Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem
 Stratton Beaulieu ISBN 013257084X 9780132570848

https://testbankpack.com/p/test-bank-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-1sbn-013257084x-97801325708481
https://testbankpack.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-1sbn-013257084x-97801325708481

Solutions Chapter 2

Fundamental Review Material

2-A1 (20-25 min.)

1. The cost driver for both resources is square metres cleaned. Labour cost is a fixedcost resource, and cleaning supplies is a variable cost. Costs for cleaning between four and eight times a month are:

Number of Times Plant Is	Square	Metres	Labour	Cleaning Supplies	
Cleaned	Cleaned	Cost	Cost	Total Cost	
4	$160,000^{*}$	$\$ 24,000$	$\$ 9,600$	Total Cost per Square	
5	200,000	24,000	$12,000^{* *}$	$\$ 33,600$	$\$ 0.210$
6	240,000	24,000	14,400	36,000	0.180
7	280,000	24,000	16,800	38,400	0.160
8	320,000	24,000	19,200	40,800	0.146

* $4 \times 40,000$ square metres
** Cleaning supplies cost per square metre cleaned $=\$ 9,600 \div 160,000=\$ 0.06$
*** \$0.06 per square metre x 200,000
The predicted total cost to clean the plant during the next quarter is the sum of the total costs for monthly cleanings of 5,6 , and 8 times. This is

$$
\$ 36,000+\$ 38,400+\$ 43,200=\$ 117,600
$$

2. If Bombardier hires the outside cleaning company, all its cleaning costs will be variable at a rate of $\$ 5,900$ per cleaning. The cost driver will be -number of times cleaned. Il The predicted cost to clean a total of $5+6+8=19$ times is $19 \times \$ 5,900=$ $\$ 112,100$. Thus, Bombardier will save by hiring the outside cleaning company.

The table and chart below show the total costs for the two alternatives. The cost driver for the outsource alternative is different than the cost driver if Bombardier cleans the plant with its own employees. If Bombardier expects average -times cleanedll to be six or more, it would save by cleaning with its own employees.

Bombardier Cleans Plant		Outsource Cleaning Plant	
Square Metres Cleaned	Bombardier	Times Cleaned	Outside
160,000	$\$ 33,600$	4	$\$ 23,600$

200,000	36,000	5	29,500
240,000	38,400	6	35,400
280,000	40,800	7	41,300
320,000	43,200	8	47,200

2-A2 (20-25 min.)

1. Let $\mathrm{N}=$ number of units

Sales = Fixed expenses + Variable expenses + Net income
$\$ 1.00 \mathrm{~N}=\$ 6,000+\$ 0.80 \mathrm{~N}+0$
\$0.20 N= \$6,000
$\mathrm{N}=30,000$ units
Let $S=$ sales in dollars
S $=\$ 6,000+0.80 \mathrm{~S}+0$
$0.20 \mathrm{~S}=\$ 6,000$
$\mathrm{S}=\$ 30,000$
Alternatively, the 30,000 units may be multiplied by $\$ 1.00$ to obtain $\$ 30,000$.
In formula form:
In units
$\frac{\text { Fixed costs }+ \text { Net income }}{\text { Contribution margin per unit }}=\frac{(\$ 6,000+0)}{\$ 0.20}=30,000$

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084 X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848

In dollars
$\frac{\text { Fixed costs }+ \text { Net income }}{\text { Contribution margin per unit }}=\frac{(\$ 6,000+0)}{0.20}=\$ 30,000$
2. The quick way: $(40,000-30,000) \times \$ 0.20=\$ 2,000$

Compare income statements:

	Break-Even Point	Increment	Total
Volume in units	30,000	10,000	40,000
Sales	\$30,000	\$10,000	\$40,000
Deduct expenses:			
Variable	24,000	8,000	32,000
Fixed	6,000	---	6,000
Total expenses	\$30,000	\$8,000	\$38,000
Effect on net income	\$ 0	\$ 2,000	\$ 2,000

3. Total fixed expenses would be $\$ 6,000+\$ 1,552=\$ 7,552$

$$
\frac{\$ 7,552}{\$ 0.20 / \text { unit }}=37,760 \text { units; } \quad \frac{\$ 7,552}{0.20}=\$ 37,760 \text { sales }
$$

or $37,760 \times \$ 1.00=\$ 37,760$ sales
4. New contribution margin is $\$ 0.18$ per unit; $\$ 6,000 \div \$ 0.18=33,333$ units

33,333 units $\times \$ 1.00=\$ 33,333$ in sales
5. The quick way: $(40,000-30,000) \times \$ 0.16=\$ 1,600$. On a graph, the slope of the total cost line would have a kink upward, beginning at the break-even point.

2-A3 (20-30 min.)
The following format is only one of many ways to present a solution. This situation is really a demonstration of -sensitivity analysis,ll whereby a basic solution is tested to see how much it is affected by changes in critical factors. Much discussion can ensue, particularly about the final three changes.

The basic contribution margin per revenue kilometre is $\$ 1.50-\$ 1.30=\$ 0.20$.
(1)
(2)

Contribution
Revenue

Kilometres

 Sold1. 800,000
2. (a) 800,000
(b) 880,000
(c) 800,000
(d) 800,000
(e) 840,000
(f) 720,000
(g) 840,000
(3)
(1) $\times(2)$

Total
Contribution
Margin
\$160,000
(4)
(3) - (4)

Fixed
 Expenses
 Net Income
 $$
\$ 120,000
$$
 $$
\$ 40,000
$$

2-B1 (20-25 min.)

1. The cost driver for both resources is square metres cleaned. Labour cost is a fixedcost resource, and cleaning supplies is a variable cost. Costs for cleaning between 35 and 50 times are:

Times Cleaned	Square Metres Cleaned	Labour Cost	Cleaning Supplies Cost	Total Cost	Total Cost per Square Metre
35	175,000	$\$ 30,000$	$\$ 10,500$	$\$ 40,500$	$\$ 0.23143$
40	200,000	30,000	12,000	42,000	0.21000
45	225,000	30,000	13,500	43,500	0.19333
50	250,000	30,000	15,000	45,000	0.18000

* $35 \times 5,000$
** The cost of cleaning supplies per square metre cleaned $=\$ 10,500 \div 175,000=\$ 0.06$ per square metre. Cleaning supplies cost $=\$ 0.06 \times 175,000=\$ 10,500$.

The predicted total cost to clean during November and December is the sum of the total costs for monthly cleanings of 45 and 50 times. This is:

$$
\$ 43,500+\$ 45,000=\$ 88,500
$$

2. If The Keg hires the outside cleaning company, all its cleaning costs will be variable at a rate of $\$ 0.20$ per square metre cleaned. The predicted cost to clean a total of $45+$ $50=95$ times is $95 \times 5,000 \times \$ 0.20=\$ 95,000$. Thus, The Keg will not save by hiring the outside cleaning company.

To determine whether outsourcing is a good decision on a permanent basis, The Keg needs to know the expected demand for the cost driver over an extended time frame. As the following table and graph show, outsourcing becomes less attractive when cost
driver levels are high. If average demand for cleaning is expected to be more than about $164,000 \div 5,000=41$ times a month, The Keg should continue to do its own

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084 X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848
cleaning. The Keg should also consider such factors as quality and cost control when an outside cleaning company is used.

(1) Times Cleaned	(2) Square Metres Cleaned	(3) Keg Total Cleaning Cost	Outside Cleaning Cost $\$ 0.20 \times(2)$
35	175,000	\$40,500	\$35,000
40	200,000	42,000	40,000
45	225,000	43,500	45,000
50	250,000	45,000	50,000

[^0]Monthly Cleaning Costs at Keg

\square

2-B2 (15-25 min.)

