2}+z^{2}+400 & =625 \\
z^{2} & =45 \\
z & =6.7082 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
x & =2 z=2(6.7082 \mathrm{in} .) \\
& =13.4164 \mathrm{in} .
\end{aligned}
$$

$$
x=13.42 \mathrm{in} ., \quad z=6.71 \mathrm{in}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.102

Collars A and B are connected by a $525-\mathrm{mm}$-long wire and can slide freely on frictionless rods. If a force $\mathbf{P}=(341 \mathrm{~N}) \mathbf{j}$ is applied to collar A, determine (a) the tension in the wire when $y=155 \mathrm{~mm}$, (b) the magnitude of the force \mathbf{Q} required to maintain the equilibrium of the system.

SOLUTION

For both Problems 2.102 and 2.103:
Free-Body Diagrams of Collars:

$$
(A B)^{2}=x^{2}+y^{2}+z^{2}
$$

Here

$$
(0.525 \mathrm{~m})^{2}=(0.20 \mathrm{~m})^{2}+y^{2}+z^{2}
$$

or

$$
y^{2}+z^{2}=0.23563 \mathrm{~m}^{2}
$$

Thus, when y given, z is determined,
Now

$$
\begin{aligned}
\lambda_{A B} & =\frac{\overrightarrow{A B}}{A B} \\
& =\frac{1}{0.525 \mathrm{~m}}(0.20 \mathbf{i}-y \mathbf{j}+z \mathbf{k}) \mathrm{m} \\
& =0.38095 \mathbf{i}-1.90476 \mathbf{y} \mathbf{j}+1.90476 z \mathbf{k}
\end{aligned}
$$

Where y and z are in units of meters, m.
From the F.B. Diagram of collar $A: \quad \Sigma \mathbf{F}=0: N_{x} \mathbf{i}+N_{z} \mathbf{k}+P \mathbf{j}+T_{A B} \lambda_{A B}=0$
Setting the \mathbf{j} coefficient to zero gives $\quad P-(1.90476 y) T_{A B}=0$
With

$$
P=341 \mathrm{~N}
$$

$$
T_{A B}=\frac{341 \mathrm{~N}}{1.90476 y}
$$

Now, from the free body diagram of collar B :

$$
\Sigma \mathbf{F}=0: N_{x} \mathbf{i}+N_{y} \mathbf{j}+Q \mathbf{k}-T_{A B} \lambda_{A B}=0
$$

Setting the \mathbf{k} coefficient to zero gives $Q-T_{A B}(1.90476 z)=0$

And using the above result for $T_{A B}$ we have

$$
Q=T_{A \bar{B}}=\frac{341 \mathrm{~N}}{(1.90476) y}(1.90476 z)=\frac{(341 \mathrm{~N})(z)}{y}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.103

Solve Problem 2.102 assuming that $y=275 \mathrm{~mm}$.

PROBLEM 2.102 Collars A and B are connected by a $525-\mathrm{mm}$-long wire and can slide freely on frictionless rods. If a force $\mathbf{P}=(341 \mathrm{~N}) \mathbf{j}$ is applied to collar A, determine (a) the tension in the wire when $y=155 \mathrm{~mm}$, (b) the magnitude of the force \mathbf{Q} required to maintain the equilibrium of the system.

SOLUTION

From the analysis of Problem 2.102, particularly the results:

$$
\begin{aligned}
y^{2}+z^{2} & =0.23563 \mathrm{~m}^{2} \\
T_{A B} & =\frac{341 \mathrm{~N}}{1.90476 y} \\
Q & =\frac{341 \mathrm{~N}}{y} z
\end{aligned}
$$