1. $\$ 2,300 \div(\$ 30-\$ 10)=115$ child-days or $115 \times \$ 30=\$ 3,450$ revenue dollars.
2. $176 \times(\$ 30-\$ 10)-\$ 2,300=\$ 3,520-\$ 2,300=\$ 1,220$
3. a. $198 \times(\$ 30-\$ 10)-\$ 2,300=\$ 3,960-\$ 2,300=\$ 1,660$

$$
\text { or }(22 \times \$ 20)+\$ 1,220=\$ 440+\$ 1,220=\$ 1,660
$$

b. $\quad 176 \times(\$ 30-\$ 12)-\$ 2,300=\$ 3,168-\$ 2,300=\$ 868$ or $\$ 1,220-(\$ 2 \times 176)=\$ 868$
c. $\$ 1,220-\$ 220=\$ 1,000$
d. $\quad[(9.5 \times 22) \times(\$ 30-\$ 10)]-(\$ 2,300+\$ 300)=\$ 4,180-\$ 2,600=\$ 1,580$
e. $[(7 \times 22) \times(\$ 33-\$ 10)]-\$ 2,300=\$ 3,542-\$ 2,300=\$ 1,242$

2-B3 (15-20 min.)

1. $\frac{\$ 5,000}{(\$ 20-\$ 16)}=\frac{\$ 5,000}{\$ 4}=1,250$ units
2. Contribution margin ratio: $\frac{(\$ 40,000-\$ 30,000)}{(\$ 40,000)}=25 \%$
3. $\frac{(\$ 33,000+\$ 7,000)}{(\$ 30-\$ 14)}=\frac{\$ 40,000}{\$ 16}=2,500$ units
4. $(\$ 50,000-\$ 20,000)(110 \%)=\$ 33,000$ contribution margin;
$\$ 33,000-\$ 20,000=\$ 13,000$
5. New contribution margin: $\$ 40-(\$ 30-20 \%$ of $\$ 30)$

$$
=\quad \$ 40-(\$ 30-\$ 6)=\$ 16
$$

New fixed expenses: $\$ 80,000 \times 110 \%=\$ 88,000$;
$\frac{(\$ 88,000+\$ 20,000)}{\$ 16}=\frac{\$ 108,000}{\$ 16}=6,750$ units

Questions

Q2-1 This is a good characterization of cost behaviour. Identifying cost drivers will identify activities that affect costs, and the relationship between a cost driver and costs specifies how the cost driver influences costs.

Q2-2 Examples of variable costs are the costs of merchandise, materials, parts, supplies, commissions, and many types of labour. Examples of fixed costs are real estate taxes, real estate insurance, many executive salaries, and space rentals.

Q2-3 Fixed costs, by definition, do not vary in total as volume changes. However, if fixed costs are allocated or spread over volume on a per-unit-of-volume basis, they decline per unit as volume increases.

Q2-4 Yes. Fixed costs per unit change as the volume of activity changes. Therefore, for fixed cost per unit to be meaningful, you must identify an appropriate volume level. In contrast, total fixed costs are independent of volume level.

Q2-5 No. Cost behaviour is much more complex than a simple division into fixed or variable. For example, some costs are not linear, and some have more than one cost driver. Division of costs into fixed and variable categories is a useful simplification, but it is not a complete description of cost behaviour in most situations.

Q2-6 No. The relevant range pertains to both variable and fixed costs. Outside a relevant range, some variable costs, such as fuel consumed, may behave differently per unit of activity volume.

Q2-7 Two simplifying assumptions are linearity of costs and only one measure of volume.

Q2-8 The same cost may be regarded as variable in one decision situation and fixed in a second decision situation. For example, fuel costs are fixed with respect to the addition of one more passenger on a bus because the added passenger has almost no effect on total fuel costs. In contrast, total fuel costs are variable in relation to the decision of whether to add one more kilometre to a city bus route.

Q2-9 No. Contribution margin is the excess of sales over all variable costs, not fixed costs. It may be expressed as a total, as a ratio, as a percentage, or per unit.

Q2-10_A -break-even analysisll does not include a provision for minimum acceptable profit required before deciding in favour of the project being analyzed. The break-even point is often only incidental in studies of cost-volume relationships.

Q2-11 No. break-even points can vary greatly within an industry. For example, RollsRoyce has a much lower break-even volume than does Chrysler (or Ford, Toyota, and other high-volume auto producers).

Q2-12_No. The CVP technique you choose is a matter of personal preference or convenience. The equation technique is the most general, but it may not be the easiest to apply. All three techniques yield the same results.

Q2-13 Three ways of lowering a break-even point, holding other factors constant, are: decrease total fixed costs, increase selling prices, and decrease unit variable costs.

Q2-14 No. In addition to being quicker, incremental analysis is simpler. This is important because it keeps the analysis from being cluttered by irrelevant and potentially confusing data.

Q2-15 Operating leverage is a firm's ratio of fixed and variable costs. A highly leveraged company has relatively high fixed costs and low variable costs. Such a firm is risky because small changes in volume lead to large changes in income.

Q2-16 No. In retailing, the contribution margin is likely to be smaller than the gross margin. For instance, sales commissions are deducted in computing the contribution margin but not the gross margin.

Q2-17 No. CVP relationships pertain to both profit-seeking and not-for-profit organizations. In particular, managers of not-for-profit organizations must deal with tradeoffs between variable and fixed costs. To many government department managers, lump-sum budget appropriations are regarded as the available revenues.

Q2-18 Contribution margin could be lower because of a decline in the proportion of the product bearing the higher unit contribution margin.
Q2-19

$$
\begin{aligned}
& \text { Target income before } \\
& \text { income taxes }
\end{aligned}=\frac{\text { Target after-tax net income }}{1-\text { tax rate }}
$$

Q2-20
$\begin{gathered}\text { Change in } \\ \text { net income }\end{gathered}=\binom{$ Change in volume }{ in units }$\times\binom{$ Contribution margin }{ per unit }$\times(1-$ tax rate $)$

Exercises

E2-1 (5-10 min.)

1. \quadContribution margin Net income	$=\$ 900,000-\$ 500,000$	$=\$ 400,000$
	$=\$ 400,000-\$ 330,000$	$=\$ 70,000$
2. \quadVariable expenses Fixed expenses	$=\$ 800,000-\$ 350,000$	$=\$ 450,000$
	$=\$ 350,000-\$ 80,000$	$=\$ 270,000$
3. Sales		
Net income	$=\$ 300,000+\$ 360,000$	$=\$ 960,000$

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848

E2-2 (10-20 min.)

1. $d \quad=c(a-b)$

$$
\begin{array}{ll}
\$ 720,000 & =120,000(\$ 25-\mathrm{b}) \\
\mathrm{b} & =\$ 19 \\
\mathrm{f} & =\mathrm{d}-\mathrm{e} \\
& =\$ 720,000-\$ 650,000=\$ 70,000
\end{array}
$$

2. $d \quad=c(a-b)$

$$
f \quad=d-e
$$

$$
=\$ 400,000-\$ 320,000=\$ 80,000
$$

3. $c \quad=d \div(a-b)$

$$
=\$ 100,000 \div \$ 5=20,000 \text { units }
$$

$$
e \quad=d-f
$$

$$
=\$ 100,000-\$ 15,000=\$ 85,000
$$

4. $d \quad=c(a-b)$
$=60,000(\$ 30-\$ 20)$
= \$600,000
$e \quad=d-f$
$=\$ 600,000-\$ 12,000=\$ 588,000$
5. $d=c(a-b)$
$\$ 160,000=80,000(a-\$ 9)$
$\mathrm{a} \quad=\$ 11$
$f \quad=d-e$
$=\$ 160,000-\$ 110,000=\$ 50,000$
E2-3 (20-25 min.)

Square Metre	Labour Cost	Labour Cost per Square Metre	Supplies Cost	Supplies Cost per Square Metre
100,000	$\$ 24,000$	$\$ 0.240$	$\$ 5,000$	$\$ 0.050$
125,000	24,000	$\$ 0.192$	6,250	0.050
150,000	24,000	$\$ 0.160$	7,500	0.050
175,000	24,000	$\$ 0.137$	8,750	0.050
200,000	24,000	$\$ 0.120$	10,000	0.050

* At 100,000 square metres on the second graph the total supplies cost is $\$ 5,000$, so the slope of the line is $\$ 0.05$.