With $y=275 \mathrm{~mm}=0.275 \mathrm{~m}$, we obtain:

$$
\begin{aligned}
z^{2} & =0.23563 \mathrm{~m}^{2}-(0.275 \mathrm{~m})^{2} \\
z & =0.40 \mathrm{~m}
\end{aligned}
$$

and
(a)

$$
T_{A B}=\frac{341 \mathrm{~N}}{(1.90476)(0.275 \mathrm{~m})}=651.00
$$

or

$$
T_{A B}=651 \mathrm{~N}
$$

and
(b)

$$
Q=\frac{341 \mathrm{~N}(0.40 \mathrm{~m})}{(0.275 \mathrm{~m})}
$$

or $Q=496 \mathrm{~N}$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.104

Two structural members A and B are bolted to a bracket as shown. Knowing that both members are in compression and that the force is 15 kN in member A and 10 kN in member B, determine by trigonometry the magnitude and direction of the resultant of the forces applied to the bracket by members A and B.

SOLUTION

Using the force triangle and the laws of cosines and sines,
we have

$$
\begin{aligned}
& \gamma=180^{\circ}-\left(40^{\circ}+20^{\circ}\right) \\
& =120^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2}= & (15 \mathrm{kN})^{2}+(10 \mathrm{kN})^{2} \\
& -2(15 \mathrm{kN})(10 \mathrm{kN}) \cos 120^{\circ} \\
= & 475 \mathrm{kN}^{2} \\
R= & 21.794 \mathrm{kN}
\end{aligned}
$$

and

$$
\frac{10 \mathrm{kN}}{\sin \alpha}=\frac{21.794 \mathrm{kN}}{\sin 120^{\circ}}
$$

$$
\sin \alpha=\left(\frac{10 \mathrm{kN}}{21.794 \mathrm{kN}}\right) \sin 120^{\circ}
$$

$$
=0.39737
$$

$$
\alpha=23.414
$$

Hence:
$\phi=\alpha+50^{\circ}=73.414$ $\mathbf{R}=21.8 \mathrm{kN} \times 73.4^{\circ}$

SOLUTION

Compute the following distances:

$$
\begin{aligned}
O A & =(24 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2} \\
& =51.0 \mathrm{in} . \\
O B & =(28 \mathrm{in} .)^{2}+(45 \mathrm{in} .)^{2} \\
& =53.0 \mathrm{in} . \\
O C & =(40 \mathrm{in} .)^{2}+(30 \mathrm{in} .)^{2} \\
& =50.0 \mathrm{in} .
\end{aligned}
$$

102-lb Force:

$$
\begin{aligned}
& F_{x}=-102 \mathrm{lb} \frac{24 \mathrm{in} .}{51.0 \mathrm{in} .} \\
& F_{y}=+102 \mathrm{lb} \frac{45 \mathrm{in} .}{51.0 \mathrm{in} .}
\end{aligned}
$$

$$
F_{x}=-48.0 \mathrm{lb}
$$

$$
F_{y}=+90.0 \mathrm{lb}
$$

106-lb Force

$$
F_{x}=+106 \mathrm{lb} \frac{28 \mathrm{in} .}{53.0 \mathrm{in} .}
$$

$$
F_{x}=+56.0 \mathrm{lb}
$$

$$
F_{y}=+106 \mathrm{lb} \frac{45 \mathrm{in} .}{53.0 \mathrm{in} .}
$$

$$
F_{y}=+90.0 \mathrm{lb}
$$

$$
F_{x}=-200 \mathrm{lb} \frac{40 \mathrm{in} .}{50.0 \mathrm{in} .}
$$

$$
F_{x}=-160.0 \mathrm{lb}
$$

$$
F_{y}=-200 \mathrm{lb} \frac{30 \mathrm{in} .}{50.0 \mathrm{in}}
$$

$$
F_{y}=-120.0 \mathrm{lb}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a)

$$
\begin{aligned}
180^{\circ} & =45^{\circ}+\alpha+90^{\circ}+30^{\circ} \\
\alpha & =180^{\circ}-45^{\circ}-90^{\circ}-30^{\circ} \\
& =15^{\circ} \\
\cos \alpha & =\frac{P_{x}}{P} \\
P & =\frac{P_{x}}{\cos \alpha} \\
& =\frac{600 \mathrm{~N}}{\cos 15^{\circ}} \\
& =621.17 \mathrm{~N} \quad A
\end{aligned}
$$