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084 X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848

E2-4 (20-25 min.)

Square Metres	Labour Cost per Square Metre (estimated)	Total Labour Cost $^{+}$	Supplies Cost per Square Metre	Total Supplies Cost
140,000	$\$ 0.13$	$\$ 18,200$	$\$ 0.06$	$\$ 8,400$
160,000	0.11	17,600	0.06	9,600
180,000	0.10	18,000	0.06	10,800
200,000	0.09	18,000	0.06	12,000

* The estimates for labour cost per square metre yield slightly different total labour cost estimates. In the graph below, $\$ 18,000$ is used.

E2-5 (10 min.)

1.

Let TR = total revenue

$$
\begin{aligned}
\mathrm{TR}-0.20(\mathrm{TR})-\$ 40,000,000 & =0 \\
0.80(\mathrm{TR}) & =\$ 40,000,000 \\
\mathrm{TR} & =\$ 50,000,000
\end{aligned}
$$

2. Daily revenue per patient $=\$ 50,000,000 \div 40,000=\$ 1,250$. This may appear high, but it includes the room charge plus additional charges for drugs, X-rays, and so forth.

E2-6 (15 min.)

1.

Room revenue @ \$50
Variable costs @ \$10
Contribution margin
Fixed costs
Net income (loss)
100% Full

$$
\begin{gathered}
\$ 1,825,000 \\
\begin{array}{c}
365,000 \\
1,460,000 \\
1,200,000 \\
\$ 260,000 \\
\hline
\end{array}{ }^{\mathrm{a}} \\
\hline \underline{2}
\end{gathered}
$$

50\% Full
$\$ 912,500{ }^{\text {b }}$
182,500
730,000
1,200,000
\$(470,000)
a $100 \times 365=36,500$ rooms per year $36,500 \times \$ 50=\$ 1,825,000$
$b^{50 \%}$ of $\$ 1,825,000=\$ 912,500$

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848
2.

$$
\begin{aligned}
\text { Let } N & =\text { number of rooms } \\
\$ 50 \mathrm{~N}-\$ 10 \mathrm{~N}-\$ 1,200,000 & =0 \\
\mathrm{~N} & =\$ 1,200,000 \div \$ 40=30,000 \text { rooms } \\
\text { Percentage occupancy } & =30,000 \div 36,500=82.2 \%
\end{aligned}
$$

E2-7 (15-20 min.)

1. Let $R=$ litres of raspberries and $2 R=$ litres of strawberries sales - variable expenses - fixed expenses = zero net income $\$ 1.10(2 R)+\$ 1.45(R)-\$ 0.75(2 R)-\$ 0.95(R)-\$ 15,600=0$ $\$ 2.20 R+\$ 1.45 R-\$ 1.50 R-\$ 0.95 R-\$ 15,600=0$ $\$ 1.20 R-\$ 15,600=0$
$R=13,000$ litres of raspberries
$2 R=26,000$ litres of strawberries
2. Let $S=$ litres of strawberries
(\$1.10-\$0.75) x S - \$15,600 = 0
$0.35 \mathrm{~S}-\$ 15,600=0$
$S=44,571$ litres of strawberries
3. Let $\mathrm{R}=$ litres of raspberries
$(\$ 1.45-\$ 0.95) \times R-\$ 15,600=0$
\$0.50R - \$15,600 = 0
$R=31,200$ litres of raspberries
E2-8 (15 min .)
Several variations of the following general approach are possible:
Target after-tax
Sales - Variable expenses - Fixed expenses $=\frac{\text { net income }}{1-\text { tax rate }}$
$S-0.7 S-\$ 440,000=\frac{\$ 42,000}{(1-0.4)}$
$0.3 S=\$ 440,000+\$ 70,000$
$S=\$ 510,000 \div 0.3=\$ 1,700,000$

Check: Sales
Variable expenses (70\%)
Contribution margin
Fixed expenses
Income before taxes
Income taxes
Net income
\$1,700,000
1,190,000
510,000
440,000
\$ 70,000
28,000
\$ 42,000

Problems

P2-1 (40-50 min.)

1. Several variations of the following general approach are possible:

Let $\mathrm{N}=$ Unit sales
Sales - Variable expenses - Fixed expenses = Profit
$\$ 3 \mathrm{~N}-\$ 2.20 \mathrm{~N}-(\$ 3,000+\$ 2,000+\$ 5,000)=\$ 2,000$
$\$ 0.80 \mathrm{~N}-\$ 10,000=\$ 2,000$
$N=\$ 12,000 \div \$ 0.80=15,000$ glasses of beer
Check: Sales $(15,000 \times \$ 3) \quad \$ 45,000$
Variable expenses $(15,000 \times \$ 2.20) \quad 33,000$
Contribution margin $\quad 12,000$
Fixed expenses
Profit

10,000
\$ 2,000
2. $\$ 3 \mathrm{~N}-\$ 2.20 \mathrm{~N}-\$ 10,000=0.05 \times(\$ 3 \mathrm{~N})$

$$
N=\$ 10,000 \div(\$ 0.80-\$ 0.15)=15,385 \text { glasses of beer }
$$

3. $\$ 1,560 \div(\$ 1.25-\$ 0.70)=2,836$ hamburgers
4. $(2,000 \times \$ 0.55)+(3,000 \times \$ 0.80)-\$ 1,560=\$ 1,100+\$ 2,400-\$ 1,560=\$ 1,940$
5. $\$ 1,560 \div(\$ 0.80+\$ 0.55)=1,156$ new customers are needed to break even on the new business.

A sensitivity analysis would help provide Joe with an assessment of the financial risks associated with the new hamburger business. Suppose that Joe is confident that demand for hamburgers would range between break-even ± 500 new customers and that expected fixed costs will not change within this range. The contribution margin generated by each new customer is $\$ 1.35$, so Joe will realize a maximum loss or profit from the new business in the range $\pm \$ 1.35 \times 500= \pm \$ 675$.

Another way to assess financial risk that Joe should be aware of is the company's operating leverage (the ratio of fixed to variable costs). A highly leveraged company has relatively high fixed costs and low variable costs. Such a firm is risky because small changes in volume lead to large changes in net income. This is good when volume increases but can be disastrous when volumes fall.
6. The additional cost of hamburger ingredients is $0.5 \times \$ 0.70=\$ 0.35$. Any price above the current price of $\$ 1.25$ plus $\$ 0.35$, or $\$ 1.70$, will improve profits.

P2-2 (15-20 min.)

1. Microsoft: $(\$ 60,420-\$ 11,598) \div \$ 60,420=0.81$ or 81%

Procter \& Gamble: $(\$ 83,503-\$ 40,695) \div \$ 83,503)=0.51$ or 51%
There is very little variable cost for each unit of software sold by Microsoft, while the variable cost of the soap, cosmetics, foods, and other products of Procter \& Gamble is substantial.
2. Microsoft: $\$ 10,000,000 \times 0.81=\$ 8,100,000$

Procter \& Gamble: $\$ 10,000,000 \times 0.51=\$ 5,100,000$
3. By assuming that changes in sales volume do not move the volume outside the relevant range, we know that the total contribution margin generated by any added sales will be added to the operating income. Thus, we can simply multiply the contribution margin percentage by the changes in sales to get the change in operating income.

The main assumptions we make when we assume that the sales volume remains in the relevant range are that total fixed costs do not change and unit variable cost remains unchanged. This generally means that such predictions will apply only to small changes in volume-changes that do not cause either the addition or reduction of capacity.

P2-3 (15 min .)

1. Let $\mathrm{X}=$ amount of additional fixed costs for advertising

$$
\begin{gathered}
(1,100,000 \times £ 13)+£ 300,000-0.30(1,100,000 \times £ 13)-(£ 7,000,000+X)=0 \\
£ 14,300,000+£ 300,000-£ 4,290,000-£ 7,000,000-X=0 \\
X=£ 14,600,000-£ 11,290,000 \\
X=£ 3,310,000
\end{gathered}
$$

2. Let $\mathrm{Y}=$ number of seats sold

$$
\begin{aligned}
£ 13 Y+£ 300,000-0.30(£ 13) Y-£ 9,000,000 & =£ 500,000 \\
£ 9.10 Y & =£ 9,200,000 \\
Y & =1,010,989 \text { seats }
\end{aligned}
$$

P2-4 (20-30 min.)
Many shortcuts are available, but this solution uses the equation technique:

1. Let $N=$ meals sold

Sales - Variable expenses - Fixed expenses = Profit before taxes
\$19N - \$10.60N - \$21,000 = \$8,400
$N=\$ 29,400 \div \$ 8.40$
$N=3,500$ meals
2. $\$ 19 \mathrm{~N}-\$ 10.60 \mathrm{~N}-\$ 21,000=\$ 0$
$N=\$ 21,000 \div \$ 8.40$
$\mathrm{N}=2,500$ meals
3. $\$ 23 \mathrm{~N}-\$ 12.50 \mathrm{~N}-\$ 29,925=\$ 8,400$
$N=\$ 38,325 \div \$ 10.50$
$N=3,650$ meals
4. \quad Profit $=\$ 23(3,150)-\$ 12.50(3,150)-\$ 29,925$

Profit $=\$ 3,150$
5. \quad Profit $=\$ 23(3,450)-\$ 12.50(3,450)-(\$ 29,925+\$ 2,000)$

Profit $=\$ 36,225-\$ 31,925$
Profit $=\$ 4,300$, an increase of $\$ 1,150$.
A shortcut, incremental approach follows:
Increase in contribution margin, $300 \times \$ 10.50=\quad \$ 3,150$
Increase in fixed costs $\underline{\underline{2,000}}$
Increase in profit $\underline{\underline{\$ 1,150}}$
P2-5 (10-15 min.)
Amounts are in millions
Net sales ($0.8 \times \$ 83,503$)
\$66,802
Variable costs:
Cost of goods sold ($0.8 \times \$ 40,695$)
Contribution margin
34,246
Fixed costs:
Selling, administrative, and general expenses
25,725
Operating income \$8,521

The percentage decrease in operating income would be $(\$ 8,521 \div \$ 17,083)-1=-0.50$ or 50 percent, compared with a 20 percent decrease in sales. The contribution margin would decrease by 20 percent or $0.20 \times(\$ 83,503-\$ 40,695)=\$ 8,562$ million. Because fixed costs would not change (assuming the new volume is within the relevant range), operating income would also decrease by $\$ 8,562$ million, from $\$ 17,083$ million to $\$ 8,521$ million. If all costs had been variable, fixed costs would have decreased by an additional $0.20 \times \$ 25,725=\$ 5,145$ million, making operating income $\$ 8,521+\$ 5,145=$ $\$ 13,666$ million, a 20 percent decrease under the 2008 operating income of $\$ 17,083$ million. Because of the existence of fixed costs, the percentage decrease in operating income will exceed the percentage decrease in sales.

1. Average revenue per person

Total revenue, 200 @ \$8.50 = Rent
Total available for prizes and operating income
$\$ 4.00+3(\$ 1.50)=\$ 8.50$ \$1,700

600
\$1,100

The church could award \$1,100 and break even.
2. Number of persons

Total revenue @ \$8.50
100
$\$ 850$
200
$\$ 1,700$
$\$ 2,550$
Fixed costs

Rent	$\$ 600$			
Prizes	$\underline{1,100}$	$\underline{1,700}$	$\underline{1,700}$	$\underline{1,700}$
Operating income (loss)		$\underline{\$(850})$	$\underline{\$ 1050}$	$\underline{\$ 850}$

Note how —leveragell works. Being highly leveraged means having relatively high fixed costs. In this case, there are no variable costs. Therefore, the revenue is the same as the contribution margin. As volume departs from the break-even point, operating income is affected at a significant rate of $\$ 8.50$ per person.
3. Number of persons

Revenue
Variable costs
Contribution margin

100
$\$ \quad 850$
$\quad 200$
$\$ \quad 650$

200
$\$ 1,700$
400
$\$ 1,300$

300
\$2,550
, 600
\$1,950
\$ 200
1,100
1,300
\$ 650
Note how the risk is lower because of less leverage. Fixed costs are less, and some of the risk has been shifted to the hotel. Note too that lower risk brings lower rewards and lower punishments. The income and losses are $\$ 650$ instead of the $\$ 850$ shown in part 2.

P2-7 (15-20 min.)
Note in requirements 2 and 3 how the percentage declines exceed the 15 percent budget reduction.

1. Let $\mathrm{N}=$ number of persons

Revenue - variable expenses - fixed expenses $=0$

$$
\begin{aligned}
\$ 900,000-\$ 5,000 \mathrm{~N}-\$ 280,000 & =0 \\
5,000 \mathrm{~N} & =\$ 900,000-\$ 280,000 \\
\mathrm{~N} & =\$ 620,000 \div \$ 5,000 \\
\mathrm{~N} & =124 \text { persons }
\end{aligned}
$$

2. Revenue is now $0.85(\$ 900,000)=\$ 765,000$

$$
\begin{aligned}
\$ 765,000-\$ 5,000 \mathrm{~N}-\$ 280,000 & =0 \\
\$ 5,000 \mathrm{~N} & =\$ 765,000-\$ 280,000 \\
\mathrm{~N} & =\$ 485,000 \div \$ 5,000 \\
\mathrm{~N} & =97 \text { persons }
\end{aligned}
$$

Percentage drop: $(124-97) \div 124=21.8 \%$
3. Let $y=$ supplement per person

$$
\begin{aligned}
& \$ 765,000-124 y-\$ 280,000=0 \\
& 124 y=\$ 765,000-\$ 280,000 \\
& y=\$ 485,000 \div 124 \\
& y=\$ 3,911 \\
& \text { Percentage drop: }(\$ 5,000-\$ 3,911) \div \$ 5,000=21.8 \%
\end{aligned}
$$

Regarding requirements 2 and 3, note that the cut in service can be measured by a formula:
$\%$ cut in service $=\frac{\% \text { budget change }}{\% \text { variable cost }}$
The variable cost ratio is $\$ 620,000 \div \$ 900,000=68.9 \%$

$$
\% \text { cut in service }=\frac{15 \%}{68.9 \%}=21.8 \%
$$

P2-8 (15-20 min.)
Answers are in millions.

1. Sales

Variable costs:
Variable costs of goods sold
Variable other operating expenses
Contribution margin
\$9,416
\$5,847
896

6,743
\$ 2,673

Contribution margin percentage $=\$ 2,673 \div \$ 9,416=28.4 \%$
The contribution margin is sales less all variable costs, while gross margin is sales less cost of goods sold. The variable costs include part of the costs of goods sold and also part of the other operating costs. Note that contribution margin can be either larger or smaller than the gross margin. If most of the cost of goods sold and a good portion of the other operating costs are variable, then variable costs may exceed the cost of goods sold, and the contribution margin will be smaller than the gross margin. However, if a large portion of both the cost of goods sold and the other expenses are fixed, cost of goods sold may exceed the variable cost, resulting in the contribution margin exceeding gross margin.
2. Predicted sales increase $=\$ 9,416 \times 0.10=\$ 941.6$

Additional contribution margin $=\$ 941.6 \times 0.284=\$ 267$
Fixed costs do not change
Predicted 2009 operating loss $=\$(727)+\$ 267=\(460)

Percentage decrease in operating loss $=[(\$ 727)-(\$ 460)] \div \$(727)=37 \%$
3. Assumptions include:

- Expenses can be classified into variable and fixed categories that completely describe their behaviour within the relevant range.
- Costs and revenues are linear within the relevant range.
- 2009 volume is within the relevant range.
- Efficiency and productivity are unchanged.
- Sales mix is unchanged.
- Changes in inventory levels are insignificant.