(b)

$$
\begin{aligned}
\tan \alpha & =\frac{P_{v}}{P_{x}} \\
P_{y} & =P_{x} \tan \alpha \\
& =(600 \mathrm{~N}) \tan 15^{\circ} \\
& =160.770 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=160.8 \mathrm{~N}
$$

SOLUTION

60-lb Force:

$$
\begin{aligned}
& F_{x}=(60 \mathrm{lb}) \cos 20^{\circ}=56.382 \mathrm{lb} \\
& F_{y}=(60 \mathrm{lb}) \sin 20^{\circ}=
\end{aligned}
$$

80-lb Force: $\quad F_{x}=(80 \mathrm{lb}) \cos 60^{\circ}=40.000 \mathrm{lb}$ $F_{y}=(80 \mathrm{lb}) \sin 60^{\circ}=$

120-lb Force:

$$
\begin{aligned}
& F_{x}=(120 \mathrm{lb}) \cos 30^{\circ}= \\
& F_{y}=-(120 \mathrm{lb}) \sin 30^{\circ}=-60.000 \mathrm{lb}
\end{aligned}
$$

and
$R_{x}=\Sigma F_{x}=200.305 \mathrm{lb}$
$R_{y}=\Sigma F_{y}=29.803 \mathrm{lb}$

$$
\begin{aligned}
R & =\left(\sqrt{200.305 \mathrm{lb})^{2}+(29.803 \mathrm{lb})^{2}}\right. \\
& =202.510 \mathrm{lb}
\end{aligned}
$$

Further: $\quad \tan \alpha=\frac{29.803}{200.305}$

$$
\alpha=\tan ^{-1} \frac{29.803}{200.305}
$$

$$
=8.46^{\circ} \quad \mathbf{R}=203 \mathrm{lb} \subset 8.46^{\circ}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Free-Body Diagram

Force Triangle

Law of sines:

$$
\frac{T_{A C}}{\sin 110^{\circ}}=\frac{T_{B C}}{\sin 5^{\circ}}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}}
$$

(a)

$$
\begin{array}{ll}
T_{A C}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}} \sin 110^{\circ} & T_{A C}=1244 \mathrm{lb} \\
T_{B C}=\frac{1200 \mathrm{lb}}{\sin 65^{\circ}} \sin 5^{\circ} & T_{B C}=115.4 \mathrm{lb}
\end{array}
$$

(b)

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

Free-Body Diagram

$$
T_{A C}=T_{B C}=800 \mathrm{~N}
$$

$$
\begin{gathered}
A C=B C=\left(\sqrt{\left.h^{2}+d^{2}\right)}\right. \\
\Sigma F_{y}=0: \quad 2(800 \mathrm{~N}) \frac{h}{\sqrt{h^{2}+d^{2}}}-P=0
\end{gathered}
$$

$$
800=\frac{P}{2} \sqrt{1+\left(\frac{d}{h}\right)^{2}}
$$

Data: $\quad P=200 \mathrm{~N}, d=600 \mathrm{~mm}$ and solving for h

$$
800 \mathrm{~N}=\frac{200 \mathrm{~N}}{2} \sqrt{1+\left(\frac{600 \mathrm{~mm}}{h}\right)^{2}}
$$

$$
h=75.6 \mathrm{~mm} \text { < }
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.110

Three forces are applied to a bracket as shown. The directions of the two 150-N forces may vary, but the angle between these forces is always 50°. Determine the range of values of α for which the magnitude of the resultant of the forces acting at A is less than 600 N .