P2-9 (20-25 min.)

1. Net income (loss) $=250,000(\$ 2)+125,000(\$ 3)-\$ 735,000$
$=\$ 500,000+\$ 375,000-\$ 735,000$
$=\$ 140,000$
2. Let $B=$ number of units of beef enchiladas to break even (B) $2 \mathrm{~B}=$ number of units of chicken tacos to break even (C)

Total contribution margin - fixed expenses $=$ zero net income

$$
\begin{aligned}
\$ 3 B+\$ 2(2 B)-\$ 735,000 & =0 \\
\$ 7 B & =\$ 735,000 \\
B & =105,000 \\
2 B & =210,000=C
\end{aligned}
$$

The break-even point is 105,000 units of beef enchiladas plus 210,000 units of chicken tacos, a grand total of 315,000 units.
3. If tacos, break-even would be $\$ 735,000 \div \$ 2=367,500$ units. If enchiladas, break-even would be $\$ 735,000 \div \$ 3=245,000$ units.

Note that as the mixes change from 1 enchilada to 2 tacos, to 0 tacos to 1 enchilada, and to 1 taco to 0 enchiladas, the break-even point changes from 315,000 to 245,000 to 367,500 .
4. Net income (loss) $=236,250(\$ 2)+78,750(\$ 3)-\$ 735,000$

$$
=\$ 472,500+\$ 236,250-\$ 735,000
$$

$$
=\$(26,250)
$$

Let $B=$ number of units of beef enchiladas to break even (B) 3B = number of units of chicken tacos to break even (C)

Total contribution margin - fixed expenses $=$ zero net income

$$
\begin{aligned}
\$ 3 B+\$ 2(3 B)-\$ 735,000 & =0 \\
\$ 9 B & =\$ 735,000 \\
B & =81,667 \\
3 B & =245,000=C
\end{aligned}
$$

The major lesson of this problem is that changes in sales mix change breakeven points and net incomes. The break-even point is 81,667 units of enchiladas plus 245,000 units of tacos, a total of 326,667 units. Thus, the unfavourable change in mix results in a net loss of \$26,250 at the old total break-even level of 315,000 units. In short, the break-even level is higher because the sales mix is less profitable when tacos represent a higher proportion of sales. In this example, the budgeted and actual total sales in number of units were identical, but the proportion of product having the higher contribution margin declined.

P2-10(15-25 min.)

1. Let $\mathrm{N}=$ number of rooms

$$
\begin{align*}
\$ 105 \mathrm{~N}-\$ 25 \mathrm{~N}-\$ 9,200,000 & =\frac{\$ 720,000}{(1-0.4)} \tag{1-0.4}\\
\$ 80 \mathrm{~N}-\$ 9,200,000 & =\$ 1,200,000 \\
\$ 80 \mathrm{~N} & =\$ 10,400,000 \\
\mathrm{~N} & =130,000 \text { rooms } \\
\$ 80 \mathrm{~N}-\$ 9,200,000 & =\frac{\$ 360,000}{(1-0.4)} \\
\$ 80 \mathrm{~N}-\$ 9,200,000 & =\$ 600,000 \\
\$ 80 \mathrm{~N} & =\$ 9,800,000 \\
\mathrm{~N} & =122,500 \text { rooms }
\end{align*}
$$

2. $\$ 105 \mathrm{~N}-\$ 25 \mathrm{~N}-\$ 9,200,000=0$

$$
\$ 80 \mathrm{~N}=\$ 9,200,000
$$

$$
\mathrm{N}=115,000 \mathrm{rooms}
$$

Number of rooms at 100% capacity $=600 \times 365=219,000$
Percentage occupancy to break even $=115,000 \div 219,000=52.5 \%$
3. Using the shortcut approach described in the chapter appendix:
$\begin{gathered}\text { Change in } \\ \text { net income }\end{gathered}=\begin{gathered}\text { Changein volume } \\ \text { inunits }\end{gathered} \quad x \begin{gathered}\text { Contriutionmargin } \\ \text { inunits }\end{gathered} \quad \times(1-$ tax rate $)$
$=15,000 \times \$ 80 \times(1-0.40)$
$=15,000 \times \$ 48$
$=\$ 720,000$, a large increase because of a high contribution margin per dollar of revenue.

Note that a 10% increase in rooms sold increases net income by $\$ 720,000 \div$ $\$ 1,680,000$ or 43%.

Rooms sold
Contribution margin @ \$80
Fixed expenses
Income before taxes

150,000
$\$ 12,000,000$
\$12,000,000
9,200,000
2,800,000

165,000
\$13,200,000
9,200,000
4,000,000

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848

Income taxes @ 40\%
Net income
$1,120,000$
$\underline{\$ 1,680,000}$
1,600,000
\$ 2,400,000
Increase in net income
$\$ 720,000$
Percentage increase

P2-11 (15-25 min.)

Current contribution margin = \$16-\$10-\$2 = \$4.
New variable costs per DVD will be 130% of $\$ 10+\$ 2=\$ 13+\$ 2=\$ 15$.

1. a. Break-even point $=\frac{\$ 600,000}{\$ 16-(\$ 10+\$ 2)}=150,000$ DVDs
2. d. Contribution margin: $\$ 16-(\$ 10+\$ 2)=\$ 4$

Increased after-tax income: $10 \% \times 200,000 \times \$ 4 \times 60 \%=\$ 48,000$; or using formula:
Change in
net income
$=\underset{\text { inunits }}{\text { Changeinvolume }} \times \underset{\text { inunits }}{\text { Contriutionnmain }} \times(1-$ tax rate $)$

$$
\begin{aligned}
& =20,000 \times \$ 4 \times(1-0.40) \\
& =\$ 48,000
\end{aligned}
$$

3. a. Let $\mathrm{N}=$ target sales in units

$$
\begin{array}{ccc}
\text { Target } & \text { variable } & \text { find } \\
\text { sales } & \text { expenses } & \text { expenses }
\end{array}=\frac{\text { targetafter-taxnetincome }}{1 \text {-taxrate }}
$$

$$
\$ 16 \mathrm{~N}-\$ 15 \mathrm{~N}-\$ 600,000=\frac{\$ 120,000}{(1-0.4)}
$$

$$
\$ 16 \mathrm{~N}-\$ 15 \mathrm{~N}-\$ 600,000=\$ 200,000
$$

$$
N=800,000 \text { units }
$$

$$
\$ 16 \mathrm{~N}=\$ 12,800,000
$$

4. b. Let $P=$ new selling price

Current contribution ratio is $\$ 4 \div \$ 16=0.25$
New contribution ratio is $(P-\$ 15) \div P=0.25$
$0.25 \mathrm{P}=\mathrm{P}-\$ 15$
$0.75 \mathrm{P}=\$ 15$
$P=\$ 15 \div 0.75$
P = \$20
P2-12 (10-15 min.)
The answer is $\$ 1,320,000$.

Refined analysis:

Practical analysis:

P2-13 (40 min.)

1. Let $\mathrm{N}=$ the number of people to be admitted for the season

Revenue:

Rights for concession
\$50,000
Admissions
Percentage of bets
\$1.00N
10% of $\$ 27 \mathrm{~N}=\$ 2.70 \mathrm{~N}$

Total revenue $=\$ 50,000+\$ 3.70 \mathrm{~N}$
Expense:
Fixed costs:

Wages of cashiers and ticket takers
Commissioner's salary
Maintenance
Utilities
Other expense
Purses
Total fixed costs

Variable costs:

Parking is $\$ 6.00$ per car or $\$ 1.00$ per person
(6 persons attended per car, so $\$ 6.00 \div 6=\$ 1.00$)
\$ 160,000
20,000
20,000
30,000
90,000
810,000
$\$ \mathbf{\$ 1 , 1 3 0 , 0 0 0}$

Total expense $=\$ 1,130,000+\$ 1.00 \mathrm{~N}$
(a) Break-Even Point:
$\begin{aligned} \$ 50,000+\$ 3.70 \mathrm{~N}-\$ 1,130,000-\$ 1.00 \mathrm{~N} & =0 \\ \$ 2.70 \mathrm{~N} & =\$ 1,080,000 \\ \mathrm{~N} & =400,000 \text { people }\end{aligned}$
(b) $\$ 1,130,000$
(c) Desired Operating Profit \$270,000:
$\$ 50,000+\$ 3.70 \mathrm{~N}-\$ 1,130,000-\$ 1.00 \mathrm{~N}=\$ 270,000$

$$
\begin{aligned}
\$ 2.70 \mathrm{~N} & =\$ 1,350,000 \\
\mathrm{~N} & =500,000 \text { people }
\end{aligned}
$$

2. Previous level of attendance 20\% increase in attendance Total bets: 720,000 x \$27 Revenue:

Concession \$ 50,000
Admission
Percentage of bets $(10 \% \times \$ 19,440,000)$
$1,944,000$
Total revenue $\$ 1,994,000$
Expense:
Fixed
Variable (\$1.00 x720,000) Operating profit
\$1,130,000
$\underline{720,000} \quad \$ 1,850,000$
\$ 144,000
3. The purses are doubled:

Previous fixed expense	$\$ 1,130,000$
Additional purse money	$\underline{810,000}$
New fixed expense	$\underline{\$ 1,940,000}$

Variable expense $\$ 1.00$ per person
Revenue \$50,000 + \$3.70N

$$
\begin{aligned}
\$ 50,000 & +\$ 3.70 \mathrm{~N}-\$ 1,940,000-\$ 1.00 \mathrm{~N}=0 \\
\$ 2.70 \mathrm{~N} & =\$ 1,890,000 \\
\mathrm{~N} & =700,000 \text { people }
\end{aligned}
$$

P2-14 (30-40 min.)

1. Fixed costs:

Depreciation $(\$ 13,500-\$ 6,000) \div 3=$
\$2,500
Insurance
Total fixed costs
700
Variable costs:
Gas, $\$ 0.60 \div 6$ kilometres
$\$ 0.10$
Oil, $\$ 30.00 \div 3,000$ kilometres 0.01
Maintenance, $\$ 240 \div 6,000$ kilometres 0.04
Variable cost per kilometre

$\$ 0.15$

Let $\mathrm{N}=$ Number of kilometres to break even Revenue - Variable costs - Fixed costs $=0$
$\$ 0.23 \mathrm{~N}-\$ 3,200-\$ 0.15 \mathrm{~N}=0$
$\mathrm{N}=\$ 3,200 \div \$ 0.08=40,000$ kilometres
2. An -equitablell rate might be based on the actual number of business-related kilometres expected. The days not on the road are:

Weekends, 52×2	$\frac{\text { Days }}{104}$
Vacation	10
Holidays	6
Home office	$\underline{15}$
Not on the road	$\underline{\underline{135}}$
On the road, $365-135=$	$\underline{\underline{230}}$
Kilometres, $230 \times 120=$	

$$
\begin{aligned}
\text { Let } \quad X & =\text { Reimbursement per kilometre to break even } \\
27,600 X & =\$ 3,200-27,600(\$ 0.15) \\
27,600 X & -\$ 3,200-\$ 4,140=0 \\
X & =\$ 7,340 \div 27,600=\$ 0.266
\end{aligned}
$$

Therefore, a rate of $\$ 0.27$ seems more equitable than $\$ 0.23$.
P2-15 (20-30 min.)
Variable costs per bag are (\$0.14 + \$0.09 + \$0.22), (\$0.14 + \$0.09 + \$0.14), and ($\$ 0.14+\$ 0.09+\$ 0.05$), or $\$ 0.45, \$ 0.37$, and $\$ 0.28$, respectively.

1. Let $N=$ volume level in bags that would earn same profit

$$
\$ 8,000+\$ 0.45 \mathrm{~N}=\$ 11,200+\$ 0.37 \mathrm{~N}
$$

$\$ 0.08 \mathrm{~N}=\$ 3,200$
$N=40,000$ boxes
2. As volume increases, the more expensive models would generate more profits. Compare the regular and super models:

Let $\mathrm{N}=$ volume level in bags that would earn same profit
$\$ 20,200+\$ 0.28 \mathrm{~N}=\$ 11,200+\$ 0.37 \mathrm{~N}$
$\$ 0.09 \mathrm{~N}=\$ 9,000$
$N=100,000$ boxes
Therefore, the decision rule is as shown below.
Anticipated Annual
Sales Between
Use Model
0-40,000
40,000-100,000
100,000 and above

The decision rule places volume well within the capacity of each model.
3. No, management cannot use theatre capacity or average bags sold because the number of seats per theatre does not indicate the number of patrons attending or the popcorn buying habits in different geographic locations. Each theatre may have a different -bags sold per seatll average with significant variations. The decision rule does not take into account variations in demand that could affect model choice.

P2-16 (25-30 min.)

This case is based on real data that has been simplified so that the numbers are easier to handle.

1. Daily break-even volume is 85 dinners and 170 lunches:

First, compute contribution margins on lunches and dinners:
Variable cost percentage

$$
\begin{aligned}
& =(\$ 1,246,500+\$ 222,380) \div \$ 2,098,400 \\
& =70 \%
\end{aligned}
$$

Contribution margin percentage $=1-$ variable cost percentage

$$
=1-70 \%=30 \%
$$

$$
\text { Lunch contribution margin }=0.30 \times \$ 20=\$ 6
$$

$$
\text { Dinner contribution margin }=0.30 \times \$ 40=\$ 12
$$

Annual fixed cost is $\$ 170,700+\$ 451,500=\$ 622,200$
Let $X=$ number of dinners and $2 X=$ number of lunches
$12(X)+6(2 X)-\$ 622,200=0$
$24(X)=622,200$
$X=25,925$ dinners annually to break even
$2 X=51,850$ lunches annually to break even
On a daily basis:
Dinners to break even $=25,925 \div 305=85$ dinners daily
Lunches to break even $=85 \times 2=170$ lunches daily or $51,850 \div 305=170$ lunches daily.

To determine the actual volume, let Y be a combination of 1 dinner and 2 lunches. The price of Y is $\$ 40+(2 \times \$ 20)=\$ 80$. Total volume in units of Y is $\$ 2,098,400 \div \$ 80=$ 26,230 . Daily volume is $26,230 \div 305=86$. Therefore, 86 dinners and $2 \times 86=172$ lunches were served on an average day. This is 1 dinner and 2 lunches above the break-even volume.
2. The extra annual contribution margin from the 3 dinners and 6 lunches is:
$3 \times \$ 40 \times .30 \times 305=\$ 10,980$
$6 \times \$ 20 \times .30 \times 305=\underline{10,980}$
Total
\$21,960
The added contribution margin is greater than the $\$ 15,000$ advertising expenditure. Therefore, the advertising expenditure would be warranted. It would increase operating income by $\$ 21,960-\$ 15,000=\$ 6,960$.
3. Let Y again be a combination of 1 dinner and 2 lunches, priced at $\$ 80$. Variable costs are $0.70 \times \$ 80=\$ 56$, of which $\$ 56 \times 0.25=\$ 14$ is food cost. Cutting food costs by 20% reduces variable costs by $0.20 \times \$ 14=\$ 2.80$, making the variable cost of $Y \$ 56-\$ 2.80=\$ 53.20$ and the contribution margin $\$ 80-$ $\$ 53.20=\$ 26.80$. (This could also be determined by adding the $\$ 2.80$ saving in food cost directly to the old contribution margin of $\$ 24$.) The required annual volume in Y needed to keep operating income at $\$ 7,320$ is:
\$26.80 (Y) - \$622,200 = \$7,320
\$26.80 (Y) = \$629,520
$\mathrm{Y}=23,490$
Therefore, daily volume $=23,490 \div 305=77$ (rounded)
If volume drops no more than $86-77=9$ dinners and $172-154=18$ lunches, using the less costly food is more profitable. However, there are many subjective factors to be considered. Volume may not fall in the short run, but the decline in quality may eventually affect repeat business and cause a longrun decline. Much may depend on the skill of the chef. If the quality difference is not readily noticeable, so that volume falls less than, say, 10\%, saving money on the purchases of food may be desirable.