SOLUTION

Combine the two $150-\mathrm{N}$ forces into a resultant force Q :

Equivalent loading at A :

Using the law of cosines:

$$
\begin{aligned}
& \quad(600 \mathrm{~N})^{2}=(500 \mathrm{~N})^{2}+(271.89 \mathrm{~N})^{2}+2(500 \mathrm{~N})(271.89 \mathrm{~N}) \cos \left(55^{\circ}+\alpha\right) \\
& \cos \left(55^{\circ}+\alpha\right)=0.132685
\end{aligned}
$$

Two values for $\alpha: \quad 55^{\circ}+\alpha=82.375$

$$
\alpha=27.4^{\circ}
$$

or

$$
\begin{aligned}
55^{\circ}+\alpha & =-82.375^{\circ} \\
55^{\circ}+\alpha & =360^{\circ}-82.375^{\circ} \\
\alpha & =222.6^{\circ}
\end{aligned}
$$

For $R<600 \mathrm{lb}$:
$27.4^{\circ}<\alpha<222.6$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

From triangle $A O B: \quad \quad \cos \theta_{y}=\frac{56 \mathrm{ft}}{65 \mathrm{ft}}$

$$
=0.86154
$$

$$
\theta_{y}=30.51^{\circ}
$$

(a)

$$
\begin{aligned}
F_{x} & =-F \sin \theta_{y} \cos 20^{\circ} \\
& =-(3900 \mathrm{lb}) \sin 30.51^{\circ} \cos 20^{\circ}
\end{aligned}
$$

$$
F_{x}=-1861 \mathrm{lb}
$$

$$
F_{y}=+F \cos \theta_{y}=(3900 \mathrm{lb})(0.86154)
$$

$$
F_{y}=+3360 \mathrm{lb}
$$

$$
F_{z}=+(3900 \mathrm{lb}) \sin 30.51^{\circ} \sin 20^{\circ}
$$

$$
F_{z}=+677 \mathrm{lb}
$$

(b)

$$
\begin{array}{rlr}
\cos \theta_{x}=\frac{F_{x}}{F}=-\frac{1861 \mathrm{lb}}{3900 \mathrm{lb}}=-0.4771 & \theta_{x}=118.5^{\circ} \\
\text { From above: } & \theta_{y}=30.51^{\circ} & \theta_{y}=30.5^{\circ} . \\
& \cos \theta_{z}=\frac{F_{z}}{F}=+\frac{677 \mathrm{lb}}{3900 \mathrm{lb}}=+0.1736 & \theta_{z}=80.0^{\circ}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

The forces applied at A are:

$$
\mathbf{T}_{A B}, \mathbf{T}_{A C}, \mathbf{T}_{A D} \text {, and } \mathbf{P}
$$

where $\mathbf{P}=P \mathbf{j}$. To express the other forces in terms of the unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we write
and

$$
\begin{array}{ll}
-\bar{A} B=-(4.20 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j} & A B=7.00 \mathrm{~m} \\
A C=(2.40 \mathrm{~m}) \mathbf{i}-(5.60 \mathrm{~m}) \mathbf{j}+(4.20 \mathrm{~m}) \mathbf{k} & A C=7.40 \mathrm{~m} \\
-\mathbb{H}=-(5.60 \mathrm{~m}) \mathbf{j}-(3.30 \mathrm{~m}) \mathbf{k} & A D=6.50 \mathrm{~m} \\
\mathbf{T}_{A B}=T_{A B} \lambda_{A B}=T_{A B} \frac{-H}{A B}=(-0.6 \mathbf{i}-0.8 \mathbf{j}) T_{A B} \\
\mathbf{T}_{A C}=T_{A C} \lambda_{A C}=T_{A C} \frac{A C}{A C}=(0.32432-0.75676 \mathbf{j}+0.56757 \mathbf{k}) T_{A C} \\
\mathbf{T}_{A D}=T_{A D} \lambda_{A D}=T_{A D} \frac{A D}{A D}=(-0.86154 \mathbf{j}-0.50769 \mathbf{k}) T_{A D}
\end{array}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION Continued