P2-17 (15-20 min.)

1. Old: (Contribution margin $\times 600,000$) $-\$ 585,000=$ Budgeted profit $[(\$ 3.10-\$ 2.10) \times 600,000]-\$ 585,000=\$ 15,000$

New: (Contribution margin $\times 600,000$) $-\$ 1,140,000=$ Budgeted profit $[(\$ 3.10-\$ 1.10) \times 600,000]-\$ 1,140,000=\$ 60,000$
2. Old: $\$ 585,000 \div \$ 1.00=585,000$ units

New: $\$ 1,140,000 \div \$ 2.00=570,000$ units
3. A fall in volume will be more devastating under the new system because the high fixed costs will not be affected by the fall in volume:

Old: $\quad(\$ 1.00 \times 500,000)-\$ 585,000=-\$ 85,000$ (an \$85,000 loss)
New: $(\$ 2.00 \times 500,000)-\$ 1,140,000=-\$ 140,000($ a $\$ 140,000$ loss $)$
The 100,000 unit fall in volume caused a $\$ 15,000-(-\$ 85,000)=\$ 100,000$ decrease in profits under the old environment and a $\$ 60,000-(-\$ 140,000)=$
\$200,000 decrease under the new environment.
4. Increases in volume create larger increases in profit in the new environment:

Old: $\quad(\$ 1.00 \times 700,000)-\$ 585,000=\$ 115,000$
New: $(\$ 2.00 \times 700,000)-\$ 1,140,000=\$ 260,000$
The 100,000 unit increase in volume caused a $\$ 115,000-\$ 15,000=\$ 100,000$ increase in profit under the old environment and a \$260,000 - \$60,000 = $\$ 200,000$ increase under the new environment.
5. Changes in volume affect profits in the new environment (a high-fixed-cost, low-variable-cost environment) more than they affect profits in the old environment. Therefore, profits in the old environment are more stable and less risky. The higher-risk new environment promises greater rewards when conditions are favourable, but also leads to greater losses when conditions are unfavourable, a more risky situation.

P2-18(20-30 min.)

1. 2012 revenue $=61,000$ million $\times 0.681 \times \$ 0.1310=\$ 5,442$ million 2011 revenue $=61,000$ million $\times 0.656 \times \$ 0.1251=\$ 5,006$ million
2. a) $\$ 3,000$ million $\div(\$ 0.1251-\$ 0.05)=39,947$ million revenue-passenger kilometre $39,947 \div 61,000=65.5 \%$ load factor
b) $\$ 3,000$ million $\div(\$ 0.1310-\$ 0.05)=37,037$ million revenue-passengerkilometre $37,037 \div 61,000=60.7 \%$ load factor
3. $\$ 3,400$ million $\div(\$ 0.13-\$ 0.05)=42,500$ million revenue-passenger-kilometre $42,500 \div 61,000=69.7 \%$ load factor

P2-19 (40-60 min.)
Some instructors may prefer to omit some of these requirements. Requirement 4 is especially difficult.

1. Contribution margin, 11,000 units $\times(\$ 7-\$ 5)=\$ 22,000$

Fixed costs $\quad \underline{25,000}$ Net income (loss) \$(3,000)

Sales in the unrelated market must obtain a total contribution margin large enough to recoup the loss of $\$ 3,000$ plus $\$ 900$:

Total contribution margin needed
\$3,900
Divide by unit contribution margin in unrelated market Total units needed to be sold
2. Contribution margin, 20,000 units $\times(\$ 7-\$ 5)=$
\$40,000
Fixed costs
27,000
Net income $\$ \underline{\underline{\$ 13,000}}$

Desired net income $\quad \$ 14,500$
Net income on 20,000 units $\quad 13,000$
Additional net income desired on 3,000 units
\$ 1,500
Additional contribution margin desired per unit is $\$ 1,500 \div 3,000=\$ 0.50$
Selling price per unit $\$ 7.00$
Contribution margin per unit $\quad \underline{0.50}$
Maximum price to be paid to subcontractor $\$ 6.50$
3. Let $\mathrm{A}=$ increase in advertising

$$
\begin{aligned}
& 14,500(\$ 7)=14,500(\$ 5)+\$ 25,000+A+.02(\$ 7)(14,500) \\
& \$ 101,500=\$ 72,500+\$ 25,000+A+\$ 2,030 \\
& A \quad=\$ 101,500-\$ 99,530=\$ 1,970
\end{aligned}
$$

4. Many students will erroneously assume a selling price of $\$ 7$.

Let $\mathrm{X}=$ units and $\mathrm{Y}=$ current selling price

$$
\begin{align*}
1.00 X Y & =\$ 25,000+\$ 5 X+\$ 12,500 \tag{1}\\
0.95 X Y & =\$ 25,000+\$ 5 X+\$ 7,750 \tag{2}\\
\hline 0.05 X Y & = \\
X Y & =\$ 95,000
\end{align*}
$$

(1) minus (2)

Substitute

$$
\begin{aligned}
\$ 95,000 & =\$ 25,000+\$ 5 X+\$ 12,500 \\
\$ 5 X & =\$ 57,500 \\
X & =11,500 \text { units } \\
X Y & =\$ 95,000 \\
Y & =\$ 95,000 \div 11,500 \text { units or } \$ 8.26
\end{aligned}
$$

and since

P2-20(30 min. or more)
The purpose of this problem is to develop an intuitive feel for the costs involved in a simple production process and to assess whether various costs are fixed or variable. Then students must assess the market to determine a price so that they can compute a break-even point.

Completing this problem can be done quickly or it can take much time. It might even be done in class, with students suggesting the various costs and predicting their levels. A complete analysis might involve finding the actual prices of the resources needed to make the product or service. This could lead to time-consuming research. Whatever approach is taken, students are led to see the real-world application of what they are learning.

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848

Cases

C2-1 (25-30 min.)

1. Break even in boxes $=\frac{\text { Annual fixed costs }}{\text { Contribution margin per box }}$

$$
=\frac{\$ 550,000}{\$ 5.00-\$ 3.00}=275,000 \mathrm{boxes}
$$

2. Contribution margin ratio $=\$ 2.00 \div \$ 5.00=40 \%$

Old variable cost $=\$ 3.00$
Only the cost of candy is affected:
New variable cost $=\$ 3.00+0.15(\$ 2.50)=\$ 3.375$
Let $\mathrm{S}=$ Selling price
Selling price - Variable costs $=$ Contribution margin

$$
\begin{aligned}
\mathrm{S}-\$ 3.375 & =0.40 \mathrm{~S} \\
0.60 \mathrm{~S} & =\$ 3.375 \\
\mathrm{~S} & =\$ 5.625
\end{aligned}
$$

Check: $(\$ 5.625-\$ 3.375) \div \$ 5.625=40 \%$
3. Current income before taxes:

$$
\begin{aligned}
& =390,000 \text { boxes }(\$ 5.00-\$ 3.00)-\$ 550,000 \\
& =\$ 780,000-\$ 550,000=\$ 230,000
\end{aligned}
$$

Current income after taxes:

$$
=\$ 230,000(0.60)=\$ 138,000
$$

The problem can be solved by using units and then converting to dollar sales.
Let $\mathrm{N}=$ sales in units
Sales - Variable expenses - Fixed expenses $=\frac{\text { Net income }}{1 \text {-tax rate }}$
$\$ 5.00 \mathrm{~N}-[\$ 3.00+0.15(\$ 2.50)] \mathrm{N}-\$ 550,000=\frac{\$ 138,000}{1-0.4}$
$\$ 5.00 \mathrm{~N}-\$ 3.375 \mathrm{~N}-\$ 550,000=\$ 230,000$
$\$ 1.625 \mathrm{~N}=\$ 780,000$
$\mathrm{N}=480,000$ boxes
$\$ 5.00 \mathrm{~N}=\$ 2,400,000$ sales

An alternative way to get the solution is:
New contribution margin ratio $=\frac{\$ 5.00-\$ 3.375}{\$ 5.00}=0.325$
New variable cost ratio $=1.000-0.325=0.675$
Let $S=$ Sales
$S=0.675 S+\$ 550,000+\$ 138,000 \times(1-0.4)$
$0.325 \mathrm{~S}=\$ 780,000$
$S=\$ 2,400,000$
4. Strategies might include:
(a) Increase selling price by the $\$ 0.375$ cost increase
(b) Decrease other variable costs by $\$ 0.375$ per box
(c) Decrease fixed costs by $\$ 0.375 \times 390,000=\$ 146,250$
(d) Increase unit sales by $480,000-390,000=90,000$ boxes
(e) Some combination of the above.

C2-2 (25-35 min.)

1. $\frac{(\$ 12,000,000)}{\$ 800}=15,000$ patient-days
2. Variable costs $=\frac{(\$ 3,150,000)}{(15,000)}=\$ 210$ per patient-day

Contribution margin $=\$ 800-\$ 210=\$ 590$ per patient-day
To recoup the specified fixed expenses: $\$ 5,900,000 \div \$ 590=10,000$ patient-days
3. The fixed-cost levels differ as the relevant range changes:

$\frac{\text { Patient-Days }}{}$	Non-Nursing Fixed Expenses	Nursing Fixed Expenses	Total Fixed Expenses
$12,000-12,000$	$\$ 5,900,000$		$\$ 1,350,000(\mathrm{a})$

(a) $\$ 45,000 \times 30=\$ 1,350,000$
(b) $\$ 45,000 \times 35=\$ 1,575,000$

To break even on a lower level of fixed costs:
$\$ 7,250,000 \div \$ 590=12,288$ patient-days
This answer exceeds the lower-level maximum; therefore, this answer is infeasible. The department must operate at the $\$ 7,475,000$ level of fixed costs to break even: $\$ 7,475,000 \div \$ 590=12,669$ patient-days.

Full download Solution manual for Management Accounting 6th Canadian Edition by Horngren Sundem Stratton Beaulieu ISBN 013257084X 9780132570848
https://cloudtestbanks.com/p/solution-manual-for-management-accounting-6th-canadian-edition-by-horngren-sundem-stratton-beaulieu-isbn-013257084x-9780132570848
4. The nursing costs would have been variable instead of fixed. The contribution margin per patient-day would have been $\$ 800-\$ 210-\$ 200=\$ 390$. The break-even point would be higher: $\$ 5,900,000 \div 390=15,128$ patient-days.

Some instructors might want to point out that hospitals have been under severe pressures to reduce costs. More than ever, nursing costs are controlled as variable rather than fixed costs. For example, more part-time help is used, and nurses may be used for full shifts but only as volume requires.

C2-3 (40-50 min.)
1.
Price $\quad \$ 550$

Less variable costs:
Catering 60
Supplies 36
Feedback 24
Royalty $\quad 100$
Total variable costs $\underline{\underline{220}}$
CM per person $\underline{\underline{\$ 330}}$
Fixed costs
Instructor $\quad \$ 3,000$

Advertising $\quad 1,500$
Administration $\underline{250}$
Total fixed costs $\$ 4,750$
There are two break-even points (BEP), one for the small room and one for the large room.

$$
\begin{aligned}
\text { Small-room BEP } & =(\$ 4,750+\$ 800) / \$ 330 \\
\text { Small-room BEP } & =\$ 5,550 / \$ 330 \\
& =16.82 \text { or } 17 \text { people } \\
\text { Large-room BEP } & =(\$ 4,750+\$ 1,500) / \$ 330 \\
\text { Large-room BEP } & =\$ 6,250 / \$ 330 \\
& =18.94 \text { or } 19 \text { people }
\end{aligned}
$$

2.

Let $p=$ price
$18(p)-18(\$ 220)-\$ 5,550=\$ 3,000$
18(p) - \$3,960-\$5,550=\$3,000
$18(p)=\$ 12,510$
$p=\$ 695$

```
3.
Central Hotel CM per person:
Price
$650
Less variable costs:
    Catering 50
    Supplies 36
    Feedback 24
    Royalty 
Total variable costs \underline{210}
CM per person $440
Fixed costs $4,750
Plus room
    3,000
Total fixed costs $7,750
Let \(x=\) attendance
profit at Central Hotel = profit at Hotel Suburb in large room
\$440(x) - \$7,750 = \$330(x) - \$6,250
\$110(x) = \$1,500
\(x=13.64\) or 14 people
```

Note that at 13.64, both would be making losses of $\$ 1,750$. If rounded up to 14 people losses are almost the same, $\$ 1,590$ for Central Hotel and $\$ 1,630$ for Hotel Suburb.
4.

This is an open-ended and challenging question that requires students to consider many factors. Risk in particular is difficult to assess, given the financial information in this case. Typical -boilerplatell answers are insufficient.

First, calculate the break-even point using Central Hotel: $\$ 7,750 / \$ 440=17.61$, or 18 people

The following table summarizes the data and calculations.

	Hotel Suburb (small rm)	Hotel Suburb (large rm)	Central Hotel
Capacity	20	50	40
CM per student	$\$ 330$	$\$ 330$	$\$ 440$
Break-even point	17	19	18
Total fixed costs	$\$ 5,550$	$\$ 6,250$	$\$ 7,750$
Maximum profit potential	$\$ 1,050^{* * *}$	$\$ 10,250^{* *}$	$\$ 9,850^{* *}$

[^1]Hotel Suburb's small room has the lowest operating leverage and lowest fixed costs and break-even point, so it poses the least risk. Although the Central Hotel breakeven point (18) is slightly lower than Hotel Suburb's large room (19), it has more risk in that it has significantly higher operating leverage and fixed costs. A consideration is that Hotel Suburb's large room and Central have the same loss at 14 students (see part 3), and at greater enrolments. Central will produce more profit. If the experience in Edmonton is a guide, there should be more than 14 students. In summary, in the likely range of operations, Central does not pose greater risk than Hotel Suburb's small room. Hotel Suburb's small room clearly has the lowest profit potential based on room capacity. With such small profit potential it can be ruled out; the most that could be saved compared to the large room in terms of break-even numbers is two students, a total contribution of $\$ 660$.

The choice is therefore between Hotel Suburb's large room and Central Hotel. Risk has already been discussed above. Hotel Suburb's large room can produce more profit only if it has 49 or 50 students. (Profit at Hotel Suburb's large room with $49=49[\$ 330]-\$ 6,250=\$ 9,920$.) Finally, consider market expectations given the experience in Edmonton. If that is a guide, it is doubtful that QCS will be able to fill the large room in Hotel Suburb. In the expected range of enrolment, Central dominates Suburb in terms of risk and profit potential.

[^0]: * From requirement 1, total cost is the fixed cost of $\$ 30,000+$ variable costs of $\$ 0.06$ x square metres cleaned

[^1]: *20(\$330-\$5,550 = \$1,050
 ** 50 (\$330) $-\$ 6,250=\$ 10,250$
 $40(\$ 440)-\$ 7,750=\$ 9,850$