Equilibrium condition

$$
\Sigma F=0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0
$$

Substituting the expressions obtained for $\mathbf{T}_{A B}, \mathbf{T}_{A C}$, and $\mathbf{T}_{A D}$ and factoring \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{gathered}
\left(-0.6 T_{A B}+0.32432 T_{A C}\right) \mathbf{i}+\left(-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P\right) \mathbf{j} \\
+\left(0.56757 T_{A C}-0.50769 T_{A D}\right) \mathbf{k}=0
\end{gathered}
$$

Equating to zero the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{align*}
-0.6 T_{A B}+0.32432 T_{A C} & =0 \tag{1}\\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P & =0 \tag{2}\\
0.56757 T_{A C}-0.50769 T_{A D} & =0 \tag{3}
\end{align*}
$$

Setting $T_{A B}=259 \mathrm{~N}$ in (1) and (2), and solving the resulting set of equations gives

$$
\begin{aligned}
& T_{A C}=479.15 \mathrm{~N} \\
& T_{A D}=535.66 \mathrm{~N}
\end{aligned}
$$

$$
\mathbf{P}=1031 \mathrm{~N}^{\dagger}
$$

SOLUTION

See Problem 2.112 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{array}{r}
-0.6 T_{A B}+0.32432 T_{A C}=0 \\
-0.8 T_{A B}-0.75676 T_{A C}-0.86154 T_{A D}+P=0 \\
0.56757 T_{A C}-0.50769 T_{A D}=0 \tag{3}
\end{array}
$$

Substituting $T_{A C}=444 \mathrm{~N}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms gives

$$
\begin{aligned}
& T_{A B}=240 \mathrm{~N} \\
& T_{A D}=496.36 \mathrm{~N} \quad \mathbf{P}=956 \mathrm{~N}
\end{aligned}
$$

SOLUTION

PROBLEM 2.114

A transmission tower is held by three guy wires attached to a pin at A and anchored by bolts at B, C, and D. If the tension in wire $A B$ is 630 lb , determine the vertical force \mathbf{P} exerted by the tower on the pin at A.

Free Body \boldsymbol{A} :

$$
\begin{array}{ll}
\Sigma \mathbf{F}=0: \mathbf{T}_{A B}+\mathbf{T}_{A C}+\mathbf{T}_{A D}+P \mathbf{j}=0 \\
--\mathbb{A} B=-45 \mathbf{i}-90 \mathbf{j}+30 \mathbf{k} & A B=105 \mathrm{ft} \\
-H C=30 \mathbf{i}-90 \mathbf{j}+65 \mathbf{k} & A C=115 \mathrm{ft} \\
-\mathbb{I} & A D=110 \mathrm{ft} \\
A D=20 \mathbf{i}-90 \mathbf{j}-60 \mathbf{k} &
\end{array}
$$

We write

$$
\begin{aligned}
\mathbf{T}_{A B} & =T_{A B} \lambda_{A B}=T_{A B} \frac{-\overline{A B}}{A B} \\
& =\left(-\frac{3}{7} \mathbf{i}-\frac{6}{7} \mathbf{j}+\frac{2}{7} \mathbf{k}\right) T_{A B} \\
\mathbf{T}_{A C} & =T_{A C} \lambda_{A C}=T_{A C} \frac{--\overline{A C}}{A C} \\
& =\left(\frac{6}{23}-\frac{18}{23} \mathbf{j}+\frac{13}{23} \mathbf{k}\right) T_{A C} \\
\mathbf{T}_{A D} & =T_{A D} \lambda_{A D}=T_{A D} \frac{--I D}{A D} \\
& \left.=\left(\begin{array}{c}
2 \\
11 \\
11
\end{array}{ }^{9} \mathbf{j}-6 \frac{-}{\mathbf{k}}\right) T{ }_{11}\right)
\end{aligned}
$$

Substituting into the Eq. $\Sigma \mathbf{F}=0$ and factoring $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
& \left({ }^{1}{ }^{7} T{ }_{A B}+\frac{{ }^{\mathbf{0}}{ }_{23}}{{ }^{A C}}+{ }_{11}{ }^{2} T_{A D}\right) \mathbf{i} \\
& +\left({ }_{7}{ }^{6} T_{A B}-{ }_{23}^{18} T_{A C}-{ }_{11}^{-9} T_{A D}+P\right) \mathbf{j}
\end{aligned}
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.114 (Continued)

Setting the coefficients of $\mathbf{i}, \mathbf{j}, \mathbf{k}$, equal to zero:

$$
\begin{align*}
& \text { i: } \quad-\frac{3}{7} T_{A B}+\frac{6}{23} T{ }_{A C}+\frac{2}{11} T_{A D}=0 \tag{1}\\
& \mathbf{j}: \quad-\frac{6}{7} T_{A B}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P=0 \tag{2}\\
& \text { k: } \quad \frac{2}{7} T_{A B}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D}=0 \tag{3}
\end{align*}
$$

Set $T_{A B}=630 \mathrm{lb}$ in Eqs. (1) - (3):

$$
\begin{align*}
-270 \mathrm{lb}+\frac{6}{23}{ }_{A C}+\frac{2}{11} T_{A D} & =0 \tag{1'}\\
-540 \mathrm{lb}-\frac{18}{23} T_{A C}-\frac{9}{11} T_{A D}+P & =0 \\
180 \mathrm{lb}+\frac{13}{23} T_{A C}-\frac{6}{11} T_{A D} & =0
\end{align*}
$$

Solving,

$$
T_{A C}=467.42 \mathrm{lb} \quad T_{A D}=814.35 \mathrm{lb} \quad P=1572.10 \mathrm{lb}
$$

$$
P=1572 \mathrm{lb}
$$

PROBLEM 2.115

A rectangular plate is supported by three cables as shown. Knowing that the tension in cable $A D$ is 520 N , determine the weight of the plate.

SOLUTION

See Problem 2.114 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$
\begin{align*}
-\frac{8}{17} T_{A B}+0.6 T_{A C}+\frac{5}{13} T_{A D} & =0 \tag{1}\\
-\frac{12}{17} T_{A B}+0.64 T_{A C}-\frac{9.6}{13} T_{A D}+P & =0 \tag{2}\\
\frac{9}{17} T_{A B}+0.48 T_{A C}-\frac{7.2}{13} T_{A D} & =0 \tag{3}
\end{align*}
$$

Making $T_{A D}=520 \mathrm{~N}$ in Eqs. (1) and (3):

$$
\begin{align*}
& -\frac{8}{17} T_{A B}+0.6 T_{A C}+200 \mathrm{~N}=0 \tag{1'}\\
& \frac{9}{17} T_{A B}+0.48 T_{A C}-288 \mathrm{~N}=0
\end{align*}
$$

Multiply (1') by $9,\left(3^{\prime}\right)$ by 8 , and add:

$$
9.24 T_{A C}-504 \mathrm{~N}=0 T_{A C}=54.5455 \mathrm{~N}
$$

Substitute into (1^{\prime}) and solve for $T_{A B}$:

$$
T_{A B}=\frac{17}{8}(0.6 \times 54.5455+200) \quad T_{A B}=494.545 \mathrm{~N}
$$

Substitute for the tensions in Eq. (2) and solve for P :

$$
\begin{aligned}
P & =\frac{12}{17}(494.545 \mathrm{~N})+0.64(54.5455 \mathrm{~N})+\frac{9.6}{13}(520 \mathrm{~N}) & \\
& =768.00 \mathrm{~N} & \text { Weight of plate }=P=768 \mathrm{~N}
\end{aligned}
$$

